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Abstract

Guaranteed upper bounds on the length of a shortest cycle through
k < 5 prescribed vertices of a polyhedral graph or plane triangulation
are proved.
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1. Introduction and Results

G.A. Dirac [2] proved that for a given integer ¢ > 2 any k (1 < k < ¢) pre-
scribed vertices of a c-connected graph belong to a common cycle. However,
the complete bipartite graph K .1 shows that this is not true for ¢+ 1 pre-
scribed vertices. In [3] we investigated the length of short cycles through &
prescribed vertices with 1 < k < min{c, 3} in a c-connected graph G. From
A K. Kelmans and M.V. Lomonosov [6] we know that any five vertices of
a polyhedral graph (that is a planar and 3-connected graph) belong to a
common cycle which is best possible.

For given integers k,l with 1 <k <5, 3 <[ and k <1 let ng(l) denote
the minimum number n such that there exists a polyhedral graph G of order
n having a subset of k vertices with the property that the length of every
cycle containing those k vertices is at least [. In [3] we proved

(i) n1(l) =3l —5 for I > 3,
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(i) na(l) = |252] for 1 > 3,
(ili) n3(l) = [2FL] for I > 5,
and the following results which will be proven here is a continuation of the

investigation [3] of short cycles through prescribed vertices for a polyhedral
graph.

Theorem 1.

I if le{4,8)},
I+1 if 1€{5,6,7,9,10},

l —
na(l) [+2 if le{11,12},
457 if 1>13.
Theorem 2.
l if l=5 or [>8,
n5(l): .
I+1 if 1=6 or 7.

For integers k,l with 2 < k < 5, 3 < [ and k < [ denote by t;(l) the
minimum number n such that there exists a plane triangulation T' of order
n with certain k vertices such that the length of every cycle containing them
is at least [. Then we have ng(l) < tx(l) since every plane triangulation is
3-connected and thus a polyhedral graph. Notice that even ng(l) = tx(1)
holds in every considered case. If, namely, G is any one of the here or in
[3], respectively, constructed graphs to prove an upper bound for ng(l) with
certain k and [, then we were able to construct a plane triangulation 7" from
G by adding edges only such that the length of a shortest cycle containing
the prescribed k vertices is at least (.

2. Proofs

For terminology and notation not defined here we refer to [5]. Let G be a
graph and A, B C V(G). A path P of G with one end-vertex in A and B,
respectively, and with [V(P)NA| = |V(P)NB| = 1is called an A-B-path. If
A or B consists of a single vertex x we write x instead of {x}. We use [z, y]
to denote an x-y-path and, moreover, [x,y) or (z,y) to denote the segments
obtained from [z, y] by removing y or both end-vertices, respectively. A path
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system is a set of internally disjoint paths. For a path system P let [P] and
EV(P) denote the union of all paths and the set of all end-vertices of paths
of P, respectively. For some a € V(G) and B C V(G) \ {a} a path system
P of a-B-paths is called an a-B-fan if PN Q = {a} for different P,Q € P.

We need the following lemma which is proved in [3] in more general
form.

Lemma 1. Let G be a c-connected graph with a € V(G), B C V(G) \ {a}
and a path system P of ¢ — 1 a-B-paths. Let B' = B\ EV(P) if this is
not empty, and B’ be an arbitrary nonempty subset of B otherwise. Then
there is a vertex b € B’ and a path system Q of ¢ a-B-paths such that
EV(Q) = EV(P) U{b}, all vertices of B\ {b} are end-vertices of as many
paths of P as of Q, and Q has one more path with end-vertex b than does P.

We define five polyhedral graphs containing the vertices of a prescribed 4-
element set X as follows. Let F} be the complete graph Ky on X. Let Fb
denote the graph which is obtained from a 4-cycle C' on X by connecting
an additional vertex a ¢ X with all vertices of C. Let F3 denote the graph
which results from C' and two adjacent vertices a,b ¢ X by connecting two
adjacent vertices of C' with a and the remaining two vertices of C with b.
The graph F} is obtained if two non-adjacent vertices a,b ¢ X are connected
with three vertices of a 4-path P on X, respectively, such that every vertex
of X becomes degree 3. Eventually, let F5 denote the cube graph containing
the vertices of X such that no two vertices of X are adjacent.

Lemma 2. Every polyhedral graph G with X = {x1,x2,x3,24} C V(G) has
a subgraph H which is a subdivision of some F; with 1 < ¢ < 5.

Proof of Lemma 2. Lemma 1 implies that G has an z1-ze-path sys-
tem {Pp, P>, P3} which contains x3 by planarity of G, i.e., we may as-
sume that x3 € V(P;). Moreover, Lemma 1 yields an x3-V (P U Ps)-fan
Q = {[z1, z3], [x2, x3], [a, 23]}, where we may assume that a € V(P,). Thus,
G has a path system P = {[z1, 2], [x1, x3], [x2, 23], [a, 21], [a, 22], [a, x3]}.

Suppose first, that x4 is contained in [P]. Considering symmetries we have
to examine three different cases.

Case 1. x4 = a.
Then [P] is a subdivision of Fj.
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Case 2. x4 € (x1,22).
By Lemma 1 there is an z4-V ([P]\ (21, x2))-fan Q = {[x1, x4], [x2, z4], [b, x4]}
where b € V([P]\ (z1,22)). Let H denote the subgraph [P U Q] \ (z1,x2) of
G, then by symmetries there are following subcases. If b = x3 or b = a then
H is a subdivision of F; or Fj, respectively. If b € (z1,23) or b € (a,x1)
then H is a subdivision of Fy or F3, respectively.

Case 3. x4 € (a,21).
Applying Lemma 1 again there is an x4-V([P]\ (a, z1))-fan Q = {[z1, x4], [a,
x4], [b, 24]} where b € V([P]\ (a,21)). Let H denote the subgraph [P U Q] \
(a,x1) of G. Considering symmetries we have: If b € (x1,z2) or b € [x9,a)
then H is a subdivision of Fy or F}, respectively.

Suppose now, that x4 is not contained in [P] and in any other such path
system of G. Applying Lemma 1 we obtain an z4-V ([P])-fan Q = {[b, z4],
[c, x4], [d, 4]} such that each path of P contains at most one vertex of
EV(Q) and that at most one path of P with end vertex a contains a
vertex of EV(Q). Thereby and since G is planar we may assume that
b € (z1,22), ¢ € (v2,23) and d € (z1,23) which implies that [P U Q] is
a subdivision of F5. [ |

Figure 1 contains further three polyhedral graphs which contain the vertices
of X = {x1,x9, 23,24} and which are needed to prove Theorem 1.

&
L

F F; Fy

Figure 1

Proof of Theorem 1. For | = 6,7,11 and I > 13 connect a vertex a
with each vertex of a 4-cycle C = x1x0x37471. Put @ = Ll%j and suppose

I = r(mod 3) where r € {0,1,2}. Subdivide every edge e of C' with respect
to r by the number of new vertices given in Table 1. Connect every new
vertex with a and denote the so constructed polyhedral graph by G.
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Table 1

r\e‘ T1To  Tox3  T3T4  TaT]

0 a+l a+1 a o
1 a+1l a+1 a+1 o
2 leY « o «

A simple calculation shows that the length of a shortest cycle in G containing

X ={z1,%2,x3, 24} is [ and that the order of G is (413;5], in every case.

For [ =4,5,8,9,10,12 let G be Iy, Fy, F5, Fg, Fr, Iy, respectively, with
X C V(G). In these special cases it is not hard to see that the length of
a shortest cycle of G containing X is [. That together with n4(l) < |G|
completes the proof of the upper bound.

Suppose, now, that G is a polyhedral graph of order n with a 4-element
subset X = {z1, 2,23, 24} of V(G) such that the length of a shortest cycle
containing X is at least [. Because of Lemma 2 it is sufficient to estimate
for i =1,...,5 the order of a subgraph H of G which is a subdivision of F;
with X C V(F;) and to deduce a lower bound for na(l).

i = 1: H has three different cycles C, Cs, C3 passing each vertex of F.
Every vertex of V/(H) \ V(F1) occurs in precisely two of these three cycles.
Thus, 2|H| + 4 > |C1| + |Ca| + |C3] > 31 and, consequently, |H| > [34].

1 = 2: H has four cycles C1, ...,y containing all vertices of F5 and one
cycle Cy containing X but no other vertex of Fh. Every vertex of VI(H) \
V(F2) \ V(C5s) occurs in precisely two and every vertex of V(C5) \ V(F»)
in precisely three of the cycles Cy,...,Cy. Thus, 2|H| + |C5| +4-14+2 >
|C1]|+...4|C4| > 4l and, thereby, 2|H|+ |C5|+6 > 4. From |C5| < |H|—1
we further obtain |H| > [‘”%5]

i = 3,4: H has three different cycles C1, Cs, C3 passing each vertex of
F;. Every vertex of V(H)\V (F;) occurs in precisely two of these three cycles.
Thus, 2|H| + 6 > |C1| + |Ca| + |C3] > 31 and, consequently, |H| > [357].

1 = 5: H has six different cycles C1,..., Cg passing each vertex of Fj.
Every vertex of V(H) \ V(F5) occurs in precisely four of these six cycles.
Thus, 4/H| +2-8 > |C1| + ...+ |Cs| > 61 and, consequently, |[H| > [2-8].
Because of |G| > min{|H;| : 1 <i <5} and |G| > [ we obtain
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I if 1€{4,56,8},
I+1 if 1€{7,9,10},
I+2 if 1e{11,12},
421 if 1>13.

In the special cases [ = 5,6 one can observe that since G has a subgraph H
which is a subdivision of F; for some i € {1,...,5} the order of G can not
be smaller than 6 or 7, respectively. That proves the lower bound. [

Proof of Theorem 2. Forl =5,6,7,8,9 let G; be the polyhedral graphs
with X = {z1,...,z5} C V(G)) given in Figure 2.

Gs Gg G~

Gg Gy
Figure 2

For [ > 9 let GG} be the polyhedral graph which results from Gg by subdi-
viding z1x9 by | — 9 new vertices and connecting each of them with a ¢ X.
Notice that |G;| =1lifl=50orl>8and |G;|=1+1if [ =6 or 7. It is not
hard to see that for every [ > 5 the length of any cycle of G; passing all the
vertices of X is at least [.

So, it remains to prove ns(l) > [ for | = 6,7. Let | = 6 and suppose
that there exists a polyhedral graph G of order 6 with V(G) = X U {a}
such that every cycle which contains the vertices of X is a hamiltonian
one. Let C(G) denote the set of all cycles of G. Then we may suppose
that zyxexszzsxsax1 € C(G). Clearly, x125 ¢ F(G) which implies that xjx3
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or r1zy € E(G). If 123 € E(G) then zoxs ¢ E(G) because otherwise
r1xowsxrarsry € C(G). Thus, x3zs € F(G) and also z1x4, x4 ¢ E(G)
because otherwise zwoxsrszgxy Or xixowgxs513T1 € C(G), respectively.
Thereby, zo and x4 are connected with a which yields that {z3,a} is a
cutset, a contradiction. So, we have that z1z3 ¢ E(G) and z124 € E(G)
which implies that zsxs; ¢ E(G) because otherwise zyzoxsxsrszs € C(G).
That implies zoz5 € E(G) and thereby dg(x3) = 2, a contradiction.

Now, let [ = 7 and suppose that there exists a polyhedral graph G
of order 7 with V(G) = X U {a, b} such that every cycle which contains
the vertices of X is a hamiltonian one. We may assume that C(G) con-
tains one of the cycles C1 = xi1xox3xsx50bxy, Co = x1T9T3T4025b%1, C3 =
T1xox3aT4x5bT .

Case 1. C1 € C(G).

Clearly, zix5,z10,25b ¢ E(G). If 2123 € E(G) then xaxs, 00 ¢ E(G)
because otherwise z1zozsxax321 Oor T1x20x5x42321 € C(G), respectively.
Thus, z3z5 € E(G) which yields z1x4, zox4, x40 ¢ E(G) because otherwise
T1TX2X3X5Xx4T1 O T1X2X4X5X3T1 O x1$2x3x5x4bx1 S C(G), respectively.
That implies x2b, z4a € E(G) which means that {z3,a} or {z3,b} would
be a cutset of G, a contradiction. If x1z3 ¢ E(G) we have x1z4 € E(G)
and x3xs5, x3a ¢ E(G) because otherwise x1x9x3252421 OF 2129230252421 €
C(@), respectively. That implies zox5 € E(G) which means by planarity
that x3b ¢ E(G). Thus, dg(x3) = 2, a contradiction.

Case 2. Cy € C(G).

Clearly, z1x5,z425 ¢ E(G). Suppose, first, zix3 € E(G) then zoxs ¢
E(G) because otherwise xjxoxsazsxzszr; € C(G). Thereby, zszs € E(G)
which implies that x4, zox4 ¢ E(G) because otherwise x1zoxsrsaxszy or
zri1xexsarsrsxry € C(G), respectively. Thus, x4b € E(G) which yields by pla-
narity zia,z2a ¢ E(G), i.e., {z3,b} would be a cutset of G, a contradiction.
Suppose, now, rix3 ¢ E(G) and z1x4 € E(G). Then xoxs, x3x5 ¢ E(Q)
because otherwise zz4zsxexsbr or x1zoxsxsarsry € C(G), respectively.
That yields dg(xs5) = 2, a contradiction. Suppose xiz3,z124 ¢ E(QG)
then z1a € E(G). If, here, zoxs € E(G) then z3zs ¢ E(G) because
otherwise zyxoxsr3rgary € C(G). By planarity, xsb,x4b ¢ FE(G) which
means that {z2,a} would be a cutset of G, a contradiction. If xoxs ¢
E(G) then z3z5 € E(G) and, consequently, xoxy ¢ FE(G) because other-
wise zizoxgzsrsaxr; € C(G). Planarity implies z4b ¢ E(G) and, hence,
dg(x4) = 2, a contradiction.
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Case 3. C3 € C(G).

Clearly, z1x5, x3x4 ¢ E(G). Suppose, first, z1x3 € F(G) then xozy, xows ¢
E(G) because otherwise wixszzorsxsbry or rirsarsxsrory € C(G), res-
pectively. That implies z124 or z4b € E(G). If 124 € E(G) then
x9b ¢ E(G) because otherwise xjzszebrsxryry € C(G). Thereby, zoa €
E(G) which implies z3x5,23b ¢ E(G) because otherwise xjxox3x5x421 OF
r1xowsbrsraxy € C(G), respectively. That gives dg(x3) = 2, a contradic-
tion. If z1x4 ¢ E(G) then x4b € E(G) which yields z3z5 ¢ F(G) because
otherwise xjzoxsxs24b21 € C(G). Thus, x50 € E(G) and {a,b} would be a
cutset of G, a contradiction.

Suppose, now, zi1z3 ¢ E(G) and z124 € E(G). Then z3zs5, 230 ¢ E(G)
because otherwise zrox3rsrsxy or Tixowsbrsrasx; € C(G), respectively.
That implies dg(z3) = 2, a contradiction.

Suppose, eventually, z1x3, z124 ¢ E(G) then z1a € E(G). That implies
z3rs ¢ E(G) because otherwise xjxoxsrsrgaxr; € C(G). Thereby, z3b €
E(G) and by planarity zoxy, xexs ¢ E(G) which means that {a,b} would
be a cutset of GG, a contradiction, and the proof is complete. [

References

[1] B. Bollobés and G. Brightwell, Cycles through specified vertices, Combinatorica
13 (1993) 147-155.

[2] G.A. Dirac, 4-crome Graphen und vollstindige 4-Graphen, Math. Nachr. 22
(1960) 51-60.

[3] F. Goring, J. Harant, E. Hexel and Zs. Tuza, On short cycles through prescribed
vertices of a graph, Discrete Math. 286 (2004) 67-74.

[4] J. Harant, On paths and cycles through specified vertices, Discrete Math. 286
(2004) 95-98.

[5] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173,
2000).

[6] A.K. Kelmans and M.V. Lomonosov, When m wvertices in a k-connected
graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982)
317-322.

[7] T.Sakai, Long paths and cycles through specified vertices in k-connected graphs,
Ars Combin. 58 (2001) 33-65.

Received 3 September 2004
Revised 18 February 2005



