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Abstract

In this paper, we propose a generalization of well known kinds of
perfectness of graphs in terms of distances between vertices. We in-
troduce generalizations of a-perfect, y-perfect, strongly perfect graphs
and we establish the relations between them. Moreover, we give suf-
ficient conditions for graphs to be perfect in generalized sense. Other
generalizations of perfectness are given in papers [3] and [7].
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1. INTRODUCTION

We consider only simple graphs which have no loops and multiple edges and
we generally follow the standard terminology of Berge [1]. Let G be a graph
with the vertex set V(G) and the edge set E(G). By a path joining vertices

x1 and x, in the graph G we mean a sequence of vertices x1,..., T, such
that (z;,zit1) € E(G), for i = 1,...,n—1, n > 2. We will denote it by
(1,...,xy) or sometimes by P, . . A path with 1 = z, is called a cycle.

Recall that the distance dg(z,y) of two vertices x and y in G is meant as the
length (i.e., the number of edges) of the shortest path joining x and y in G.
If G is connected, then dg(x,y) is finite. By C),, n > 3 we denote a graph
called an n-cycle, if V(C),) can be so arranged as a sequence zi,..., Ty,
then E(C,) = {(zi,zi+1);i = 1,...,n and x,41 = x1}. Analogously we
define a graph called an n-path, n > 2 and we denote it by P,. By (Vi)
we will denote a subgraph of G induced by V7 C V(G). If H is a subgraph
of G induced by some subset, then we shall briefly write H < G. We say
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that G is R-free if it does not contain induced subgraphs isomorphic to a
given graph R. Note also that the words maximum and minimum refer to
the cardinality of a set with a prescribed property. Also as usual the word
maximal refers to set-inclusion. Let k be a fixed positive integer such that
k> 1. We say that a subset @ C V(G) is a k-distance clique of (or in) G if

(1) for any z,y € Q, dg(x,y) < k and
(2) ()¢ is connected.

Denote by Ci(G) the family of all maximal k-distance cliques of G. Note
that 1-distance clique is a clique of G. We say that S C V(G) is a k-stable
transversal of G if for each @ € Ci(G), |S N Q| = 1. This implies that for
every z,y € S, dg(z,y) > k. A subset of vertices which has such a property
we will call a k-distance stable set in G. The k-distance chromatic number
Xk(G) of G is the smallest cardinality among partitions of the V(G) into
k-distance stable sets. The minimum number of k-distance cliques which
cover V(G) we denote O(G). Moreover, wi(G) denotes the cardinality of
the maximum k-distance clique and a(G) is the cardinality of the maximum
k-distance stable set.

Note that x;(G) is the chromatic number x(G), 1-stable set is a stable
set in a graph, ©1(G) is the minimum number of cliques which cover V(G),
w1(G) is the maximum cardinality of a clique and «1(G) is the stability
number of the graph G.

We say that a graph G is a clique-tree if

(3) G is connected and

(4) G is C),-free, for n > 4 and

(5) for any two cliques Q;,Q; € C1(G), |Q; N Q4| <1 and
(6)

6) for an arbitrary clique @ € C1(G), 1 < |@QN U Q' <2.
QeC1(G),Q'#Q

Figure 1
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Note that trees are clique-trees. Another example of a clique-tree is on
Figure 1.

For k > 1 by a k-th power of a graph G we mean a graph G* such that
V(G*) = V(G) and (z,y) € E(G*) if and only if dg(z,y) < k.
Note that G is isomorphic to G.

For k > 1 we define three classes of graphs P,,, P,, and Pjg in the
following way:
(7) G € Py, if and only if for each H < G, xx(H) = wi(H),
(8) G € Pg, if and only if for each H < G, ay(H) = O4(H),
(9) G € Pyg if and only if for each H < G, H has a k-stable transversal.
Note that if £ = 1, then we obtain the well-known classes of graphs, namely
P, is a class of x-perfect graphs, P,, is a class of a-perfect graphs and P
is a class of strongly perfect graphs. For more information about a-perfect,
x-perfect and strongly perfect graphs the reader is refered to [1], [2], [5],

[6], [8]-
The dependencies between these classes are known.
Theorem 1 [5|. A graph is a-perfect if and only if it is x-perfect.
As a consequence: a graph which is a-perfect and y-perfect was called per-
fect.
Theorem 2 [2]. A strongly perfect graph is perfect.

In other words, Py, = Po; D Pis.

At the beginning we recall some classical results concerning perfect and
strongly perfect graphs which will be used in our further investigations. For
convenience, we put P = P,, = P,, and SP = Pig.

Theorem 3 [2|. If G is Py-free, then G € SP.
Theorem 4 [2|. If G is triangulated, then G € SP.

Theorem 5 [1]. If G € P, then G is Copy1-free, for n > 2.

2. RESULTS

Throughout this section, we assume that £ > 1. The aim of this section is
to formulate the dependencies between classes Py, , Py, and Pyg, for £ > 1.
We also give some examples of graphs belonging to these classes.
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Theorem 6. If G is connected and |V (G)| < k+1, then G € Py, NPa, NPrs.

Theorem 7. For anyt > 2, Py € Py, NPy, N Pis.

A necessary condition for a graph to belong to P,, UP,, U Prs in the next
theorem is given.

Theorem 8. If G € Py, UPy, UPys, then G is Cpy1)4r-free, for k> 1,
n>2and 0 <1 < k. Moreover, the graph Cyi11)4r i a minimal (with
respect to the number of edges by a fixred number of vertices) forbidden sub-
graph.

Proof. For k =1 the result follows from Theorem 2 and 5.
Let &£ > 2 and assume that G has Cn(k-i—l)—‘rr’ k>1,n>20<r <k,
as induced subgraph.

1) It is evident that Xx(Cprq1)4r) = k + 7+ 1 and wi(Cppy1)4r) =k + 1,
0 Crkt1)4r € P-

2) Analogously we show that C,(xy1)4r & Pa,, because ag(Cppt1)4r) = 1
and @k‘(cn(kJrl)Jrr) =n-+1.

3) Suppose to the contrary that C,(xy1)4r € Prs. This implies that
Ch(kt1)+r has a k-stable transversal S. Let x,y € S, then dc, ), (7,9)
> k + 1. Suppose that there exist vertices z;,z; € S such that
dc,snysr (Tiszj) = 1, where k +1 < | < 2(k + 1). This means
that there exists a path joining vertices z; and x; whose inner vertices
ZTit+1, Tit2, - - Tiri—1 do not belong to S. Moreover, it may be noted that the
vertices Z;1, Tit2, ... Tiyk4+1 constitute a k-distance clique @ of Cp 1)y
which has no common vertex with the set S. This contradicts the assump-
tion that S is a k-stable transversal of C,(j41)4-

In conclusion: for any two vertices belonging to any k-stable transversal
of Cn(k+1)+7‘ holds either dcn(k+1)+r (CCZ',.’EJ') =k+1or dcn(k+1)+r (CCZ',.’EJ') >
2(k + 1) and there exists in the shortest path joining z;, x; at least one
vertex which belongs to S.

As a consequence: if ¢ € S, where 1 <t <n(k+1)+r, then z,y,441) €
Sforp=1,2...,n =1 Ift+plk+1) >n(k+1)+r, then 24,411y =

Ttip(k+1)—(n(k+1)+r)- Note that

dC,,snysr (Tt Terno1)ky1)) = min{k+7r+1,(n—1)(k+1)}

_ k+1, if n=2,
- k+r+1, if n>2.
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In other words, in both the cases there exists a path (7, (—1)+1),
Tig (n—1)(k+1)+1s - - - s Ttbn(kr1)tr = x¢) of length k4 7+ 1 not containing in-
ner vertices from the set S. Choose k+ 1 vertices from this path and form a
k-distance clique Q' = {$t+(n—1)(l€+1)+1, s T (n=1)(k+1)+k+1 — mt-{—n(k-‘,—l)}'
Because of SN Q' = () we obtain a contradiction to the assumption that S
is a k-stable transversal of C,(x41)4,- Finally, Cpxy1)4r € Prs-

Of course, Cy(r41)4r is a minimal forbidden subgraph for classes Py,
Po, and Pjs because every its induced proper connected subgraph H <
Ch(k+1)+r 15 a path or an isolated vertex. So H € Py, , Pa, and H € Pgg,
which completes the proof.

Theorem 9. Let m be an integer, m > 3 and k > 1. C, € Py, NPa, NPys if
and only if m < 2k+1 or there exists an integer n > 2 such that m = n(k+1).

Proof.If m=n(k+1)+r,n>2,0<r <k, then Cy, € Py, NPa, NPrs
from Theorem 8. Now, suppose that m < 2k + 1 or m = n(k + 1) and
H < C,,. Consider two cases:

Case 1. H is a proper subgraph of C,,.
If H is isomorphic to P, where 1 < t < m—1, then from Theorem 7 we have
that xx(H) = wi(H), ap(H) = Or(H) and H has a k-stable transversal.
For disconnected subgraphs we prove analogously for each component. If H
is totaly disconnected, then xr(H) =wi(H) =1, ap(H) = Ox(H) = |[V(H)|
and V(H) is a k-stable transversal.

Case 2. H is isomorphic to C,,.
If m <2k+ 1, then C), is a k-distance clique. From this fact it follows that
xe(H) = |V(H)| = wi(H), ax(H) = 1 = Of(H) and an arbitrary vertex
from V(H) is a k-stable transversal of H.

If m=n(k+1) for n > 2, then xx(H) =k+1=wi(H), ap(H) =n =

@k(H) and St — {xt, xt+(k+1), P 71:t+(n—1)(k3+1)} fOl“ t — 1, N ,k.
Thus the theorem is proved.

Theorem 10 [4]. If G is connected, then for k > 2, xx(G) =k + 1 if and
only if

(a) [V(G)|=k+1 or

(b) G is isomorphic to Py, for m > k+1 or

(¢) G is isomorphic to Cy 41, for n > 1.

As a consequence of Theorems 6, 7, 9 and 10 is the following statement.
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Corollary 1. If x4(G) = k + 1, then G € P, NPqa, N Prs.

Now we establish dependencies between distance perfectness of G and
perfectness of G¥, for k > 1.

Considering G and G*¥ immediately gives:

(10) S C V(G) is a k-distance stable set in G if and only if S is a stable set
in GF.

(11) If Q is a (maximal) k-distance clique of G, then @ is a (maximal) clique
of G¥.

For (11) the opposite implication is not true because if @ is a clique of G*,
then (@) is not connected in the general case. For example (see Figure 2):
{21, 23,25} is a clique in G2, but it is not 2-distance clique in G because
({z1,x3,25})¢ is disconnected.

G G?
x1 T2 x3
T T .-
SR P .-
Te x5 T4
Figure 2

The converse implication holds only for special classes of graphs. All this
together yields that distance perfectness of G is not equivalent to perfectness
of G*.

Theorem 11. Forn > 1, Cﬁ(kﬂ) € SP if and only if n = 1,2.

Proof. For k = 1 the result follows from Theorem 9.

Suppose that £ > 2 and n = 1,2. Then by the definition of the k-th
power of a graph we obtain that Cs(k +1) does not have the graph P as
induced subgraph. Hence, by Theorem 3 Cﬁ(k 41y € SP. Now assume that
k>2,n>3and let V(Cypi1)) = {71, %2, ..., Tpry1)}- There are integers
t,r such that t > n, 0 <r < k and n(k+ 1) =tk + r. It is not difficult to
observe that the graph C’fi(k +1) has an induced subgraph C' isomorphic to
an m-cycle C,,, namely:

1) if t is odd and r = 0 (i.e.,, n(k + 1) = tk, so 3 < n < t), then V(C) =
{z1,214k,..., 141 = 1} and C is isomorphic to C,, for m =t > 5, or
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2) if t is odd and 7 = 1, then V(C) = {x1, 14k, -, D1 (t=3)k> T14(t—3)k+1>
T4 (1—2)k+15 T14+(—2)k+25 T14(t—1)k+25 T14+tk+1 = 21} and C' is isomorphic to
Cpform=t+22>5, or

3) if t is odd and 1 < r < k, then V(C) = {21,%144,- - Ti4p—1)k
Tg(t—1)ht1s Tltthtls Tlithtr = xz1} and C is isomorphic to C), for m =
t+2>05.

4) if t is even and r = 0, then V(C) = {21, Z14 4, - - -, T14(t—2)k> T14+(t—2)k+1>
T14(t—1)k+1> T1+tk = 71} and C is isomorphic to Cy, for m =t +1 > 5, or
5) if ¢ is even and r # 0, then V(C) = {z1, 14k, - - -, T14+tk, T1+thtr = T1}
and C' is isomorphic to C,,, for m =t +1 > 5.

Consequently, Cﬁ(k ) has C},, m > 5 as induced subgraph, hence

Cﬁ(k 1) ¢ SP by Theorem 2 and 5. Thus the theorem is proved.

In the same way we can prove the following theorem.
Theorem 12. For k > 2 a graph C”;(kﬂ) € P if and only if n =1,2.

Corollary 2. The following equivalence is true only for n = 1,2
Cn(k+1) € Pyy N Pay, N Prs if and only if Cﬁ(kﬂ) e PNPis=SP.

Theorem 13. Let T be a tree. A subset Q C V(T) is a maximal k-distance
clique of T if and only if Q is a mazimal cliqgue of T*, for k > 1.

Proof. For k = 1 the theorem is obvious.

Let £ > 2. If  is a maximal k-distance clique of T, then () is a maximal
clique of T* by (11).

Conversely we assume that @Q is a maximal clique in T%. We shall show
that @ is a maximal k-distance clique of T'. From the definition of the k-th
power of a graph it follows that if z,y € @, then dr(x,y) < k. Moreover,
if ) is a maximal subset with this property in 7%, then it is maximal in 7.
Hence it remains to show that the induced subgraph (Q)r is connected.
Assume that |Q] > 2 and (Q)7 is disconnected. Let @ = Ui, Q:, where
(Qi)r is connected and (Q; U {v})r is disconnected for v € Q;, j # i. In
consequence, there exist two vertices, say x € ); and y € ); not joined by
a path in (Q)7. But there exists a path of length at most k joined z and y
in T'. Then we deduce that there is a vertex z € P,y and z € V(T)\ Q. From
the fact that z ¢ @ it follows that there exists u € @ such that dp(z,u) > k,
because () is maximal. This implies the existence of a path P, in T of
length greater than k. Because in a tree every pair of vertices is joined by
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exactly one path, so dr(x,u) > k but this cannot occur since z,u € @, so
dr(z,u) < k.

Theorem 14. Let T' be a tree. Then T € Py, N Pa, N Prs if and only if
Tk € SP, for k > 1.

The proof is straightforward using Theorem 13 and applying (10).

It is well known, see [1], that for an arbitrary k > 1, T* is triangulated
and by Theorem 4, T* € SP C P.

All this together gives

Corollary 3. For k > 1, T € Py, NPy, N Pys.

Theorem 15. If G is a clique-tree, then G € Pig.

Proof. If G is a clique, then of course G € Pyg.

If G is a tree, then the result follows from Corollary 3. Assuming that G
is not a tree and G is not a clique, we consider the following contraction of
G to a tree. Create a subset R C V(G) in the following way. Let @ € C1(G)
be an arbitrary maximal clique of G. There are two cases to establish.

Case 1. If (Q)¢ is isomorphic to Ko, then @ C R.

Case 2. Suppose that (Q)g is not isomorphic to K. Then by the
definition of a clique-tree it follows that for any Q; € C1(G), Q; # Q we
must have [Q N Q;| < 1. Let Q1,Q2,...,Q:, t > 1 be cliques such that
|Q N Q;| =1 (Since G is connected and G is not a clique, there exists at
least one such clique). Moreover, 1 < |Q N (Q1U...UQ¢)| <2 by (6).

IFlQN(Q1U...UQy)|=2,then QN(Q1U...UQ;) C R. If|QN(Q1U
U@y =1, then (QN(Q1U...UQ:)U{z}) C R where z is an arbitrary
vertex of @ such that x ¢ QN (Q1U...UQ;). Of course, a subgraph induced
by a subset R is connected and it does not contain cycles, i.e., (R)¢ is a
tree. So (R)¢ has a k-stable transversal S, it follows from Corollary 3. From
this fact it follows that every maximal k-distance clique Q’ of (R)g meets S.
Moreover, for every maximal k-distance clique @* C V(G) of a clique-tree
there exists a maximal k-distance clique Q' C R such that Q' C Q*. So, for
each Q* C V(G), Q* NS # . Hence S is a k-stable transversal of a clique-
tree. Since any induced proper subgraph H of a clique-tree is a clique-tree,
the existence of k-distance stable transversal of H is assured.

Thus G € Prg which proves the theorem.
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T3+(k—1)/2
L24(k—1)/2

Gy

\x11+(k71)/2
Tayq(k—1)/2 \

T(3k+5)/2—1
T2(k+1) T(3k+5)/2+1

!
T(k+1) T(3k+5)/2—1
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1 S~ z1 ?. T(3k+5)/2
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Zo(k+1) T(3k45)/241
x1 x1,1 T1,k
Gs |
T14k,1 Tl4k,k
T1+k e —— @

" . .
\, Hkki T14kk,1 T1+4kk,k

Figure 3

For a fixed positive integer k > 2 we construct special graphs G1, G2 and G3.
Let G and R be two disjoint copies of a 2(k + 1)-cycle Cy(4 1y, on the
vertex sets V(G) = {x1,..., o441y} and V(R) = {27, ... ,x’Q(k+1)} and the
edge sets E(G) = {(z4,7i41);1 = 1,2,...,2(k + 1) and 23 41)41 = 71} and
E(R) = {(z},x});1=1,2,...,2(k + 1) and $/2(k+1)+1 =)}
Consider two cases:
(12) If k is even, then we identify vertices z; and a} for i = 1,2 + %, k+ 3.
The resulting graph we denote by G;.
(13) If k is odd, then we identify vertices z; and  for i = 1,2,3+ %, k+3
and replace multiple edges with end vertices 1 and x2 by an edge. The
resulting graph we denote by Gs.
(14) By the graph G3 we will mean a graph obtained from k(k + 1)-cycle
Ck(k+1) by adding k+1 vertex disjoint paths of length k such that each path
starts in a vertex z144 for t =0,1,... k.
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Theorem 16. Prg C Py, if and only if k = 1.

Proof. If k = 1, then SP C Py, = P by Theorem 2. Assuming that k is
fixed and k > 1, we shall show that there is a graph G such that
(15) G € Prs and G ¢ Py-

It turns out if k is even, then the graph G (see Figure 3) constructed
above satisfies condition (15).

Let H be an arbitrary induced subgraph of G,. Consider the following
cases:

Case 1. H has exactly two 2(k 4 1)-cycles as induced subgraphs. Then
H is isomorphic to G1, hence it is easy to see that S = {x2+5,m3+%} is a
2 2
k-stable transversal of G1.

Case 2. H has exactly one 2(k + 1)-cycle as induced subgraph.

In this case we have the following possibilities:

Subcase 2.1. H has exactly two (k + 2)-cycles as induced subgraphs.
Then H does not have any 2k-cycle (in otherwise there exist two 2(k + 1)-
cycles). Then S = {z1, 241}

Subcase 2.2. H has less than two (k 4 2)-cycles as induced subgraphs.
Then either S = {z1, 2044} or S = {x1, 24, }.

Case 3. H has no induced 2(k + 1)-cycle.
In this case we have the following possibilities:

Subcase 3.1. H has exactly two (k + 2)-cycles as induced subgraphs.
Analogously as in 2.1.

Subcase 3.2. H has exactly one (k + 2)-cycle as induced subgraph.
Denote by z;Px; subgraph induced by subset {z;, z;t11,...2;} of vertices
placed on the n-cycle. Suppose that H has an induced (k + 2)-cycle and
an induced 2k-cycle. V(Cqi) and V(Cy2) are k-distance cliques of H, so
k-stable transversal of x1 Pxs is a k-stable transversal of Cy;. Analogously
k-stable transversal of x1Pux, Lk is a k-stable transversal of Cys. We can

consider a subgraph H' < H such that V(H') = (V(H) \ V(21Pzy, x U
2
r1Pr3 ) U {r1, 7y, &, 2311} Of course H' is an acyclic graph because
2

we delete a part of each cycle in H. So by Corollary 3, H' has a k-stable
transversal S. The same set S is a k-stable transversal of H.
If H does not have an induced 2k-cycle, than we prove analogously.
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Subcase 3.3. H has no induced (k + 2)-cycle.
If H has 2k-cycle, then we prove analogously as in Subcase 3.2.
If H has no cycle, then H is acyclic. So from Corollary 3, H has a k-stable
transversal.

All this together gives that G € Pyg for even k.
To prove the remaining part of the theorem we observe that the maximum
k-distance clique @ of Gy is in the form @Q = {xg,x’z,mg,xg,... (o k)1

x/(2+§)71’ x2+%’x(2+%)+1’x/(2+§)+1""’ L(3+k)—1 3+k 4t and Wk(Gl) =
2k + 1.

Of course, @ is coloured by 2k + 1 distinct colours and assume that
vertex x, 1k € @ has a colour . Consider vertices Ty, 3k 3% and 1'3+ ae- It

should be noted that the distance between an arbitrary Vertex from Q and
T3, 3k OT :IJ“:’SJr s, 18 less than or equal to k4 1. Moreover, there exists only one
2 2

_ / —
vertex @y, k, such that dGl(:chr%,xBJr%) =k+1and dGl(ﬂCng%,u’Cng%) =

3
used a new colour not used for colouring (). From this fact it follows that

Xk(G1) > 2k + 1. Hence G & Py,

Now assume that k is odd and consider graph Ga (see Figure 3).
To prove that Go € Prg we use the same method as for the graph Gj.
As the maximum k-distance clique which realizes wy(G2) = 2k we
can take Q = {xg,mg,xg,...,x(:ﬂ%;l)il,x

k + 1. So we can colour the vertex Ty, sk also by . But for :1;’+3k we have
2 5

/
B Y
, , . . L .
x(3+,€2;1)+1, ooy Thy2, Ty o). Evidently @ is coloured by 2k distinct colours
and let x4 sl has a colour ¢, then proving analogously as for G; we obtain
that either x, TS or z’ T have to be coloured by a new colour not used
for Q. Consequently, Xk(Gg) > 2k, so G € Py, for an odd k.

Thus the theorem is proved.

Theorem 17. Prs C Pq, if and only if k = 1.

Proof. If k =1, then Prg C Py, = P by Theorem 2.

We shall show that there exists a graph G such that G € Prg and
G & Pa,. As the graph G we can take a graph G3 (see Figure 3). First, we
shall show that G3 € Pig.

Let H < (G3 be an induced subgraph of G3. Consider two cases:

Case 1. H has an induced k(k + 1)-cycle.
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If H is isomorphic to GG3, then H has a k-stable transversal of the form S =
{z € V(G3);x = 21qyoqr) for t =0,1,..., (k= 1)} U{z € V(G3);70 = 24 m
fort=1,2,...,kand m =k + 1 —dg,(x1,v1411)/k}.

If H is connected and not isomorphic to G5, then the k-stable transversal
of His S"=SNV(H).

Case 2. H has no induced k(k + 1)-cycle.

In this case H is acyclic and by Carollary 3 it has a k-stable transversal. All
this together gives that G € Pyg.

Now we prove that G3 € P,,. The k-stable transversal S obtained
in Case 1 is the maximum k-stable set in Gj, so ai(Gs) = 2k. The
number 0(G3) = 2k + 1 is realized by a family of k-distance cliques
Qi = {T14itkt1)s -+ Trpikr)4k) for @ = 0,1,...0k — 1 and Q] =
T 1 ikt 1) T1gihr1) 10 - - Tigitea) k) 0= 0,1,k

All this together leads to ai(G3) < 0x(Gs) and this shows that Gs ¢
Pa,- Thus the theorem is proved.

Theorem 18. P,, = P,, if and only if k = 1.

Proof. If k =1, then P,, = P,, = P from Theorem 1.

We shall show that if k& > 1, then P,, ¢ P,,. In other words, it suffices
to show that for k& > 1 there exists a graph G such that G € P,, and
G & P, -

From the proof of Theorem 17 we have that G3 & P,,. It remains
to prove that G3 € Py,. Let @ be a k-distance clique of the form @ =
{Z14k—ar- s T1gks - Tipkrb ) U{T14k1, .- s T14ka} Where a = b = % for
an even k or a = kgl, b = % for an odd k (see Figure 3). Then each
maximal k-distance clique of G3 induces a subgraph isomorphic to (Q)a,-
To prove that for an arbitrary H < G3, xx(H) = wi(H) we consider the
following cases.

Case 1. H is isomorphic to Gjs.
Then for an even k, xj(H) = 352 = wy,(H) and x,(H) = 3£ = w(H)
for an odd k. The function which realizes the colouring of H is of the form
f:V(H)—{0,1,...,xx(H) — 1} and

f(zy) =1, for n =i(mod(k + 1)), i =0,1,...,k,

f(@ivtkem) =k +m,form=1,...,a,t=0,...,k,

f(@ittkm) = f(@14thtat1), form=a+1,... k t=0,... k.

Case 2. H has one induced k(k + 1)-cycle and H is not isomorphic
to Gg.
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Let P be a longest induced path in H such that E(P)NE(Cyx41)) = 0 and
the length of this path is p.

For p > a, we prove analogously as in Case 1.

If 0 < p < a,then xy)(H) = k+ 1+ p = wi(H) and the colouring
realizes function g : V(H) — {0,1,...,xx(H) — 1} where g(v) = f(v) for
veV(H)CV(Gs).

Case 3. H is acyclic.
From Corollary 3 we have that x;(H) = wi(H).
Thus the theorem is proved.

From the proof of Theorem 18 it follows

Corollary 4. P,, ¢ P,, for k > 1.
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