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Abstract

Let k be a positive integer and G = (V(G), E(G)) a graph. A
subset S of V(@) is a k-independent set of G if the subgraph induced
by the vertices of S has maximum degree at most £ —1. The maximum
cardinality of a k-independent set of GG is the k-independence number
Br(G). A graph G is called 8, -stable if 3;,(G — e) = (i(G) for every
edge e of E(G). First we give a necessary and sufficient condition for
B, -stable graphs. Then we establish four equivalent conditions for
B, -stable trees.
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1. INTRODUCTION

We consider finite, undirected, and simple graphs G with vertex set V =
V(G) and edge set E = E(G). The open neighborhood of a vertex v € V
is N(v) = Ng(v) = {u € V : wv € E} and the closed neighborhood is
N[v] = Nglv] = Ng(v) U {v}. The degree of a vertex v of G, denoted
by dg(v), is the size of its open neighborhood. Specifically, for a vertex v
in a rooted tree T', we denote by C(v) and D(v) the set of children and
descendants, respectively, of v, and we define Djv] = D(v) U {v}. The
mazximal subtree at v is the subtree of a rooted tree T" induced by D[v], and
is denoted by T,.

In [2] Fink and Jacobson generalized the concept of independent sets.
Let k be a positive integer. A subset S of V' is k-independent if the maximum
degree of the subgraph induced by the vertices of S is less or equal to k — 1.
A k-independent set S of G is maximal if for every vertex v € V — 5, SU{v}
is not k-independent. The k-independence number (i (G) is the maximum
cardinality of a k-independent set of G. Notice that 1-independent sets are
independent, and so 31(G) = B(G). If S is a k-independent set of G of size
Br(G), then we call S a [ (G)-set. A vertex in a k-independent set S is said
to be full if it has exactly k — 1 neighbors in S, and a vertex in V' — S with
at least k neighbors in S is said to be k-dominated by S.

In [3] Gunther, Hartnell and Rall studied the graphs whose indepen-
dence numbers are unaffected by addition or deletion of any edge. They
gave constructive characterizations of such trees.

A graph G is called f3; -stable if B,(G — e) = Bi(G) for every edge e
of E(G). In this paper we are interested in determining conditions under
which a graph G is 3, -stable. In Section 2, we characterize the (3, -stable
trees by proving the following:

Theorem 1. Let T be a tree. Then for every positive integer k the following
conditions are equivalent:

(a) T is a B, -stable tree.
(b) T has a unique By (T)-set.

(c) for every Bi(T)-set S, each vertex x € V. — S is (k + 1)-dominated by
S or there are at least two full vertices in N(z)NS.

(d) A(T)<k—1orT € Fy (The family Fy, is defined in Section 2).
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We note the result in [3] concerning trees whose independence number is
unaffected by the deletion of an edge is a special case of Theorem 1.

2. 3, -STABLE GRAPHS

We begin with the following observation.

Observation 2. Let G be a graph. If uv € E(G) and Br(G — uwv) > Br(G),
then w and v are in every (G — uv)-set.

Proposition 3. For any graph G and edge e € E(G), Ok(G) < Bx(G—e) <
ﬂk(G) + 1.

Proof. The lower bound is immediate from the fact that every k-indepen-
dent set of a graph G is also a k-independent set of any spanning subgraph
of G. Suppose that G,(G — uv) > Bi(G) for some edge uv € E(G), and
let S be a fr(G — uv)-set for some uv € E(G). By Observation 2, both u
and v are in S. Then S — {u} is a k-independent set of G implying that
B(G) = 1S = 1 = Br(G — uv) — 1. .

Next we provide a necessary and sufficient condition for 3, -stable graphs.

Theorem 4. A graph G is 3, -stable if and only if for every By(G)-set S,
each vertex v € V. — S is (k + 1)-dominated by S or there are at least two
full vertices in N(x)NS.

Proof. Let G be a 3, -stable graph and S any (;(G)-set. Assume there
is a vertex x € V — § having at most k neighbors in S and there is at
most one full vertex in N(x) NS. Let y be the full vertex in N(z)N S, if
one exists, and an arbitrary vertex in N(z) N S otherwise. Then S U {z}
is a k-independent set of G — zy, and so Bx(G — xy) > |S| + 1 > Bk(G),
contradicting the assumption that G is 3, -stable.

Conversely, let e = uwv be any edge of E(G) and S a [i(G — e)-set.
Assume that (G —€) > B;(G). By Observation 2, u and v are in S. Then
S’ =S —{u} is a k-independent set of G. Thus (G —e€) > fr(G) > |5'| =
Br(G — e) — 1, and so Proposition 3 implies that S’ is a B;(G)-set. Since
u € S, u has in G — e at most k— 1 neighbors in S. Thus u has in G at most
k neighbors in S”. Moreover, N(u) NS’ contains at most v as a full vertex in
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G for otherwise S is not a k-independent set since it would contain a vertex
having more than k£ — 1 neighbors in S. But then S’ is a 3, (G)-set for which
u ¢ S’ and u does not satisfy the conditions of the theorem, a contradiction.
Thus 5i(G — e) = Br(G) for every e € E(G), and hence G is a 3, -stable
graph. [ |

The following result shows that graphs with unique gy (G)-sets are 3, -stable.

Theorem 5. If G is a graph with a unique B1,(G)-set, then G is a 3, -stable
graph.

Proof. Let S be the unique §i(G)-set. If every vertex of V — S is (k+1)-
dominated by S, then by Theorem 4, G is (3, -stable. Now assume that
u € V — S is a vertex with at most k neighbors in S. Assume further
that N(u) NS contains at most one full vertex. Let y be the full vertex in
N(u)N S if one exists and an arbitrary vertex in N(u) NS otherwise. Then
{u} U (S —{y}) is second Fi(G)-set, a contradiction. Thus for every vertex
u €V — S not (k+ 1)-dominated by S, SN N(u) contains at least two full
vertices, and so by Theorem 4, G is 3, -stable. [ |

Note that the converse of Theorem 5 is not true for arbitrary graphs. Clearly
the complete graph K,,, n > 4, is a 3, -stable graph but any two vertices of
K, form a [5(K,)-set. Our next result shows that the converse of Theorem
5 holds for trees.

Lemma 6. If T is a (3, -stable tree, then T' has a unique By (T")-set.

Proof. Assume that T is (3, -stable. Clearly the result holds if A(T) <
k — 1, since V(T') is the unique S (T)-set. Suppose that A(T") > k, and let
B(T) = {z € V(T) : degy(z) > k}. We proceed by induction on |B(T)|.
If |B(T)| = 1, then the unique vertex in B(T') should have degree at least
k 4+ 1 for otherwise removing any edge incident to such a vertex increases
the k-independence number, a contradiction. It follows that V(T') — B(T) is
the unique Sy (T)-set. Assume that every 3, -stable tree T with |B(T")| <
|B(T')| has a unique [ (T")-set.

We now root T at a vertex r of maximum eccentricity. Let w be a vertex
of degree at least k£ at maximum distance from r. Such a vertex exists since
A(T) > k. Let u be the parent of w in the rooted tree, and v be the parent
of u. Let S be a Bi(T)-set. We distinguish between two cases.
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Case 1. dp(w) > k+ 1. Let T =T — T,. If w € S, then at least one
child of w, say w’, is not in S. But then S U {w’} is a k-independent set of
T — ww', a contradiction. Thus w belongs to no Gx(T)-set. It follows that
D(w) € S. Now it can be seen that Gx(T) = Bk(T") + Br(Tw). Since T is a
;. -stable tree, By (T —uw) = Bi(T) = Br(T")+Bk(Tw). Moreover, if for some
edge e € E(T"), B(T" —e) > By, (T"), then B (T —e) = Bp(T"—€) + B (Tw) >
Be(T") + Br(Tw) = Br(T), and so T is not (3, -stable, a contradiction. It
follows that for every edge e € E(T"), Br(T" —e) = Bx(T") and so T' is a
B, -stable. By induction on 7", T" has a unique G5 (T")-set, say X. Since
no f(T)-set contains w, SNV (T') is a B (T')-set. Hence SNV (T') = X.
Moreover, S NV (Ty,) = D(w). Thus, S is the unique [y (T")-set.

Case 2. dp(w) = k. By our choice of w, every descendant of w has
degree at most k — 1. Hence, w € S for otherwise by Theorem 4, w is k + 1
dominated by S or N(w)N S contains two full vertices, which is impossible.
Assume that u is in S. Since w € S, it follows that at least one child of w,
say w', is not in S. But then S U {w'} is a k-independent set of T — uw
with |S U {w'}| > Bi(T), contradicting our assumption that T is 3, -stable.
Hence u ¢ S. We may assume that every child of u has degree at most k,
otherwise Case 1 applies. It follows that D(u) C S. Note that D(u) is a
B (Ty)-set, and we have shown that SNV (T,) = D(u) for any G (T")-set
S. Let 7" =T —T,, and let S = SNV(T"). Since u ¢ S and S’ is a
k-independent set, we conclude that S’ is a (i (T")-set. Moreover, since T'
is a 3, -stable tree, B,(T —uwv) = Bi(T) = Bp(T’) + Br(Tw). Now if S” does
not satisfy conditions of Theorem 4, then clearly S = S’ U D(u) does not
satisfy these conditions in T', and so T' is not 3, -stable, a contradiction. It
follows that 7" is a 3, -stable tree, and by our inductive hypothesis on T,
SNV (T") is the unique Fi(T")-set. Since u does not belong to any B (T')-set,
S = D(u)US" is the unique B (T')-set. |

Lemma 7. Let T and Ty be trees with unique Bi-sets S1 and Ss, respec-
tively. If T is a tree obtained from Ty U Ty by adding an edge uv where
u € V(Th) and v € V(T3) — Sa, then S1 U Sy is the unique By (T)-set.

Proof. Let T1 and T5 be trees with unique fg-sets S1 and Ss, respectively,
and let T be a tree obtained from T; U T> by adding an edge uv where
u € V(T1) and v € V(Ty) — So. Clearly, since v € Sy, S1 U So is a k-
independent set of T". Thus, f;(T") > |S1 U S2|. Let D be a [i(T")-set, and
let Dy = DNV(Ty) and Dy = D NV(Ty). Since D; is a k-independent
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set in T;, we have ﬁk( i) > |D;| for i € {1,2}. Hence, Ox(T1) + Br(T2) >
‘Dl‘ + ‘DQ‘ = ‘D’ = (T) Therefore, ﬁk( ) ﬂk(Tl) —I—ﬁk(Tg) and D is a
Bk (T)-set. Moreover, it follows that D; is a k-independent set of T; having
cardinality i (T;) for i € {1,2} and so D; = S; implying that D = S; U Sy
is the unique [ (7T)-set. |

In [1], Blidia, Chellali and Volkmann defined the following trees. For a
positive integer p, a nontrivial tree T' is called an N, -tree if T' contains a
vertex, say w, of degree at least p — 1 and degp(x) < p — 1 for every vertex
of x € V(T) — {w}. We will call w the special vertez of T. The subdivided
star K, (p > 3) is an example of an N,,-tree.

We define a related family of trees, which we call N}f ., j-trees. A tree T is
an N} i j-tree with special vertex w if N(w) contains j > 0 vertices of degree
k, the remaining vertices in T' except possibly w have degree at most k — 1,
and if 7 < 1, dp(w) > k+1. We note that if j > 2, the only degree restriction
on the special vertex w is that dp(w) > j. An Nj-tree with special vertex
of degree at least k + 1 is an example of an N, rj-tree. A tree T'is a weak
N (-tree with special vertex w if w has degree at most k, N(w) contains
one vertex of degree k, and the remaining vertices in T' except possibly w
have degree at most k£ — 1.

Observation 8. For an N ;-tree T' with special vertex w, V(T) — {w} is
the unique By (T)-set.

In order to characterize trees T with a unique (i (T')-set, we define the family
Fi, of all trees T' that can be obtained from a sequence T1,T5,...,T, (p > 1)
of trees, where 77 = T* is an Nk -tree, T' = T}, and, if p > 2, TZ+1 can be
obtained recursively from 7T; by one of the four operations listed below.

e Operation O1: Attach an NV} -tree with special vertex z of degree at least
k + 1 by adding an edge from z to any vertex of T;.

e Operation Oy: Attach an Nj-tree with special vertex z of degree k by
adding an edge from z to any vertex belonging to a [j(T;)-set.

e Operation O3: Attach an N y,j-tree with special vertex z, where j > 1,
by adding an edge from z to any vertex in T;.

e Operation O4: Attach a weak Nk ;-tree T™ with special vertex z, by

adding the edge zz, where x is a vertex in a Bk (T;)-set, with the condition
that if x is not full, then 2z has degree k in T*.
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We state two lemmas.

Lemma 9. Let T be a tree and k a positive integer. If A(T) < k—1 or
T € Fy, then T has a unique By (T)-set.

Proof. 1t is clear that if A(T) < k — 1, then V(T') is the unique F(T)-
set. Suppose now that A(T) > k and T' € Fi. Then T is obtained from a
sequence T1,Ty,...,T, (p > 1) of trees, where 77 = T™* with special vertex
w, T'=T,, and, if p > 2, T;; can be obtained recursively from 7; by one
of the four operations defined above. Clearly the property is true if p = 1.
This establishes the basis case.

Assume now that p > 2 and that the result holds for all trees T' € Fy,
that can be constructed from a sequence of length at most p — 1, and let
T' = T,_1. By the inductive hypothesis, 7" has a unique S (7")-set. Let T
be a tree obtained from 7”7 and S a Bk (T)-set. We consider the following
four cases.

Case 1. T is obtained from 7" by using Operation O;. Let H be the
Ny -tree with special vertex z of degree at least k+ 1 added to T’. Note that
V(H) — {z} is the unique Sy (H)-set, and since 7" has a unique S (T")-set,
say S’, Lemma 7 implies that S’ U (V(H) — {z}) is the unique G (T')-set.

Case 2. T is obtained from T” by using Operation Q3. Let H be an
Ny -tree with special vertex z of degree k added to T’ with edge uz, where u
is a vertex of a B, (T")-set S’. Clearly S’ U (V(H) — {z}) is a k-independent
set of T and so Bx(T) > Br(T') 4+ |V(H)| — 1. Moreover, if S contains z,
then since dr(z) = k + 1 at least one of its neighbors in H is not in .S, and
hence z can be substituted by such a vertex in S. Therefore we may assume
that z ¢ S, and hence V(H) — {z} C S. Thus SNV (T”) is a k-independent
set of 7" implying that S (T") > Bx(T) — |V(H)| + 1, and the following
equality is obtained (i (T) = Br(T') + |V(H)| — 1. Now assume that S is
not the unique fx(T)-set, and let M be a second (i (T)-set. Note that we
have seen that z ¢ S. Since at most |V(H)| — 1 vertices from H are in
M, it follows that |M NV (T")| > Bx(T"). Since T” has a unique Sy (T")-set,
MNV(T) = SNV(T) is the unique B¢ (T")-set. Hence v € M. If z € M,
then two vertices of Ny (z), say v/, y” ¢ M but then {y/,y"}U(M —{z}) is a
k-independent set of T' larger than M which is impossible. Thus z ¢ M. It
follows that M contains V(H) —{z}, implying that M = S, a contradiction.
Therefore S is the unique [ (T)-set.
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Case 3. T is obtained from T’ by using Operation O3. Then T is
obtained from 7" by adding an N} ,j-tree T* with special vertex z by adding
the edge zx, where x € V(T"). From Observation 8, we know that V(1) —
{z} is the unique B (T*)-set. Since T” has the unique Sy (T")-set S, it follows
from Lemma 7 that S’ U ( V(T*) — {z}) is the unique S (T")-set.

Case 4. T is obtained from T’ by using Operation Q4. Then T is
obtained from 7" by adding a weak N r1-tree T with special vertex z by
adding the edge zx, where z € 8;(T")-set S'. Then S’ U (V(T}) — {z}) is a
k-independent set of T' and hence 5x(T) > Bi(T") + |V (Tp)| — 1. Also since
Nr,(2) contains a vertex, say y, of degree k, S does not contain all vertices of
Ny]. Hence we may assume that z ¢ S. It follows that V(Ty) —{z} C S and
so SNT" is a k-independent set implying that Sx(T") > Bk(T) — |V (Tp)| + 1.
Thus we have G (T) = Br(T") + |V(Tp)| — 1. Assume now that S is not
the unique S (T)-set, and let M be a second [y (T')-set. Since Ty contains
a vertex of degree k, M does not contain all vertices of V(Ty). If z ¢ M
or x ¢ M, then M NV (T") would be a second Bi(T")-set, a contradiction.
Thus z € M and © € M. The uniqueness of a [Bi(T')-set implies that
M NV (T") is the unique (3 (7")-set. Clearly x is not full in M NV(T'). By
our construction in that case both y and z have degree k in 7. Then there
are two vertices ¢y’ and y” in N, (z) that do not belong to M, but then
{y,y"} U (M — {z}) would be a k-independent set of T larger than M, a
contradiction. Thus S is the unique S8 (T)-set. ]

Lemma 10. Let T be a tree and k a positive integer. If T admits a unique
Ok (T)-set, then either A(T) <k —1 or T € Fy.

Proof. If A(T) <k — 1, we are finished. Suppose that A(T') > k, and let
B(T)={z € V(T) : degp(x) > k}. Clearly B(T') # 0. We use an induction
on the size of B(T). If |B(T')| = 1, then T is an Ny -tree with special vertex,
say z, of degree at least k + 1, for otherwise V(T') — {z} and V(T) — {z'}
are two (i (T')-sets, where 2’ is any vertex adjacent to z. Hence T is an
N, l;* j-tree. This establishes the basis case.

Let |B(T)| > 2 and assume that every tree 7" with |B(T")| < |B(T)|
having a unique S (T")-set is in Fi. Let T be a tree with a unique Sy (T)-
set S.

Root T at a vertex r of maximum eccentricity, and let w be a vertex of
degree at least k£ at maximum distance from r. Let u be the parent of w in
the rooted tree. We distinguish between three cases.
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Case 1. dr(w) > k+2. Let T" =T — Ty. Clearly |B(T")| < |B(T)|.
The uniqueness of .S implies that w does not belong to S for otherwise it can
be replaced by one of at least two vertices of N[w]—{u} not in S. It follows
that Bx(T) = Be(T') + |V (Tw)| — 1 and SNV (T”) is the unique [ (T")-set.
Applying the inductive hypothesis, 7" € Fj and hence T € Fj, since it is
obtained from T” by using Operation O;.

Case 2. dr(w) = k+ 1. If w € S, then a child w’ of w is not in S.
Therefore {w'} U (S — {w}) is a second [j(T)-set, a contradiction. Thus
w ¢ S and so u € S for otherwise {w} U (S — {w'}) is a second B (T)-set,
a contradiction. Now let 77 = T — Ty,. It is straightforward to show that
Bi(T) = Be(T") + |V (Ty)| — 1. The uniqueness of S implies that SNV (T”)
is the unique Sy (1")-set, where w € SNV(T”). Since |B(T")| < |B(T)| the
inductive hypothesis on 7’ implies that 7" € Fy. Thus T € F}, because it is
obtained from T” by using Operation Os.

Case 3. dr(w) = k. Assume for a contradiction that w ¢ S. Then S
must contain u else SU{w} is a k-independent set of T" larger than S. Hence
{w} U (S —{u}) is a second Gy (T')-set, a contradiction. Therefore w € S. If
u € S, then k > 2 and a child w’ of w is not in S and so {w'} U (S — {u})
is a second [ (T)-set, a contradiction. Thus u ¢ S. By our choice of w,
D]w] C S and hence w is a full vertex in S. Also our choice of w implies
that every child of u has degree at most k and each vertex in D(u) — N(u)
has degree at most k — 1. Thus, S contains all descendants of u. If w is the
unique full vertex in S adjacent to v and w has at most k neighbors in 5,
then {u} U (S — {w}) would be a second G (T)-set, a contradiction. Thus
either u is adjacent to at least two full vertices in S or u is adjacent to at
least k + 1 vertices in S. Let 7/ = T — T,. If B(T") = (), then T is an
N j-tree and hence T' € Fy. Thus assume that B(7") # 0, and let v be the
parent of u. Note that V(T,) — {u} is a k-independent set. It can be seen
that 0 (T) = Br(T") + |V (T,)| — 1 and SNV(T") is a fi(T")-set. Moreover,
the uniqueness of S implies that S NV (T”) is the unique G (T")-set. Thus
by induction on 7", T" € Fj,. Now if T}, is an Ny -tree with special vertex u,
where j > 1, then T € F. because it is obtained from 7" by using Operation
O3. Hence assume that T, is not an N} i j-tree. This implies that w is the
only child of u with degree k and u has degree at most k in T,. Thus, T}, is
a weak N ,1-tree. Recall that u is adjacent to two full vertices in S or w is
adjacent to at least k+ 1 vertices in S. If u is adjacent to two full vertices in
S, then since w is the only full vertex in D(u), it follows that v is full in S.
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Since u ¢ S, it follows that v is full in SN V(T’). If u is adjacent to k + 1
vertices in S, then u has degree k in T, and v is in S. Thus, v € SNV(T").

In both cases, T can be obtained from T by using Operation O4. Hence
T e Fy. |

According to Theorems 4, 5, and Lemmas 6, 9 and 10, we have completed
the proof of Theorem 1.
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