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The lattice of connected subgraphs of a connected graph

1. Introduction. In [2], Leclerc states that the lattice LT of all connected 
subgraphs of a tree T with p points has the following properties:

(i) Lr has p irreducible elements;
(ii) all maximal chains joining the least and the greatest elements of LT 

are of length p;
(iii) the atoms of LT are the v-irreducible elements of LT;
(iv) for each element a e L T, а Ф 0, the filter [a) is a distributive 

sublattice of LT.
Leclerc constructs further a connected graph G, which is not a tree but 

whose lattice of connected and induced subgraphs has properties (i) and (iv). 
The purpose of this paper is to characterize the lattice of connected, induced 
subgraphs of a connected graph. After the characterization an immediate 
generalization is given in terms of ideals of graphs [3], [4].

By a graph G =  (P(G), X (G)) we shall mean a connected, undirected 
and finite graph without loops and multiple lines, where P(G) is its set of 
points and X{G) its set of lines. We shall follow the terminology and definitions 
given by Harary in [1].

The concepts of lattice theory used here can be found in monograph [5] 
of Szâsz. Let L be a lattice, [b) =  {x\b ^ x , b , x e L }  and it is called the 
principal filter of L generated by b, and as well known, it is a convex 
sublattice of L. Dually, (b] =  {x\x ^  b ,x ,  be L } .

Let G be a given graph. The lattice LG of its connected, induced 
subgraphs, if it exists, is determined by the set-theoretical inclusion order: 
Gx ç  G2 o P ( G l) ç  P(G2). As we shall consider induced subgraphs only, 
the property P(Gi) ç  P(G2) implies that X(G 2). The 0-element
of Lg is the empty graph.

2. The lattice of connected subgraphs. Let G be a given graph and 
K x, K 2 , K k its decomposition into к induced subgraphs. We shall call G 
a tree structure if G can be decomposed into subgraphs K t , . . . , K k such
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that each subgraph is a complete subgraph of G (or a point), к ^  1, 
each two subgraphs K t and Kj  (i Ф j) are connected by at most one line 
of G, and there are in G no cycles connecting two points x, and xj of G: 
Xi6 K t and XjGKj, i Ф / . Thus every complete graph is a tree structure as 
well as every tree, where each K t is a point.

We begin with a lemma determining the cases where the connected and 
induced subgraphs do not constitute a lattice with respect to the set-theoretical 
inclusion order.

L em m a  1. Let G be a connected graph |P(G)| ^ 4 .  If G is not a tree 
structure, its connected and induced subgraphs do not constitute a lattice with 
respect to the set-theoretical inclusion order.

Proof. If G is a graph satisfying the conditions of the lemma, then G 
contains an induced subgraph isomorphic to A or B, where A is the graph 
of Fig. 1 and В is a cycle of points {xb ..., xn, x„+1} Ç= P(G) with xn+1 =  x l5 
n ^  4 and there are no lines in В other than the lines of the cycle. We shall 
consider the subgraph A only; the proof for В is similar.

Fig. 1

Let G {a} and G {b} be connected subgraphs of A (and of G) induced 
by points a and b, respectively. Moreover, G {a}, G {b} ç; G { a ,b , c }  and 
G {a}, G {b} Ç G { a , b , d } ,  whence G {a}, G {b} ç  {a, b, с] л G {a, b, d] . As 
{a,b}  does not induce a connected subgraph of A and G, the meet 
G {a, b, c] a  G {a, b, d} is not uniquely defined, and so the connected and 
induced subgraphs of G do not constitute a lattice LG.

As one can easily see, the induced subgraphs of a complete graph 
constitute a Boolean lattice. The connected subgraphs of a tree T constitute 
a lattice LT as noted in [2].

We shall give our characterization in two lemmas.
Lemma 2. The connected induced subgraphs of a tree structure G consti­

tute a lattice LG satisfying the following conditions:
1° for each a e L G, а Ф 0, [a) is a distributive sublattice of LG ;
2° the only v -irreducible elements of LG are 0 and the atoms of LG ;
3° the length of each chain between а (Ф 0) and 0 is equal to the number 

of atoms in the sublattice (a] of LG.
Proof. Let Gi and G2 be two connected and induced subgraphs of G.
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If P(G1)nF(G 2) Ф 0 , the points in P(G1)nP(G 2) evidently induce a unique 
connected subgraph of G, the same holds if the intersection is empty. Let us 
consider the join G x v G2. If P(G1)nP(G 2) Ф 0 ,  then, as there exist no 
cycles in G joining two points х,-еК{ and Xj e K j , i Ф j ,  the set P(G2)u  P(G2) 
of points induces a unique connected subgraph G3 of G such that P(G3) 
= P ( G  i) u P(G2). Let P ( x , y ) be a shortest path joining xeP(G2) and 
y e P ( G 2). If P { G x)(a P { G 2) =  0 ,  the union ( J  { P ( x ,  y)|xeP(G1) and y e  
eP(G2)} of points induces a connected subgraph G3 of G such that 
P(G3) = ( J  {P(x, y)|xeP(G1) and yeP(G2)} and G3 is the least connected 
and induced subgraph containing G x and G2 in G. Indeed, as P(G1)nP(G 2) 
= 0 ,  it may happen that P { G X) n  Р { К () Ф 0  or P(G2)n P (X 2) #  0  but not 
both except for at most one value of i according to the definition of the 
tree structure. Assume that KjonP(Gj) = R x Ф 0  Ф K i o n  P ( G 2) =  R 2 for 
some value i0 of i. Then all the shortest paths P(x, yjxeP(G1) and y e P { G 2)) 
go through the lines of the complete graph induced by the point set R x и P2, 
and our assertion holds. Assume now that there is no such subgraph K i0 
in G. As G is a tree structure, there is a unique sequence K n , K i2, ..., K ir
of subgraphs of G joining all the points of G1 and G2, where only, for
>i, P(G ,)nK n * 0 ,  for ir> P(G21 n K ir Ф 0 . Let z e K n  be the endpoint 
of the unique line joining K n  and K i2 and w e K ir the endpoint of the
unique line joining K ir and Kfr_ x . The shortest path between z and w
is unique in G and all the shortest paths P(x, y(xeP(G1) and y e P { G 2)) go 
through the lines joining z to the points of Kj lnP(G 1). An analogous 
fact holds for w and the points of K irn  P ( G 2). So the graph thus obtained 
is the least possible connected subgraph of G containing G x and G2. 
Obviously it is also induced by y  {P(x, y)|xeP(G1) and yeP(G2)}. Hence 
there exists a lattice L G when G is a tree structure.

Trivially, the atoms of L G are v-irreducible in LG. Let x e L G be 
neither an atom nor the О-element of L G but a v -irreducible element, and 
let G x be the connected induced subgraph of G corresponding to x. 
We denote by G g the greatest connected induced subgraph of G contained 
in Gx properly, i.e. x covers g  in L G. As the subgraphs under consideration 
are induced, G x is obtained from G g by adding to P { G g) a point v of G. 
Thus P (Gx) = P {Gg) u {и}, and as G x is an induced subgraph of G, 
Gx =  Gg v G {i;}. So Gx is v -reducible, which is a contradiction.

Let us consider a filter [a) of LG, а Ф 0, and let d , f ,  h e l d ) .  As is well 
known, the distributivity of [a) follows already from d  л (h v f )  ^ (J a /i)v ( d A f ) .  
In [a), the intersection of the point sets of two subgraphs is always non-empty, 
and, as shown above, if P(G1)nP(G 2) Ф 0 ,  then G x v G 2 and G x a G 2 are 
induced by P(G1)uP(G 2) and P(G1)nP(G 2) respectively. The validity of the 
assertion is now obvious, as P ( G d) n  (P {G„) и P (G,)) 3  (P (Gd) n P (G„)) и 
U ( P ( G J  n P (Gy)) and the corresponding graphs are induced by the point 
sets thus obtained.
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We prove the last assertion by induction over the number |P(G)| of 
points in the tree structure G. Obviously each connected and induced sub­
graph of a tree structure is a tree structure again, and hence the general 
assertion follows from the result proved by induction. Obviously the length of 
all maximal chains from 0 to the 1-element of a tree structure G is 1 and 2 
when |P(G)| =  1,2, respectively. We assume that the assertion is true for 
all tree structures with |P(G)| ^ n — 1.

Lrt G be a tree structure and |P(G)| =  n, n ^ 3. As the only v -irreducible 
elements of LG are the atoms and the 0-element, the element 1 of LG 
corresponding to G is the join of at least two elements s and t covered 
by 1 in Lg . As 1 covers s, Gs is obtained from G by removing a suitable 
point from G; the same fact holds also for Gt. Furthermore, as n ^ 3, 
P(Gs) n P ( G f) Ф 0 ,  and hence G is generated by the point set P(Gs)uP(G ,). 
As Gt and Gs are tree structures and |P(GS)| = |P(Gf)| = n— 1, the maximal 
chains from 0 to s and to t are of length n — 1. As 1 covers s and t, the 
chains from 0 to 1 through s and t are of length n. The proof above can 
be repeated for each two elements p and q covered by 1, whence all chains 
from 0 to 1 are of length n. This completes the proof.

L em m a  3. A finite lattice L is the lattice of connected and induced sub­
graphs of a tree structure G if L satisfies conditions l°-3° of Lemma 2.

Proof.  We shall prove the lemma by induction over the number of 
atoms of L. If the number of atoms is 1 or 2, then L is generated by 
a complete graph of 1 or 2 points, respectively, and the lemma holds. 
We shall assume that the lemma is valid for all lattices L satisfying 
conditions 1°—3° and having n — 1 or less atoms.

Let us consider a lattice L satisfying conditions Г -3 0 and having n 
atoms, n ^  3. According to 2°, 1 covers at least two elements 5 and t, 
the join of which is 1. As the length of chains between 0 and 1 is n, 
the chain between 0 and s (and 0 and t) is n — 1. Clearly, conditions 
1°—3° are valid in the sublattices (s] and (f] of L, and hence the sublattices 
are the lattices of connected induced subgraphs of some tree structures Gs 
and Gf. The tree structure Gs determined by (s] can be found as follows: 
Let {al5 a2, Яц- i }  be the atoms of (s]. In Gs two points a, and a, which
are atoms of (s] are joined by a line if and only if a, v a} covers a, and a}
in (s]. The tree structure G t can be found similarly. Let as be the atom
of (s] not being in (t] and a t that of (r] not being in (s]. If as were equal
to at, then Gs = Gf, and therefore (f] =  (s], which is a contradiction. As 
n 3, P(Gt) n P (G J  Ф 0 ,  and as Gs and Gr are tree structures, as and at 
are joined by a path of points in P(Gs) n P ( G f). The atoms of L determine 
a graph G in the same way as the atoms of (s] the graph Gs above. 
If in the graph G , a s and a t belong to a complete induced subgraph of G, 
or they are not joined by a line, then the graph G of L is a tree structure.
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As all the dual atoms of L, like s, determine the lattice of connected and 
induced subgraphs of the corresponding graph (in the case of s, of the 
graph Gs), L is the lattice of connected induced subgraphs of G.

Assume that this is not the case in G, i.e. as and at belong to a con­
nected and induced subgraph of G which is isomorphic to one of the graphs A  
and В  in the proof of Lemma 1. If as and at are not adjacent in G, then 
in the case of В  we can choose two points h and /  of B, h, f e P ( G s) n  P(Gt), 
which belong to the opposite sides of the cycle В  joining as and at. In the 
lattice (t] of induced and connected subgraphs of Gt the element h v f ^ a t, 
and in the lattice (s] of Gs, h v  f  ^  as. This is a contradiction, as (t] and (s] 
are sublattices of L and at$(s] and as${t]. In the case of sublattice A,  
if as v  at v  h v f  =  m < 1, we obtain a contradiction, as (m] is the lattice of 
connected induced subgraphs of a tree structure according to the assumption. 
Assume that as v a, v  h v f  =  1. Then as v at v  h v  f e [ h v f ) ,  and [ h v f )  is 
a distributive sublattice of the lattice [h). The chain from 0 to at v h v /  is of 
length three in the lattice (f], as {h ,f ,  at] induces a complete subgraph 
of Gt; the same holds for as v h v f  in (s]. Moreover, the chains from h v f  
to at v  h v f  and to as v  h v f  are of length one. As [/i v f )  is distributive, these 
lengths imply that the chain from h v f  to as v  at v  h v  f  is of length two, 
and hence the chain between 0 and 1 in L is of length 4. So L contains 4 
atoms, and as (f] and (s] are Boolean lattices as the lattices of connected 
and induced subgraphs of complete graphs, L contains the structure of

Fig. 2

Fig. 2, where [ / )  is not a distributive sublattice of As as and a, are not 
joined by a line in G, the structure S x can be modified further as follows: 
In S 2 bj v b 2 is added ([ / ) is not distributive) as well as Cj v c2 ([us) is not 
distributive). The same holds if c x v  b 2 (or c 2 v  b x or both) is added into S 1 \ 
[ / )  is not distributive. Thus we obtain a contradiction also in the case of 
the graph A.
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It remains to consider the case where as and at are joined by a line 
in G. If G is not a tree structure, it contains a connected induced subgraph 
isomorphic to the subgraph A or В of Lemma 1. In the case of subgraph A 
we obtain a contradiction as in the case of В above, when as and at were 
not adjacent in G. If the join of all the atoms of В is mx and less than 1 
in L, we obtain a contradiction as with (m] above. Further, we can prove 
similarly as above that L has |P(B)| = n atoms, and hence B =  G, i.e. В is the 
graph of L. As at ф (s] and as ф (f], as v  агф (s], (£]. but 1 e [as v at), and so L 
contains a third dual atom и Ф s , t .  According to the induction assumption, 
(u] is the lattice of connected induced subgraphs of a graph B), and the 
corresponding graph contains n — 1 atoms. В is a cycle and as and at are 
joined by a line in B. We denote by bt the other point joined by a line in В 
to at , bt Ф as, and by bs the corresponding other point joined to as. In (s], 
as v b t is greater than bs and not greater than at, and in (и], if bte(u], 
as v b ,  is greater than at. Similarly, in (£], at v  bs is greater than as, and in 
(и], if bse(u], at v b s is greater than as. Both of these observations imply 
a contradiction as (s], (t] and (и] are sublattice of L. As (w] contains n — 1 
atoms, bs or bt belongs to (и]. This completes the proof.

The lemmas above imply the following characterization:
T h eo rem  1. A finite lattice L is the lattice of connected induced subgraphs 

of a graph if and only if conditions l°-3°y of Lemma 2 hold.

3. On ideals in graphs. The purpose of this section is to give a gen­
eralization of the considerations above. The ideal concept of graphs [4] 
is a natural generalization of the corresponding concept defined for trees 
by Nebeskÿ in [3].

We define a binary operation, denoted by SP, on the point set P{G) 
of a given graph G as follows:

SP(x,y)  =  {z \ z e P { G ) and z is on a shortest path joining x and y in G}.

In particular, {x,y} ç  SP(x,y),  and SP(x,x)  =  {x}. In general, let U, W 
be two sets of P(G). Then SP(U, W ) will denote the union of the sets 
SP{u,w),  where u e U  and we IT. A set U ç= P(G) is called an ideal of G, 
if SP(U, U) =  U and U Ф 0 .

Let U be an ideal of G. The subgraph Gv of G generated by U in G, 
the ideal graph of U, is defined as follows: P{Gu) =  U and a line 
( x , y ) e X { G v) if and only if it belongs to a shortest path joining two 
points of U in G. The following lemma shows that the ideal graphs have 
the fundamental properties of the subgraphs considered before.

L em m a  4. Let U be an ideal of a connected graph G. The ideal graph Gv 
is connected and induced subgraph of G.

Proof.  As G is a connected graph, the definition of the SP-operation 
implies that for each two points x, y e U  the points on the shortest paths
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joining x and y  in G belong to U. The connectivity of Gv follows now from 
the definition of X(GV). If x, y e U  and ( x j ) f e l ( G ) ,  then (x, y )e X (G v) 
according to the definition of X(Gu), and hence Gu is induced by U = P(GV) 
in G.

Clearly P(G) is an ideal in G as well as {x} for each xeP(G). Further, 
if G' is a complete subgraph of G, then P(G') is an ideal in G, and if G 
is a tree, then for every connected subgraph G" of G, P(G") is an ideal of G.

The following two lemmas show that there exists a lattice of ideal 
graphs for each connected graph G. As above, we assume that the empty 
graph is an ideal graph contained in each ideal graph of G. Further, 
Gv ^  Gwo U  ç  W.

Lemma 5. Let U and W be two ideals of a graph G. Then either U n W  
is an ideal of G or U n  W  =  0 .

Proof. Assume that U n W  Ф 0 .  If it contains a point only, U n W  
is an ideal of G. Let x Ф y  and x, y e U  n W .  As U and W are ideals of G, 
SP(x, y) £  U , W, and so SP(U n W , U n W ) ç= U n W .  The converse rela­
tion is obvious, and hence SP(U n W ,  U n W )  =  U n W ,  which proves the 
assertion.

Lemma 5 shows that the meet Gv л Gw = Gv n  Gw of two ideal graphs 
Gv , Gw of a graph G is always an ideal graph or the empty graph.

Lemma 6. Let U and W beïtwo ideals of a graph G. There exists 
a least ideal V in G containing the ideals U and W.

Proof. As P(G) is an ideal of G, there always exists an ideal of G 
containing U and W. Let Ft, V2,. . . ,  Vh be the sequence of all distinct ideals 
of G containing U and W. As G is finite, h is finite as well, and according 
to Lemma 5, fj {Vj\i =  l , . . . , / i )  is an ideal of G. Clearly, it is the least 
ideal containing U and W. This completes the proof.

For example, the lattice Sl in Fig. 2 is the lattice of all ideal graphs 
of a graph isomorphic to the graph A of Fig. 1.
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