

BOGDAN RZEPECKI (Poznań)

On the Banach principle and its application to the theory of differential equations

K. Goebel [3] has proved the following theorem:

Let A be an arbitrary set and let M be a metric space with the metric ϱ . Suppose that S, T are two transformations defined on the set A with the values in M. If $S[A] \subseteq T[A]$ and T[A] is a complete subspace of M and if for all $x, y \in A$

$$\varrho(Sx, Sy) \leqslant k\varrho(Tx, Ty),$$

where $0 \le k < 1$ holds, then

1° there exists $x_0 \in A$ such that

$$Sx_0 = Tx_0;$$

 2° if x_0 satisfies (*) and $Tx = Tx_0$, then $Sx = Tx = Sx_0 = Tx_0$;

3° if each of elements x_0, y_0 satisfies (*), then $Tx_0 = Ty_0$.

This theorem generalizes the well-known Banach fixed-point principle and is connected with Bielecki's method [1] of changing the norm in the theory of differential equations.

In this paper we give a version of the Goebel's result which enables us to get the global theorems on continuous dependence of a differential or differential-like equation solution on initial conditions, its right-hand side and parameter.

- 1. THEOREM. Suppose that A is an arbitrary set and let B and M be metric spaces. Assume, moreover, that S, T are two transformations defined on the set $A \times B$ with the values in M such that for all $y \in B$
- 1° $\{S(x,y): x \in A\} \subseteq \{T(x,y): x \in A\}$ and $\{T(x,y): x \in A\}$ is a complete subspace of M,

 2° there exists $a(y) \in [0, 1)$ such that

$$\varrho(S(x_1, y), S(x_2, y)) \leqslant \alpha(y) \varrho(T(x_1, y), T(x_2, y))$$

for every $x_1, x_2 \in A$, where ϱ denotes the metric on M,

3° the equation S(x,y) = T(x,y) has at most one solution $x \in A$.

If the functions $S(x, \cdot)$ and $T(x, \cdot)$ are continuous on B and if $y \mapsto \alpha(y)$ is a continuous function on B, then there exists a unique function $\psi \colon B \to A$ such that $S(\psi(y), y) = T(\psi(y), y)$ for every $y \in B$ and functions $S(\psi(\cdot), \cdot)$ and $T(\psi(\cdot), \cdot)$ are continuous on B.

Proof. Let us fix $y \in B$. In view of Goebel's theorem, there exists $x_0 \in A$ such that $S(x_0, y) = T(x_0, y)$ and therefore x_0 is determined uniquely. Consequently, there exists a unique function $\psi \colon B \to A$ such that $S(\psi(y), y) = T(\psi(y), y)$ for $y \in B$.

Let $y_1, y_2 \in B$. We have

$$egin{aligned} arrho \left(Tig(\psi(y_1),\, y_1 ig), \; Tig(\psi(y_2),\, y_2 ig)
ight) \ &= arrho \left(Sig(\psi(y_1),\, y_1 ig), \; Sig(\psi(y_2),\, y_2 ig)
ight) \ &\leqslant lpha(y_1) \cdot arrho \left(Tig(\psi(y_1),\, y_1 ig), \; Tig(\psi(y_2),\, y_2 ig), \; Tig(\psi(y_2),\, y_1 ig)
ight) + \ &+ lpha(y_1) \cdot arrho \left(Sig(\psi(y_2),\, y_1 ig), \; Sig(\psi(y_2),\, y_2 ig)
ight) \end{aligned}$$

hence

$$\begin{split} \varrho \left(S \left(\psi(y_1), y_1 \right), \ S \left(\psi(y_2), y_2 \right) \right) \\ &= \varrho \left(T \left(\psi(y_1), y_1 \right), \ T \left(\psi(y_2), y_2 \right) \right) \\ &\leqslant \frac{\alpha(y_1)}{1 - \alpha(y_1)} \cdot \varrho \left(T \left(\psi(y_2), y_2 \right), \ T \left(\psi(y_2), y_1 \right) \right) + \\ &\quad + \frac{1}{1 - \alpha(y_1)} \cdot \varrho \left(S \left(\psi(y_2), y_1 \right), \ S \left(\psi(y_2), y_2 \right) \right) \\ &\leqslant \frac{1}{1 - \alpha(y_1)} \left[\varrho \left(T \left(\psi(y_2), y_2 \right), \ T \left(\psi(y_2), y_1 \right) \right) + \\ &\quad + \varrho \left(S \left(\psi(y_2), y_1 \right), \ S \left(\psi(y_2), y_2 \right) \right) \right]. \end{split}$$

Finally, $T(\psi(\cdot), \cdot)$ and $S(\psi(\cdot), \cdot)$ are continuous on B.

Remark. Let $y_0 \in B$ and let for $y = y_0$ condition 2° be satisfied. If T is one-to-one, then there exists at most one element $x \in A$ such that $S(x, y_0) = T(x, y_0)$.

From the corollary we obtain [2]:

Let E be an arbitrary metric space and let M be a complete metric space with the metric ϱ . Suppose that $S\colon M\times E{\to}M$ is a transformation such that

- (i) for all $y \in E$ there exists $\alpha(y) \in [0, 1)$ such that $\varrho(S(x_1, y), S(x_2, y)) \leq \alpha(y) \cdot \varrho(x_1, x_2)$ for $x_1, x_2 \in M$;
 - (ii) for all $x \in M$ the function $S(x, \cdot)$ is continuous on E.

If $y \mapsto a(y)$ is a continuous function on E, then there exists a unique continuous function $\psi \colon E \to M$ such that $S(\psi(y), y) = \psi(y)$ for an arbitrary $y \in E$.

- 2. Now, we are going to give some examples of applications of Theorem 1.
 - I. Consider the differential equation

$$(1) x' = f(t, x)$$

(cf. [1], [3]). We introduce

Assumption (I). Suppose that

1° the function $f: [0, \infty) \times (-\infty, \infty) \to (-\infty, \infty)$ satisfies the Carathéodory's conditions and Lipschitz conditions: there exists a locally integrable function $L: [0, \infty) \to [0, \infty)$ such that

$$|f(t, x_1) - f(t, x_2)| \leq L(t)|x_1 - x_2|$$

for every $t \ge 0$ and $-\infty < x_1, x_2 < \infty$;

$$2^{\circ} \int_{0}^{t} f(s,0) ds = O\left(\exp \int_{0}^{t} L(s) ds\right) \text{ for } t \geqslant 0.$$

Denote by $C[0, \infty)$ the Banach space of bounded continuous functions on $[0, \infty)$ with the usual norm $||x|| = \sup\{|x(t)|: t \ge 0\}$. In [3] it has been proved that assuming (I) equation (1) has for every η exactly one solution $x \in C[0, \infty)$ with the initial condition $x(0) = \eta$. Let us prove:

2.1. Let assumption (I) be satisfied. Then

1° equation (1) has for every $P = \eta \epsilon(-\infty, \infty)$ exactly one solution $x_P \epsilon$ $C[0, \infty)$ with the initial condition $x_P(0) = \eta$ and $x_P(t) = O(\exp(p \cdot \int_0^t L(s) ds))$, where p > 1;

 $2^{\circ} \ \ if \ \ (P_n) \rightarrow P_0, \ \ where \ \ P_n, P_0 \in (-\infty, \, \infty), \ \ then \ \ \lim_{n \rightarrow \infty} x_{P_n}(t) = x_{P_0}(t)$ uniformly in every finite subinterval from $[0, \, \infty)$.

Proof. Let p > 1,

$$A = \left\{ x \in C[0, \infty) \colon x(t) = O\left(\exp\left(p \cdot \int_{0}^{t} L(s) ds\right)\right) \quad \text{for } t \geqslant 0 \right\}$$

and let $B=(-\infty,\infty)$ with the Euclidean metric. The transformations T and S are defined by

$$T(x, P)(t) = x(t) \exp\left(-p \cdot \int_{0}^{t} L(s) ds\right),$$
 $S(x, P)(t) = \left(\eta + \int_{0}^{t} f(s, x(s)) ds\right) \cdot \exp\left(-p \cdot \int_{0}^{t} L(s) ds\right)$

for $w \in A$ and $P = \eta \in B$. Then $S, T: A \times B \rightarrow C[0, \infty)$ and $\{T(x, P): x \in A\}$ = $C[0, \infty)$ for every $P \in B$.

Fix $P_0 = \eta_0 \epsilon B$. Then $S(x, P_0) = T(\overline{x}, P_0)$ for $x \epsilon A$ and $\overline{x}(t) = \eta_0 + \int_0^t f(s, x(s)) ds$ for $t \ge 0$. Since

$$|\overline{x}(t)| \leqslant |\eta_0| + \left|\int\limits_0^t f(s,0)ds\right| + \int\limits_0^t L(s)|x(s)|ds$$

and

$$\int_0^t L(s) \exp\left(p \cdot \int_0^s L(u) \, du\right) ds = p^{-1} \left(\exp\left(p \cdot \int_0^t L(u) \, du\right) - 1\right),$$

we obtain $\overline{x} \in A$ and therefore $\{S(x, P_0): x \in A\} \subseteq \{T(x, P_0): x \in A\}$. It can be easily seen (cf. [4]), that

$$||S(x_1, P_0) - S(x_2, P_0)|| \leqslant p^{-1} \cdot ||T(x_1, P_0) - T(x_2, P_0)||$$

for $x_1, x_2 \in A$. Now, we shall prove that the equation $S(x, P_0) = T(x, P_0)$ has at most one solution in A.

Let $x_i \in A$ and let $S(x_i, P_0) = T(x_i, P_0)$ for i = 1, 2. Then

$$|x_1(t) - x_2(t)| \leqslant \int\limits_0^t L(s) |x_1(s) - x_2(s)| ds$$

 $\leqslant p^{-1} \cdot ||x_1 - x_2||_p \Big(\exp\Big(p \cdot \int\limits_0^t L(s) ds \Big) - 1 \Big),$

where

$$||x_1-x_2||_p = \sup \{|x_1(t)-x_2(t)|\exp \left(-p \cdot \int_0^t L(s) ds\right): t \geqslant 0\}.$$

Hence

$$\left\|p\cdot \left\|x_1-x_2\right\|_p \leqslant \left\|x_1-x_2\right\|_p \sup\left\{1-\exp\left(-p\cdot\int\limits_0^t L(s)\,ds\right)\colon \ t\geqslant 0\right\}$$

and therefore $||x_1-x_2||_p=0$.

By Theorem 1 there exists a unique function $h: B \to A$ such that T(h(P), P) = S(h(P), P) for $P \in B$ and if $P_n = \eta_n$, $P_0 = \eta_0 \in B$, $(\eta_n) \to \eta_0$, then

$$\begin{split} \|h(P_n) - h(P_0)\|_p &= \sup_{t \geqslant 0} \left| \left(\eta_n + \int_0^t f(s, h(P_n)(s)) ds \right) - \\ &- \left(\eta_0 + \int_0^t f(s, h(P_0)(s)) ds \right) \right| \cdot \exp\left(- p \int_0^t L(s) ds \right) \rightarrow 0 \quad \text{ as } n \rightarrow \infty. \end{split}$$

II. Let a>0. Let us denote by C_t $(t \in [0, a])$ the set of all bounded continuous functions on $(-\infty, t]$. We introduce

Assumption (II). Let G(t, x) be a functional defined for $t \in [0, a]$, and $x \in C_t$. Suppose that

1° there exists a continuous function $q: [0, a] \rightarrow [0, \infty)$ such that

$$|G(t,\,v_1)-G(t,\,v_2)|\leqslant q(t)\cdot\sup\left\{|v_1(s)-v_2(s)|\colon\,s\,\epsilon(\,-\infty,\,t\,]\right\}$$

for every $(t, v_1), (t, v_2) \in [0, a] \times C_t$,

2° for fixed $h \in C_t$ the function $G(\cdot, h)$ is continuous on [0, t].

Consider the differential-functional equation

(2)
$$x(t) = \varphi(t) \quad \text{for } t \in (-\infty, 0],$$
$$x'(t) = f(t, G(t, x)) \quad \text{for } t \in [0, \alpha],$$

where $\varphi: (-\infty, 0] \rightarrow (-\infty, \infty)$ and $f: [0, a] \times (-\infty, \infty) \rightarrow (-\infty, \infty)$. Let us denote:

by $C(-\infty, a]$ — the Banach space of bounded continuous functions on $(-\infty, a]$ with the usual norm $\|\cdot\|$;

by \mathscr{F} — the space of bounded continuous functions f on $[0,a] \times (-\infty,\infty)$ satisfing the Lipschitz condition: there exists a constant $L_f > 0$ such that $|f(t,x_1) - f(t,x_2)| \leq L_f |x_1 - x_2|$ for $t \in [0,a]$ and $-\infty < x_1, x_2 < \infty$, with the norm

$$|||f||| = \sup\{|f(t,x)|: (t,x)\in[0,a]\times(-\infty,\infty)\}.$$

2.2. Let assumption (II) be satisfied and let φ be a defined and continuous bounded function on $(-\infty, 0]$.

Then, for an arbitrary $f \in \mathcal{F}$ there exists a unique function $x_f \in C(-\infty, a]$, equal identically to the function φ on the set $(-\infty, 0]$ and such that

$$x'_f(t) = f(t, G(t, x_f))$$
 for $t \in [0, a]$.

Assume, moreover, that $\sup\{L_f: f \in \mathcal{F}\} < \infty$. Then the function $f \mapsto x_f$ maps continuously \mathcal{F} into $C(-\infty, a]$.

Proof. Let p > 1 and let A denote the set of continuous functions $x: (-\infty, a] \rightarrow (-\infty, \infty)$, which are equal identically to the function φ on the set $(-\infty, 0]$ and such that

$$\sup\{|x(t)|\cdot\exp(-pt)\colon t\,\epsilon(-\infty,\,a]\}<\infty.$$

For each $(x, f) \in A \times \mathcal{F}$, define

$$T(x,f)(t) = x(t) \cdot \exp(-pt)$$

and

$$S(x,f)(t) = \begin{cases} \varphi(t) \cdot \exp(-pt) & \text{for } t \in (-\infty, 0], \\ \Big(\varphi(0) + \int_0^t f(s, G(s, x)) ds\Big) \cdot \exp(-pt) & \text{for } t \in [0, a]. \end{cases}$$

Evidently, S and T map the set $A \times \mathcal{F}$ into the space $C(-\infty, a]$ and $\{S(x, f): x \in A\} \subseteq \{T(x, f): x \in A\}$ for $f \in \mathcal{F}$.

Let $x_n \in A$ and let $||T(x_n, f) - y_0|| \to 0$ as $n \to \infty$. Put

$$x_0(t) = \begin{cases} \varphi(t) & \text{for } t \in (-\infty, 0], \\ y_0(t) \cdot \exp(pt) & \text{for } t \in [0, a]. \end{cases}$$

Since

$$y_0(t) = \varphi(t) \cdot \exp(-pt)$$
 for $t \in (-\infty, 0]$,

we have $T(x_0, f) = y_0$ and $x_0 \in A$. Consequently, $\{T(x, f): x \in A\}$ is a complete subspace of $C(-\infty, a]$.

Let the function $f \in \mathscr{F}$ satisfy the Lipschitz condition with a constant L_t . For $t \in [0, a]$ and $x_1, x_2 \in A$, we have

$$\begin{split} |S(x_1,f)(t) - S(x_2,f)(t)| \\ &\leqslant \exp(-pt) \cdot \int\limits_0^t \left| f\big(s,G(s,x_1)\big) - f\big(s,G(s,x_2)\big) \right| ds \\ &\leqslant L_f \cdot \exp(-pt) \cdot \int\limits_0^t q(s) \sup_{0 \leqslant u \leqslant s} |x_1(u) - x_2(u)| ds \\ &\leqslant L_f \cdot \sup_{0 \leqslant t \leqslant a} q(t) \cdot \exp(-pt) \int\limits_0^t \exp(ps) \cdot \sup\left\{ \exp(-ps) |x_1(s) - x_2(s)| \colon s \in [0,a] \right\} ds \\ &\leqslant p^{-1} L_f \sup_{0 \leqslant t \leqslant a} q(t) \, \|T(x_1,f) - T(x_2,f)\| \end{split}$$

and it follows

$$\|S(x_{\mathbf{1}},f) - S(x_{\mathbf{2}},f)\| \leqslant p^{-1} L_{f} \sup_{0 \leqslant t \leqslant a} q(t) \cdot \|T(x_{\mathbf{1}},f) - T(x_{\mathbf{2}},f)\|.$$

Fix $x \in A$. Let $f_n \in \mathcal{F}$ and $|||f_n - f_0||| \to 0$. We have

$$|S(x, f_n)(t) - S(x, f_0)(t)|$$

$$\leqslant \exp\left(-pt\right)\cdot\int\limits_{0}^{t}\left|f_{n}\!\left(s\,,\,G\left(s\,,\,x\right)\right)-f_{0}\!\left(s\,,\,G\left(s\,,\,x\right)\right)\right|ds\leqslant a\left|\left|\left|f_{n}-f_{0}\right|\right|\right|$$

for $t \in [0, a]$ and it follows

$$||S(x, f_n) - S(x, f_0)|| \rightarrow 0$$
 as $n \rightarrow \infty$.

The function

$$f \mapsto p^{-1} \sup_{0 \leqslant t \leqslant a} q(t) \cdot \sup_{f \in \mathcal{F}} L_f$$

is constant on F. The application of Theorem 1 completes the proof.

Remark 1. Let $h: [0, a] \rightarrow (-\infty, a]$ be a continuous function such that $h(t) \leq t$ for $t \in [0, a]$. Then the functional

$$G(t,x) = x(h(t))$$

satisfies assumption (II) and equation (2) takes the form

$$x(t) = \varphi(t)$$
 for $t \in (-\infty, 0]$,
 $x'(t) = f(t, x(h(t)))$ for $t \in [0, a]$.

Remark 2. If

$$G(t, x) = \int_{0}^{\infty} x(t-s)d_{s}r(t, s),$$

we get

$$x(t) = \varphi(t)$$
 for $t \in (-\infty, 0]$, $x'(t) = f(t, \int_{0}^{\infty} x(t-s) d_{s} r(t, s))$ for $t \in [0, a]$,

where the integral is in the sense of Stieltjes. In order that the above functional G satisfy assumption (II), it is necessary to choose a suitable function which appears in the functional's definition.

Suppose that the function $r: [0, a] \times [0, \infty) \rightarrow (-\infty, \infty)$ satisfies the following conditions

$$1^{\circ} r(t,0) = 0 \text{ for } t \in [0,a];$$

 2° there exists a continuous function $V: [0, a] \rightarrow [0, \infty)$ such that the total variation of the function r with respect to the second variable verifies the inequality

$$\bigvee_{s=0}^{\infty} r(t,s) \leqslant V(t)$$
 for $t \in [0,a]$;

3° for every $\varepsilon > 0$ there exists a number K > 0 such that

$$\bigvee_{s=K}^{\infty} r(t,s) < \varepsilon \quad \text{for } t \in [0,a];$$

 4° for every k > 0 and $\tau \in [0, a]$

$$\lim_{t\to\tau}\int\limits_0^k|r(t,s)-r(\tau,s)|\,ds=0\,,\quad\text{where }t\in[0,\,a].$$

Under the above assumptions if $x \in C(-\infty, a]$, then the Stieltjes integral has its meaning $\int_{0}^{\infty} x(t-s)d_{s}r(t,s)$ and it is a continuous function of the variable t (cf. [1], [4]). Moreover,

$$\begin{split} |G(t, x_1) - G(t, x_2)| &\leqslant \sup_{s \geqslant 0} |x_1(t-s) - x_2(t-s)| \bigvee_{s=0}^{\infty} r(t, s) \\ &\leqslant V(t) \cdot \sup_{s \geqslant 0} \{ \sup_{u \leqslant t-s} |x_1(u) - x_2(u)| \} \\ &\leqslant V(t) \cdot \sup_{u \leqslant t} |x_1(u) - x_2(u)| \end{split}$$

for $t \in [0, a]$ and $x_1, x_2 \in C(-\infty, a]$. Consequently, the functional G satisfies (II).

III. Let a, b > 0 and $P = [0, a] \times [0, b]$. Consider the following partial differential equation

(3)
$$\frac{\partial^2 z(x,y)}{\partial x \partial y} = f(x,y,z(x,y)),$$

where f is defined and continuous over $P \times (-\infty, \infty)$.

Let that the functions σ and τ be respectively of the class $C^1[0, a]$ and $C^1[0, b]$ satisfying the condition $\sigma(0) = \tau(0)$. Then the Darboux problem for equation (3) is equivalent to solution of the following integral equation

$$z(x, y) = z_0(x, y) + \int_0^x \int_0^y f(u, v, z(u, v)) du dv,$$

where $z_0(x, y) = \sigma(x) + \tau(y) - \sigma(0)$.

Let us denote:

by C(P) — the Banach space of continuous functions on P with the usual norm $\|\cdot\|$;

by \mathscr{F} — the space of bounded continuous functions f on $P \times (-\infty, \infty)$ satisfing the Lipschitz condition: there exists a constant $L_f > 0$ such that $|f(x, y, z_1) - f(x, y, z_2)| \leq L_f |z_1 - z_2|$ for $(x, y) \in P$ and $z_1, z_2 \in (-\infty, \infty)$, with the usual norm $|||\cdot|||$;

by \mathscr{X} — the space of points $(\sigma, \tau) \in C^1[0, a] \times C^1[0, b]$ such that $\sigma(0) = \tau(0)$, with the usual metric.

2.3. For an arbitrary $f \in \mathcal{F}$ and $\sigma \in C^1[0, a]$, $\tau \in C^1[0, b]$ such that $\sigma(0) = \tau(0)$ there exists a unique function $z_{(f,\sigma,\tau)} \in C(P)$ satisfy equation (3) on P and such that $z_{(f,\sigma,\tau)}(x,0) = \sigma(x)$ for $x \in [0,a]$ and $z_{(f,\sigma,\tau)}(0,y) = \tau(y)$ for $y \in [0,b]$.

If $\sup\{L_f: f \in \mathcal{F}\} < \infty$, then the function

$$(f, \sigma, \tau) \mapsto z_{(f,\sigma,\tau)}$$

maps continuously $\mathscr{F} \times \mathscr{X}$ into C(P).

The proof of this result follows exactly the same pattern as that of 2.1 and 2.2. In this case, we define the transformations T and S on

$$C(P) \times \mathscr{F} \times \mathscr{X}$$
 by:

$$T(z, f, (\sigma, \tau))(x, y) = z(x, y) \exp(-p(x+y))$$

and

$$S(z, f, (\sigma, \tau))(x, y)$$

$$= \left[\sigma(x) + \tau(y) - \sigma(0) + \int_{0}^{x} \int_{0}^{y} f(u, v, z(u, v)) du dv\right] \exp(-p(x+y)),$$

where p > 1.

References

- [1] A. Bielecki, Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4 (1956), p. 261-264.
- [2] Differential equations and some of their generalizations (tract) [in Polish], Warsaw 1961.
- [3] K. Goebel, A coincidence theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), p. 733-735.
- [4] A. Mychkis, Linear differential equations with retarded argument [in Russian], Moscow 1972.