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BoepAaN RzZEPECKI (Poznan)

On the Banach principle and its application to the theory
of differential equations

K. Goebel [3] has proved the following theorem:

Let A be an arbitrary set and let M be a metric space with the metric .
Suppose that 8, T are two transformations defined on the set A with the

values in M. If S[A] < T[A] and T[A] is a complete subspace of M and
if for all x,yeA

e(S=z, 8y) < ko(T=, Ty),
where 0 < k <1 holds, then
1° there exists xge A such that

(*) Swo = Two;

2° if ®, satisfies (x) and Tx = Twn,, then Sz = Ta = Sz, = Tuy;

3° if each of elements w,,y, satisfies (x), then Tw, = Ty,.

This theorem generalizes the well-known Banach fixed-point prin-
ciple and is connected with Bielecki’s method [1] of changing the norm
in the theory of differential equations.

In this paper we give a version of the Goebel’s result which enables
us to get the global theorems on continuous dependence of a differential
or differential-like equation solution on initial conditions, its right-hand
side and parameter.

1. TemoREM. Suppose that A is an arbitrary set and let B and M be
metric spaces. Assume, moreover, that S, T are two transformations defined
on the set A X B with the values in M such that for all yeB

1° {S(w,y): weA} < {T(%,y): wed} and {T(®,y): wed} is a com-
plete subspace of M,

2° there ewists a(y)e[0, 1) such that

Q(S(wn Y), 8(z,, ?/)) < a(y) Q.(T(mu ¥), T'(,, y))

for every x,, ®;e A, where o denotes the metric on M,
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3° the equation S(®,y) = T'(x,y) has ot most one solution x<A.

If the functions S(», -) and T (w, +) are continuous on B and if y—a(y)
8 a continuous function on B, then there exists a unique function y: B—~A
such that S(p(y),y) = T (p(y),y) for every yeB and functions 8(y(-), )
and T(y(-), -) are continuous on B.

Proof. Let us fix yeB. In view of Goebel’s theorem, there exists
@oed such that S(®y,y) = T(2y,y) and therefore @, is determined
uniquely. Consequently, there exists a unique function ¢: B—A such

that 8(p(y),9) = T(p(y),y) for yeB.
Let y,,y,¢B. We have

o(T(v(¥2); 91)y T(v(¥a), )
= o(8(v(1), 1)> S(w(¥2), 9s))
< a(y) e(T(¥(2); 94)y T (v(¥a), ¥a)) +
+a(y) e(T(v(¥:), 9), T(v(¥s), 91) +

+ o(8(9(92), 91), S(9(¥2); ¥d))
hence

o(8(v(32), 9}, 8(v(92), :))
= Q(T('P(yl)a 1), T(p(ys), ?/2))

a(y1) .
< Tagyy o@D, vs) Tleva, )+
1
+ Tay 8w, vy S(y(wa), vi)
! 1
< ey e s, vy Tlyiws), )+

+o(S(p(a)s 93), 8(v(y2), 94)))-

Finally, T(y(-), -) and 8(y(-), ‘) are continuous on B.

Remark. Let y,eB and let for ¥ =y, condition 2° be satisfied.
If T is one-to-one, then there exists at most one element we A such that
8z, y,) = T(®, Yo)-

From the corollary we obtain [2]:

Let B be an arbitrary metric space and let M be a complete metric space
with the metric o. Suppose that 8: M X E—M is a tramsformation such
that

(i) for all y<E there ewists a(y)e[0,1) such that ¢(8(@y,y), S(as,y))
< a(y):o(®y, @,) for @y, @ye M5

(ii) for all xe M the function S(x, ) is continuous on E.
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If yr>aly) is a continuous functi.on on K, then there ewists a unique
continuous function w: BE—~>M such that 8 (w(y),y) = p(y) for an arbi-
trary yek.

2, Now, we are going to give some examples of applications of
Theorem 1.

I. Consider the differential equation

1) @' = f(t,x)
(cf. [1], [3]). We introduce

AssumpTiON (I). Suppose that

1° the funmction f: [0, o) X (— o0, 00)—>(—o00, o) satisfies the Cara-
théodory’s conditions and Lipschitz conditions: there exists a locally inte-
grable function L: [0, co)—[0, oo} such that

Lf(, @1) —f (2, ®2)| < L(F) Joy — 55
for every t =0 and — oo < &,, By < 0}
t ]
2° [f(s,0)ds = O(exp f L(s)ds) for t>0.
[ 0

Denote by C[0, co) the Banach space of bounded continuous functions
on [0, co) with the usual norm |[@| = sup{[#(?)|: £>0}. In [3] it has
been proved that assuming (I) equation (1) has for every 7 exactly one
solution #eC[0, o) with the initial condition #(0) = ». Let us prove:

2.1. Let assumption (I) be satisfied. Then
1° equation (1) has for every P = ne(— o0, o) exactly one solution xpe
¢
C[0, oo) with the initial condition #p(0) = nand @p(t) = O(exp (o f L(s)ds)),
0

where p > 1;
2° if (P,)—>P,, where P,,Poe(— o0, ), then limap (1) = zp (%)
700

unsformly in every finite subinterval from [0, oo).
Proof. Let p>1,

A= {weC’[O, 00): @(l) = o(exp(p-fL(s)ds)) for t> 0}
0

and let B = (— o0, o) with the Euclidean metric. The transforma-
tions 7' and 8 are defined by

¢
T(a, P)(t) = @(t)exp (—p- [ L(s)ds),

¢ ¢
8(a, P)(t) = {1+ [f(s, w(s))ds)-exp(—p- [ L(s)ds)
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for weA and P = neB. Then 8,7: A X B—»>C[0, o) and {T(«, P): weA}
= (0[0, o) for every PeB.
Fix P, = noeB. Then S(wx, P,) = T(Z, P,) for weA and Z(f)= n,+

H
+ [ f(s, @(s))ds for t> 0. Since
0

¢ [
B ol + | [ £(3, 0)ds| + [ L(s) lo(s)1ds
and ' '

¢ : 8
fL(s)exp (p- fL(u)du)ds = p"l(exp(p-fl}(u)du)—l),

we obtain Ze¢A and therefore {S(#, P,): e A} < {T (%, P,): wcA}. It can
be easily seen (cf. [4]), that
I8 (@1, Po) — 8(@sy Po)ll < p~' 1T (@1, Po) — T'(&2, Po)l

for @;, ®#,¢A. Now, we shall prove that the equation S(x, P,) = T (&, P,)
has at most one solution in A.
Let ;A and let S(x;, Po) = T(w;, Py) for ¢ = 1,2. Then

¢
o (1) — 2,(8)] < [ L(8) |y () —@s(s) ] ds
0

<p" los—ayl, (exp (p- oft I(s)ds) 1),
where t
llwy — @sll, = sup{[ml(t)—wz(t)lexp(—p-fL(s)ds): t> 0}.
Hence ’

1
P+l — gl <l —aylpsup {1 —exp (—p- [ L(s)ds): ¢ 0]

and therefore (@, —a,ll, = 0.

By Theorem 1 there exists a unique function k: B->A such that
T(h(P),P) = S(h(P),P) for PeB and if P, =,, Py = noeB, (9,)—=%0»
then

IB(P,) — (P, = sup|(nn+ f fls, h(P,)(s))ds) —

t
~{no+ ff(s,h(Po)(s))ds)!-exp(—pr(s)ds)—>0 a5 o0,

II. Let a > 0. Let us denote by C; (te[0, a]) the set of all bounded
continuous functions on ( — oo, t]. We introduce
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Assumprion (II). Let G(t, ) be a functional defined for te[0, a], and
weCy. Suppose that

1° there ewists a continuous function ¢: [0, a]—>[0, oo) such that
G (t, v1) — G (8, v)| < q(t)-sup{[vy(s) —v,(8)]: se(— o0, 1]}
for every (t, vy), (¢, 95)e[0, a]l X C,,
2° for fiwed heC, the function G(-,h) is continuous on [0, 1].
Consider the differential-functional equation

z(l) = @(1) for te(— o0, 0],
@' (t) = f(¢,G(t,w) for i[O, al,

where ¢: (—o0, 0]—>(— o0, o) and f: [0, a] X (— o0, 00)—(— 00, o0).

Let us denote:

by C(--o00, a] — the Banach space of bounded continuous functions
on (—oo,a] w1th the usual norm {|-|i;

by & — the space of bounded continuous funections f on [0, a] ><
x(—éo oo) satisfing the Lipschitz condition: there exists a constant
L, > 0 such that [f(¢, @) —f(t, @,)| < Lg|w, — @, for [0, a] and —oo <
< @y, By < oo, with the norm

AN = sup{If (%, #)|: (¢, 2)[0, a] X (— o0, oo)}.

) 2.2, Let assumption (II) be satisfied and let ¢ be a defined and con-
“tinuous bounded function on (— oo, 0].

Then, for an arbitrary feF there ewists a unique function xpeC(— oo, al,
equal identically to the function ¢ on the set (— o, 0] and. such that

@i (t) = f(t, G(F, @)} for te[0, a].
Assume, moreover, that sup{L;: feF} < co. Then the function frsu,
maps continuously F into C{ — oo, al.
Proof. Let p > 1 and let A denote the set of continuous functions

@: (— o0, a]->(— o0, 00), which are equal identically to the function ¢
on the set (—oo, 0] and such that

(2)

sup {|a(¢)[-exp( —pi): te(—o0, al} < oo.
For each (@,f)ed xX&F, define

T, f)(t) = @(t)-exp(—pi)
and

w(t)'éxp(—Pt) for te(— o0, 0],

S(z, ) () = :
(<p(0)+ff(s,G(s,m))ds)-exp(—pt) for t<[0, a].
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HEvidently, S and 7 map the set 4 X% into the space C(— oo, a] and
{S(@, f): e d} < {T(®,f): wed} for feF.
Let x,eA and let |T(x,,f)—4oll~0 as n—oco. Put
@ (t) for te(— o0, 0],
®o(t) =
Po(t)-exp(pt) for te[0, a].
Since
Yolt) = (t)-exp(—pt) for te(—oo, 0],
we have T(zy, f) = vy, and x,eA. Consequently, {T'(z, f): we A} is a com-
plete subspace of C(— oo, a].
Let the function fe % satisfy the Lipschitz condition with a constant
L;. For te[0,a] and @,,w;¢4, we have

I8 (@015 f) (1) — 8 (@2, f) (1)]

t
< exp(—pi)- [|f(s, Gls, m)) —F(s, G(s, @v))|ds

t
< Lyexp(—ph)- [ (s) sup |y (u) —ay(u)|ds

0 0<Sus

t
< Ly sup q(t)-exp(—pt) [ exp(ps)-sup {exp(—ps) s (s) —

o<i<<a
—@,(8)]: se[0, al}ds
< p7 Ly sup q() I (@, £) ~T(@s, £

<i<a

and it follows

I8 (@1, £)— 8 (2o, HI < p™' Ly sup q(8)- 1T (@, ) — T (w3, f)Il.

<i<a

Fix wed. Let f,eF and |||f, —folll~0. We have
IS (@, f,) (1) — 8 (@, fo)(8)]

1
< exp(—pt)'f|fn(8, G(Syw))"'fo(sy G (s, (l’))lds < alllfn —folll

for te[0, ] and it follows
I8 (2, fa) —8(z, f)l>0 as n—oo.

The function

fep~' sup q(t)-sup L,

o<i<a feF

is constant on %. The application of Theorem 1 completes the proof.
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Remark 1. Let h: [0, a]—>(— o0, a] be a continuous function such
that h(f) <t for {¢[0, a]. Then the functional

!
G(t, o) ‘= a(h(t))

L -
satisfies assumption (II) and equation (2) ftakes the form

z(t) = @) for te(— o0, 0],
Coa(t) = f(t,w(h(t))) for te[0, a].
Remark 2. If

G(t,w) = fw(t—s)dsr(t, s),

0
we geb
z(t) = (1) for te(—oo0, 0],

@' () = (t, }ow t—s)d,r(t, s)) for te[0, al,
0

where the integral is in the sense of Stieltjes. In order that the above
functional G satisfy assumption (II), it is necessary to choose a suitable
function which appears in the functional’s definition.

Suppose that the function r: [0, a] X [0, co)—>( — oo, oo) satisfies the
following conditions

® r(t, 0) = 0 for ¢¢[0, al;

2° there exists a continuous function V: [0, a]—>[0, o) such that
the total variation of the function » with respect to the second wvariable
verifies the inequality

Vrt,s)< V() for t<[0,al;
§=0
3° for every &> 0 there exists a number K > 0 such that
V r(t,8) <e for te[0, a];
s=K

4° for every k> 0 and z¢[0, a]
& ,
lim [ |r(s,8)—7(z, s)|ds =0, where te[0, al.
t-—>7 0
Under the above a.ssumptlons if #eC(—o0,a], then the Stieltjes
integral has its meaning f z(t—s)d,r(t, s) and it is a continuous function

of the variable ? (cf. [1], [4]). Moreover,
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61,0~ 61, 0] < sup oy —s) —as(1—s)| V 7(t, )

$=0
< V(t)-sup { sup |, (w) — s, (u)}
820 u<i-g
< V(t)-sup o, (u) — 25 (u)]
usct
for 1[0, a] and #,, #,¢C(—oc, a]. Consequently, the functional G satis-
fies (II).
III. Let a,b> 0 and P = [0, a] x [0, b]. Consider the following par-
tial differential equation

*z(@, y)

(3) O0w oy

=f(a’7 Y, 2(w, ?/))7
where f is defined and continuous over P X (— 0, o).

Let that the functions ¢ and z be respectively of the class C'[0, a]
and C'[0, b] satisfying the condition. 6(0) = v(0). Then the Darboux
problem for equation (3) is equivalent to solution of the following inte-
gral equation

z Y
2@, y) =2(@,y)+ [ [ f(u, v, 2(u, v))dudo,
o 0

where z,(®, ¥) = o(2)+7(y)—0o(0).

Let us denote:

by C(P) — the Banach space of continuous funetions on P with
the usual norm {-i;

by & — the space of bounded continuous funetions f on P X (— o0, o)
satisfing the Lipschitz condition: there exists a constant L,> 0 such
that |f(®, ¥, 21) —f(@, ¥, 22)| < Lyley —2o| for (2, y) e P and 2,, 23¢( — 00, o0),
with the usual norm |}{-}|];

by & — the space of points (o, 7)eC'[0, a] XC[0,d] such that
o(0) = 7(0), with the usual metric.

2.3. For an arbitrary feF and oceCl[0,a], 7¢C'[0,b] such that
0(0) = 7(0) there exists a unique function 2y , ,eC(P) satisfy equation (3) on
P and such that 2y, ,(®,0) = o(w) for ®#e[0,a] and 24,,(0,y) = =(y)
Jor ye[0, ]

If sup{Ls: feF} < oo, then the function

(f, o, T)"')z(f,a,z)

maps continuously F X & into C(P).

The proof of this result follows exactly the same pattern as that
of 2.1 and 2.2. In this case, we define the transformations 7 and 8§ on
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O(P)XF XX by:

T(z f, (o, D))(®, y) = 2(w, y)exp(—p(z+y))
and

8(z,fy (o, D) (®, )

= [o(@)+7(4) —0(0)+ [ [ (4,2, 2(u, v) dudv]exp(—p(@+9)),

where p > 1.
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