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A note on galbed spaces

We shall say that an F-space (complete metric topological vector space)
is strictly galbed if there is a sequence (C,) of positive real numbers such
that whenever x,eX and (C,x,) is bounded, then Xx, converges. Such
spaces have been studied by Turpin ([7]) who calls them “spaces galbed
by I?”. Turpin does consider other galb (or generalized convexity) conditions,
but strictly galbed spaces seem to be the most useful. Particularly important
are exponentially galbed spaces (C, = 2", see [6], p. 91. See [7], p. 141,
for examples of strictly galbed spaces.

A locally pseudo-convex F-space is strictly galbed by making C, = 2"
The purpose of this note is to show that if X is not locally bounded
(and hence also locally pseudo-convex by [6], p. 61), then X contains an
infinite-dimensional locally convex subspace; in fact this subspace can be
chosen to be nuclear. We remark that if X is locally convex already, this
result reduces to one of Bessaga, Pelczyniski and Rolewicz [1], that a locally
convex F-space which is not a Banach space contains an infinite-dimensional
nuclear subspace.

If X is a strictly galbed F-space, then we may assume that the
corresponding sequence C, satisfies C;, = C, =1 and C,,,, > C,,C,. Then
we may also select a sequence of symmetric closed neighbourhoods of 0,
V. say, satisfying C;7'V,, 1+ ...+Cp'V,y,,cV, 1 <m< 0,1 <n< o).

If we define |x||, = inf {1: xeV,}, then

Xy 4+ .. +xll, < max Cillxllae: (1 <k<oo,1<n< ),

and [ Ax|l, = [4] l|x],.

If X does not contain arbitrarily short lines we may suppose ¥, does
not contain any lines and hence for 1 < n < oo, |x|, = 0<x = 0.

If X is not locally bounded, we may also suppose V,,, does not
absorb V, for any n, ie.

X
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A sequence (e,) in an F-space X is called M-basic if there are continuous
linear functionals (e}) defined on the closed span E of (e,) such that
e(e) = d;; and if xeE with ¢)(x) = 0 (1 < n < o), then x = 0. We shall
say that (e,) is equicontinuous if ¢*(x)e, > 0 for xe E. Our first result is
that an M-basic sequence always contains a subsequence which is equi-
continuous.

THEOREM 1. Let (e,) be an M-basic sequence in an F-space X. Then
(e,) has a subsequence (f,) which is an equicontinuous M-basic sequence.

Proof. We can suppose that (e,) is fundamental in X and hence that X
is separable. Let us denote by 0 the F-space topology of X. We construct,
similar to Section 6 of [4], a transfinite sequence of topologies 7, (1 < a < Q),
where € is the first uncountable ordinal. Let 7, be the topology induced
by the linear functionals x — ¢} (x) (neN). Then for a« = +1, let 7, be the
topology whose base consists of all 7,-closed @-neighbourhoods of 0; for «
a limit ordinal, 1, = sup(r,: < «). Then as in Lemma 6.3 of [4], there
exists a countable ordinal n such that 7, = 6.

Consider the following property:

(P,) There exists a subsequence ( f,) of (e,) such that whenever a, f, —» O(z,)
then q,f, = 0(#).

If P, holds, then a,f, — O(f) for any sequence (a,). Thus (f,) has
a subsequence equivalent to the usual basis of w and the theorem
follows easily. Otherwise let B be the first ordinal such that P, holds;
clearly f < n is countable. If § is not a limit ordinal f = a+1, and there
exists g, such g, f, - O(t,) but a,f,+ O(tz). By [3], Proposition 3.2, (f,)
has a subsequence (g,) which is tj-basic. If xeF, the closed linear span
of {g), then

I8

X =

n

g (x) g, (tp)

I

1

and hence g;(x)g, — O(t) and so by (P;) gx(x)g, — 0(6).
Now suppose f is a limit ordinal, say f = sup o,. Then there exist d,

such that a, f, > O(t, ) but a, f, +> O(ty). Hence there exists y;, 4y < yy < B,
such that a,f, —» O(y,) but a,f,+ O(z, ,,). Now again by [3], Proposition
3.2, there is a subsequence (g,) of (f,) which is t, ,,-basic. Now replace
(f,) by (g,) and a; by «, and repeat the process to obtain a subsequence
(h,) of (g,) which is 7, ,,-basic where a, <y, < f. Repeating inductively
and using a diagonal argument, we obtain a subsequence (u,) of (f,) which
is 7, . -basic for all n, where «, <y, < B. Clearly, (u,) is also 7;-basic since
B = supy,. The remainder of the argument is as for the case where f is
a non-limit ordinal.

THEOREM 2. Let X be a strictly galbed F-space; then either X is locally
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bounded or X has an infinite-dimensional closed subspace which is locally
convex and nuclear.

Proof. If X contains arbitrarily short lines, then X contains a subspace
isomorphic to w, which is nuclear and locally convex ([6], p. 114). Hence,
we suppose X non-locally bounded and without arbitrarily short lines. We
then choose a base of neighbourhoods (V,) of 0 as described in the intro-
duction with ¥} linearly bounded.

Let m be fixed, where 1 < m < ov. By induction we may pick u,
(1 € n < m) so that

lupllsner < C.+11’ ltnllzne2 = Collltg+ o Fty_ g ll30+ 3+ D).

Then let e, = uy+...+u,. f 1l <n<m
lenllsn < max (Cy flu; + ...
ooty l3ns1> Colltinllzn, Calltnsilzne1s -+ Comnt2 1thmll 304 1)-
However, for k > n
Crniz2lllzner < Cronsz lillziss < Cronsa Ck_+11 < L

Hence

“em”:&n < max(l, “u1+ +un—1“3n+1)'

On the other hand,

[l 3042 < max (Cy flug + ...
+un—l”3n+39 CZ ”em”3n+3’ C3 ”un+1“3n+1’ seey Cm—n+2 ”um”3n+3)
and
Croniz lullznss < Crpia lthllagsy <1 (k= n+1).
Hence
|lem“3n+3 = C,,.(Hu1+...+u,,_1||3,,+3+1) = Cm ”emHiSn (1 <n< m)
Now let by, = llellm; then
=] bm,n m—1 bm,n

< Y — +) CGl<ow

n=1 bm+6,n n=1 m+6,n n=m

so that the Kothe sequence space [, (b, of all sequences (£,) such that

Z bm.nlén' < 00, m = 1,2,...,
n=1

is nuclear in its natural topology (the Grothendieck—Pietsch criterion, cf.
2], p. 59).
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Suppose &,€l; (by.,). Then

sup bm,nlénl < o, 1<m< 0,
n

and hence

Sup I&,| leallsmes < 0, 1< m < oo,

Thus

Sup Cnlénl “en“3m < 0, 1 S m< wa
n

ie. (C,¢,e,) is bounded. Hence Y &, e, converges, and we may define

T: 11 (bm, n) b d X
by

T() = ; Cnens

and T is continuous by the Banach—Steinhaus Theorem.

We shall show that the range of T includes an infinite-dimensional
closed subspace E; then since E is isomorphic to a quotient of T~ !(E),
E is also a nuclear locally convex F-space.

Let y be the vector topology on X with a base of neighbourhoods

W(a) = U Y a Vs, where (a,) ranges over all sequence a; > 0. It is easy
n=1 k=1

to see that y is indeed a vector topology. Also W(Cy!) = V, and is thus
linearly bounded; hence y is Hausdorff. Also |e,ll¢ ‘e, — O(y) since
lemlle X lenlls < Cnt. However, |eqlle 'e,+ 0 in X and hence (e,) has a
subsequence which is M-basic ([3], [5]) and by Theorem 1 a further
subsequence (e, ) which is equicontinuous and M-basic; let E be the closed
linear span of this sequence.

If xeE, then ey, (x)e,, — 0, where ey, are the dual functionals on E.
Define ¢,,, = ey, (x) and &, = 0 (n¢my). Then sup by, »|¢,| < 0, 1 < m < o,

and hence ¢ely(b,,). Clearly, T¢ = x, and so E < T(l;(bn,); thus we
are home.

Remark. Suppose ¢(0) = 0 and

1 -1
q)(x)=<1+log;> , O0<x<1,
ox)=1, 1 £ x < o0.

Then the Orlicz sequence space [, has no infinite-dimensional locally pseudo-
convex subspace. Indeed, any infinite-dimensional closed subspace contains
a basic sequence equivalent to a block basis (u,) of the standard unit
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vector basis. Now pick a, so that

o 1
UK = —————, 1< n< oo,
L k) = 300
so that a,u, —» 0. Then
- - ple™
" k)2 ———, 1<n< o,
¥ ol au k) > 1ot n
since ¢ is supermultiplicative. As
QO oo} 1

th(e)_z ’

S logn+ ) & m+logn+l)

Z e "a,u, does not converge, and hence the closed linear span of (a,u,) is
not locally pseudo-convex. Of course, I, is not strictly galbed (cf. [7]); indeed
it has no strictly galbed subspace by the above result.
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