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On some properties of the superposition operator
in generalized Orlicz spaces of vector-valued functions

Abstract. In this paper we consider a superposition operator F defined by the formula
Fx(t) =f(t, x(1)),

where the function f: Tx X — X satisfies the Carathéodory condition, T'is a measurable space, X
is a separable, reflexive Banach space and x is a vector-valued function defined on T. Conditions
are found under which the operator F, acting from some region of the generalized Orlicz space
Ly, into the space Ly, is continuous. Moreover, the autor formulates several propositions on

the properties of the operator F.

1. Introduction to the theory of Orlicz spaces.

1.1. DeriNiTION. Let 2 be a linear real space. A function I: Z — [0, o]
is called a modular on %, if for any x, ye & we have

1°I(x)=0iff x=0,

2 I(—x)=1(x),

3° I(ax+By) <od(x)+pI(v) for a, 20 and a+p = 1.
1.2. ProperTIES (see [17]). (a) I(ox) < I(x) for |af < 1,

n n

®) I(Y ax)< Y oI(x;) for o; >0 such that ) o; =1.

i=1 i=1 i=1

1.3. DeriniTiON. The set

Z; = {xeZ: lim I(ix) = 0}
A-0
is called a modular space.

1.4. TueoreM. The functional ||-||, defined by the formula
lIxll = inf {n > 0: I(x/n) < 1}
is a norm in &;. This norm has the following properties:
@ Ixl<1iff Ix)<1,
(b) if I(x) < 1, then I(x) < |Ixl,
(c) if I(x) > 1, then I(x) > ||x|.
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1.5. TueorReM. Let xe Xy and x,e X for k =1, 2, ... Then the condition
1xi—x|| >0 as k— oo, |
is equivalent to the condition |
I{(A(x,—x)) >0 as k— oo for every A>0.

The above theorem formulates convergence of the sequence {x,} to the
element x with respect to the norm by means of modular. Apart from
convergence in norm there is considered also a modular convergence on the
space &;.

1.6. DerINITION. A sequence {x,} of elements of the modular space % is
said to be convergent to x with respect to the modular I (I-<convergent) if
there exists a constant 4 > 0 such that

I{A(x,—x))—>0 as k- co.-

It follows from Theorem 1.5 that every sequence {x,} which converges in
the norm of &, to some element x is also I-convergent to x.

1.7. DeFmviTION. A sequence {x,} of elements of the modular space 27 is
said to satisfy the Cauchy condition if for every ¢ >0 and 4 > 0 one can find
an N > 0 such that

I(A(x,—x)) <e,
provided k, I > N.

1.8. DeriNiTiON. The space &, is called complete if each sequence {x,}
satisfying the Cauchy condition is I-convergent to an element xe 4.

More about modular spaces can be found in [15], [17], and [18].

Hereunder we shall consider generalized Orlicz space as a particular
- case of a modular space. We assume henceforth that Tis a non-empty set, X
is a o-algebra of subsets of 7, u is a positive o-finite complete measure on %
and X is a separable Banach space with norm ||-||x.

1.9. DeriniTioN. A function M: X xT— [0, 0] is said to be an
N-function if )

(a) M is % x XZ-measurable, where # denotes the c-algebra of Borel
subsets of X,

(b) M(-, t) is even, convex and lower semicontinuous on X for almost
every te T,

(c) M(0,1)=0 ae. in T,
(d) there exist two measurable functions a(-), f(-): T— (0, o) such that
implication
llullx > B(t) = M (u, 1) > a(t)
holds ae. in T.
(e) M(-, t) is continuous at zero.
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In the following we assume that measurable functions taking their values
in a Banach space X are strongly measurable. By a Pettis theorem, if X is
separable, then the strong measurability is equivalent to the weak one.

Let us denote the set of X-measurable functions from Tinto X by Z'x.
At the same time two functions which differ only on a set of measure zero
will be considered as equal. A composition M(x(-), ) for xeZx is a
measurable function (see [7]).

1.10. Remark. Elements of the set 2y will be denoted by x(-), y (), z(*)
or, in order to simplify the notation we will omit sometimes the brackets
when it does not lead to a misunderstanding. Symbols u, v will be used for
vectors from Banach space X.

We introduce the following functional I, by formula

In(x) = | M(x(t), t)dpu(2).

Let
domly = {xe Iy: Iy(x) < 0}
and let lindom I, be the smallest linear space spanned on doml,,. From
convexity of I,, we have that domI,, is a convex set.

1.11. TueoreM. The functional I, is a modular on &y. =

1.12. DeFinitioN. A modular space defined by modular 1,, is called
generalized Orlicz space and is denoted by L,,. The norm defined as in
Theorem 1.4, is called the Luxemburg norm and is denoted by ||-|/y-.

1.13. TueoreM. The following conditions are equivalent:

(a) xe Ly,

(b) there exists a sequence {x,} of elements of lindomI, such that

lim I, (&(x,—x)) =0

n—-wo

for every & >0,
(c) there exists a £3 >0 such that I, (Egx) < 00. m

" Hereunder, let the following condition for N-function M be satisfied:
B: there exist an increasing sequence of measurable sets T,, n=

1,2,...,with u(T,) <o, U T,=T and a sequence of u-measurable,
n=1

non-negative functions f,, n=1, 2, ..., such that M(u, t) <f,(t) for p-ae.
te T and ||u|lx < n, where

[ fa(®dp() < o0

for i, n=1,2,... (see [11]).
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We shall denote by E, the closure in L, of the set of all simple
functions from T into X vanishing outside a subset, which is included in T;
for some natural number i.

1.15. Tueorem. If the condition B is satisfied, then E,; has the following
properties:

(a) E, is the largest linear subspace of dom Iy,

(b) every measurable bounded function vanishing outside a finite number of
T, is an element of E,,

(¢) xeE,y if and only if I ,(Ex) < oo for every & >0,
(d) if xe Ey, then for every ¢ >0 a 6 >0 can be found such that
lIxxallm <e,

provided AeX and p(A) <9,
(e) if the measure u is separable, then the space E,; is separable,
() for every xe Ey and for every ¢ > 0 there exists a set V < T such that

WT\V) <o and  Ixgyllu <e.

For the proofs of (a), (b), (c) and (d) we refer to [11]. Property (e) is
a consequence of Theorem 3.2 in [2]. We will prove Property (f).

Proof. Let xe E;,. Then, in virtue of Theorem 1.15 (c), Iy(e” ! x) < o©
for every ¢ > 0. Denoting V; = T\T; (i=1, 2,...), we have

W(T\W) = u[T\(T\T)] = p(T) < oo.
Moreover,
M= x(t) g, (1), ) S M (™! x(2), 1)

ae. in T Since Iy (e~ 'x) < o0, so from the Lebesgue theorem we obtain

im Iy (e  xppy) = lim | M(e™" x(t), t)dp(t) = 0.

i—w i—>o Vi
Hence, there exists i, such that
I(e™ 3y, ) < 1.

Therefore, putting V= Vig» We have

Ixxvlly <& and  p(T\V) < 0.

1.16. DeriniTION. As the distance between xe Ly, and the space E, we
shall regard the number

d(x, Ep) = inf {IX—ylly: y€Ep}.
We shall denote by IT(E,, r) the totality of functions xeL,, for which
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d(x, Ep) <r. The closure of II(E,, r) with respect to the modular conver-
gence will be denoted by IT(E,, r).

The connections between the set dom I, and the space E, are
described well enough by the following theorem

1.17. TueoreM. We have
H(EM, 1) < dOmIM e ﬁ(EM, .I.). ]

This result for the Orlicz norm goes back to Kozek {11]. The proof for
the Luxemburg norm is similar. Moreover, for the Luxemburg norm the
following theorem is true

1.18. Tueorem. For every xe L,,, we have

d(x’ EM) = lim ”x_xn”M,

n—ao
where

(t)_%x(t) if Ix(t)llx <n and te T,
Xl = 0 otherwise. m

The proof of this theorem is similar to that of the same theorem for
the Orlicz norm (see [11]).

The A4,-condition which plays an important role in the theory of Orlicz
spaces is here of the following form:

1.19. DrriniTioN. We say that the N-function M satisfies the A,-condi-
tion if there exist a constant K > 1 and a non-negative summable function h
such that

MQu,t) < KM(u, t)+h(t) ae. in T.
1.20. TueoreM. The N-function M satisfies the A,-condition if and only if
Ey =domly = Ly,.
This theorem follows from Corollary 1.7.4 in [10], immediately.

1.21. TueoreM. If the N-function M satisfies the A,-condition, then the
modular convergence and the norm convergence are equivalent (see [9]).

2. A superposition operator and its fundamental properties. Let M be an
N-function satisfying condition B.

2.1. DeriniTION. Suppose the function f: Tx X — X satisfies the Cara-
théodory conditions, i.e., it is continuous in ue X for almost all te T and
measurable for every ue X. The operator F, defined by the formula

CFx](0) = £ (¢, x (1)),

where xe 'y, is called a superposition operator.
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2.2. CoroLLARY. The operator F transforms measurable functions into
measurable functions.

Proof. Let x be a measurable function. In virtue of definition of
measurability of vector functions (see [1]) a sequence of measurable simple
functions {x,} converging to x in the norm || -||x can be found. By continuity,
for almost all te T, we have

f(t, x(1)) = lim f(t, x,(1)).

n— ao

Moreover, let x, be given by
k
xn(t) = Z ai,nXAi,"(t)’
i=1

where, for every i, A;, are pairwise disjoint measurable sets and g; ,€ X.
Since for n=1, 2, ... we obtain

f(t, ay,) forted,,,
f(t’ aZ,n) for teAZ,m

f(t5 xn(t)) =

...............

fit, ak,n) for te Ay,

so f(*, x,()) are measurable, by measurability of each f(¢, a;,) for 1 <i<k
and n=1,2, ... Thus f(-, x(-)) is measurable as a limit of a sequence of
measurable functions.

2.3. CoroLLARY. The superposition operator has a partial additivity prop-
erty, ie., for functions x,, X,, ..., X, such that for i # j

x(t)x;t)=0 (teT)
there holds the equality
Fxy+x3+ ... +x)=Fx; +Fx,+ ... +Fx,—(n—1)F(0),

where O denotes a function equal to zero.

Proof of this theorem is obvious. m

2.4. THEOREM. Let M, and M, be N-functions satisfying condition B.

(a) If the operator F acts from a ball

Su, (r) = {xe Ly : |Ixllpg, <7}

into the space Ly, or Ey,, then the operator F acts from II(Ey,, 1) into the

space Ly, or Ey,, respectively.

If we suppose additionally FO = 0 and if F[Sy, (] < domIM , then F
acts from II(Ey , 1) into domly,.
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(b) If the operator F acts from a ball
S‘ﬁ;ll (r) = {XEEMl: ”x“Ml < r}
into Ly, or Ey,, then it acts from all of Ey, into Ly, or Ey,, respectively.
If FO =0 and F[Sy, ()] = domly,, then F acts from all of Ey, into
dom Iyy,.

Proof. First we shall prove both parts (a) and (b) of theorem in the case
of [FO] (t) =f(t, 0) = O for every te T. Let xe I1(Ey,, r). Then, in virtue of
Theorem 1.18, we have

r>d(x, Ey,) = lim [[x—x,/lp,
where
5 — x(t) if [[x(@)lx <n and teT,
() = 0 otherwise.

Hence there exists a natural number n, such that

”x—xnollMl <r.

Obviously,
(0 for te T, and {|x(t)lx < no,
- - 0
(= Xa0) (1) {x(t) otherwise.
Denoting
Vo = {te Tyt Ix(0)llx < no},
we obtain

(x = Xpno) (1) = X (1) X\ (1) = Yo ().

Therefore [|yolly, <r. Moreover, from inclusion V, = T, there follows the
inequality

#(Vo) < 1(Ty) < 00.

Thus xyy € Ey, as a measurable bounded function which vanishes outside
a finite number of T; (Theorem 1.15 (b)). Moreover, by Theorem 1.15(d) for
r>0a d>0 can be found such that for all V< T we have

IXxvllae, <7
provided u(V) <. Let us suppose that V;, V,, ..., V, are pairwise disjoint
measurable subsets of the set V, with u(V)<d (i=1, 2, ..., k) and C} Vi
= V,. We put y; = xyy,. Then the function x can be written in the 'fj)lrm

(21) X =y0+y1+ +yk,
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where y,eSy (r) (i=1,2,..., k) are pairwise disjoint. Applying Corollary
2.3 in case FO =0 we obtain

(22) Fx=Fy0+Fy1+ "'+Fyk‘

If F[Sm, (r)] = Ly, then each of the terms at the right-hand side of formula
(2.2) is a function in Ly,. Therefore, Fx also belongs to Ly, .
If F[Sy, ()] =domly,, then, in virtue of (2.2), we have

k
Ly (9 = [ Ma(Fx(0, @) = 3 [ Ma(Fy,(0), 6)dua() < o,

i=0V;

ie, Fx also belongs to domI,,.

If F[Sy, (r)] < Ep,, then all the terms at the right-hand side of (2.2) are
functions in E,,. Therefore, Fx is also an element of E,,.

Now, we shall prove part(b) of this theorem. To this end, we suppose
that xe Ey, . Then r“erMl, so, by Theorem 1.15(c) and (a), it follows

Iy, (r" ' x) = ! M (r~ ' x(2), t)du(ty < .

Let, as above,

= [FO T IxOlx <n and teT,,
70 otherwise.

Obviously, x, are measurable, bounded and x,(t) is convergent to x(z) almost
everywhere in 7. Moreover,

M [r i (x(O)—x, 1), ] <M, (r"*x(r),t) ae in T
and if
A, = {te T: x,(t) = x(1)},
then

[+ o}
Wm0 4)=o.
Hence and from the dominated convergence theorem we have

im Iy, [r~'(x—x,)]=Lm | M, (r~'x(t), t)du(r) = 0.

n—o n—=o T\A4,
Therefore a natural number n, can be found such that
Iy, [r‘l(x—xno)] = Iy, [r1 xXT\AnOJ <1,
ie.,

”x)CT\A,,O”Ml <r.
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We put Vo = T\A,, and yo, = xyy,. Then T\V = T, , so

w(T\Vo) < (T, ) < 0.
From here, by Theorem 1.15(d) with ¢ =1 we find a 6 >0 and pairwise
disjoint sets Vi, V,,..., Vi such that Lk) Vi=T\V,, u()<d for
iell, 2, ..., k) and o

”r‘l xXVl”Ml < 1'

Denoting y; = xxy,, we obtain

“yl”Ml <r (i=11 2:"-9 k)~

Next, we describe x in the form (2.1) and analogously as in part (a) of the
theorem we obtain the assertion of part (b) for f(t, 0) = 0.
We now proceed to the consideration of the general case. We define

Fix=f(,x()=f(,0=£("x(")

for every xe X a.e. in T. Since F, O = 0, we have, by what has already been
proved, that the operator F, acts from IT(Ey, r) into the space Ly, or Ey,
with assumptions of part (a) and F, acts from Ey, into space Ly, or Ey,
with assumptions of part (b). Since f(-, 0) is an element of Ly, (Ep,)
therefore, by linearity of Ly, (Ep,),

Fx=f(,x("))=F;x+f(:,0)

is an element of Ly, (Ep,) for every xeII(Ey,, r) [in part(a)] or for every
xe Ey, [in part(b)]. This implies the assertion of the theorem. m

The next property of the operator F will be concerned with preservation
by this operator of the following condition of the family R of functions,

(2.3) for every ¢ >0 a 0 > 0 can be found such that

[xxallm <eé,

for all functions of the family WM, provided u(A4) <4.

If u(T) < oo, then condition (2.3) for the family 9N is equivalent to the
fact, that the family 9 has equi-absolutely continuous norms. In general,
condition (2.3) is a little weaker than condition of possession by the family N
equi-absolutely continuous norms. Therefore, it will be said that the family 9t
has almost equi-absolutely continuous norms.

2.5. THeoReM. If the superposition operator F acts from Il (Ey , 1) into
Ey,, then the operator F transforms a family of functions with almost equi-
absolutely continuous norms into family of functions with almost equi-absolutely
continuous norms.
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Proof. We shall assume that a family 9t has almost equi-absolutely
continuous norms and show that the image F(9%) has the same property. If
we assume the contrary, there exist a sequence of functions y,e 9t and a
sequence of sets 4, = T (k =1, 2,...) such that

Iim p(4;) =0

k ~ o
whereas
”FkaAk”M2>a (k=1, 23 -"),

where a is some positive number. Without loss of generality it can be
assumed that

Y (A < .
k=1

We put

By monotonicity of the norm, we have

WFyexpllm, >a (k=1,2,..),

from which

[ My(a'f(t, m@), )du@® >1  (k=1,2,..).
By

Since u(B,) — 0 as k— oo, then for y,, by absolute continuity of integral,
there exists a number k, > 1 =k, such that

[ My (a1 (6 1 ), )dp(t) < [ May(a £t yi, ), O)du()—1.

By, By

It follows from inclusion B, < B,, that

) My(a='f (e, Yiy (1), t)du() > 1,

Byey\Bky

in other words
IIEyy XBkl\BkZHMZ > a.
Suppose, we have defined the number k, in such a manner that
WFy,_, X8y, _ 1\Bk”“Mz >a.

From inclusion 4, < B, it follows that

Fyy, XB,‘"”MZ = IIFYanAk"||M2 > a.
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Then, repeating the argument as for k, and choosing k,, a k,,; can be found
such that
||F.Vk,, XBkn\Bkn+1”M2 >a.
Now, let us denote
Co=B,)B,,, (m=12..)

and

x,(t) = ykn(t) n=1,2,..).
Obviously, C, are pairwise disjoint sets, u(C,)— 0 as n— oo and
24 IFxaxc I, >a (n=1,2,..).

Since the functions x, for n=1,2,... have  almost equi-absolutely
continuous norms, then without loss of generality one can assume that

(2.5) 2 xaxe I, < 0.
n=1

Let us define
x,(t) for teC,,
z(t) = {

0 for teT\ Y C,.
n=1

We shall show that ze II(E,, r) for each r > 0. From convergence of series
(2.5) there follows the existence of a natural number n, such that

=}

> %0 xc llne, <7
n= n0+ 1
Moreover, for every n the function x, xc, has an absolutely continuous norm.
Therefore, in virtue of finiteness of u(C,), x,xc, is an element of the space
EMI, then also

"o
Y XnXc,€Em,-
n=1
Thus,
no ® L
d(Za EMl) < “Z— Z xrGC,,”Ml = ” Z X"XCHHMI < Z “anC"”Ml <r,
n=1 n=ng+1 n=ng+1

from which it follows that zeII(E,, r). Let us note that

Fz =3 (Fx,)xc,+(FO)xr,

n=1
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where To=T\|J C,. In view of assumption of the theorem we have
n=1

Fze Ep,. On the other hand, using the definition of Luxemburg norm for
(2.4), we obtain
[ My(a™ ! Fz(t), t)du(r)

T

=] Mz[a"(}ff Fx,(8) xc, () + FOxr, (1)), t]du(®)

= fj [ My(a™ ! Fx,(0) xc, (1), t)du(0)+ [ Ma(a™ " FO@) xry (1), t)dp(t)
= T

¢ o]

[*¢)
> Y [ M, (@' Fx,(t)xc, (), t)du(t) = ), 1= 0.
n=1T n=1
This means that a”FzédomIMz, so Fz¢E,,. We have thus arrived to a
contradiction. =

To end this section we shall show yet a simple property of superposition
operator.

2.6. THEOREM. If u(T) < co, then a superposition operator transforms
sequences of functions which are convergent in measure into sequences of
functions which are convergent in measure also.

Proof. Let x,— x in measure u. Then for each subsequence {x, | of
sequence {x,} one can find a subsequence {x,,k_} convergent to x everywhere.
In virtue of continuity of f (¢, u) with respect to u, we deduce convergence of
subsequence {Fx, ! to Fx almost everywhere, from which we have that

. "k}
Fx,— Fx in measure.

3. Continuity of superposition operator.

3.1. THEOREM. If the operator F acts from II(Ey,, r) into Ey,, then F is
continuous at every point of I1(Ey,, 1).

Proof. For clarity of proof, we divide it into three parts:

I. We shall show continuity of the operator F in the case u(7T) < co and
FO =0. '

I. We extend the result from part I to the case of the set T of o-finite
measure.

III. We proceed to the consideration of the general case, ie., show
continuity of the operator F without any additional assumptions.

I. We shall first assume that FO = 0 and u(7T) < co. If we assume the

contrary, there exists a sequence of functions x,ell(Ey, ,7) (n=1,2,..)
which is convergent in the norm to 0, whereas

(3'1) “Fxn”Mz >a (n = 15 29 '-')9
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where a is some positive number. Without loss of generality it can be
assumed that

(32 Felae, <.

n=1
Hereinafter, we shall construct sequences of numbers {g,}, of functions {x,,k
and of sets A, <« T (k=1,2,...), such that the following conditions are
satisfied:

(@) &1 <38,

(b) u(4) <4,

(©) IIFxu Xallu, > %4,

(d) if u(E) < 2¢,,, for every set E = T, then

IF Xy, Xelln, < Fa.

Let us assume that &, = u(T), x, (t) =x,(1), A, =T In virtue of absolute
continuity of the norm of the function Fx, and of condition (3.1), it is easy to
verify that there exists an ¢, such that conditions (a), (b), (c) and (d) are
satisfied. Let us suppose that g, x, and A, are already defined. We assume
that ¢, , is a real number such that condition (d) will be fulfilled. The existence
of this number is assured in view of the assumption Fx, €E,, for each
natural number k. Obviously, ¢, , satisfies condition (a). Since x, — 0 in the
norm, then it is also convergent to zero in measure. Therefore, by The-
orem 2.6, Fx, is convergent to zero in measure. Thus Fx, cannot have
equi-absolutely continuous norms, because it would be convergent in norm,
i.e, continuous at zero in contradiction to the assumption (see [6]). Hence

there exist a set A,.; and a function x,,  , such that u(4,.,) <&, and

”Fxnk+1 XAk+1“M2 > %a'

In virtue of the principle of mathematical induction we conclude that
conditions (a), (b), (c) and (d) are satisfied for k=1, 2, ...
Now, let us define a function y by formula )

X () for teB, (k=1,2,..),
(3.3) y(@) = {

0 for t¢ |J B,
k=1

where B, = 4,\ U A4;, (k=1,2,..). Obviously, for i # j we have B, B;

i=k+1
= . Since
e o

w( U A)< Y & <2841,

i=k+1 i=k+1

10 — Prace Matematyczne 25.2
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then from (c) and (d) there follows the inequality

lFy XBkHMz = “Fxnk XA © lla,

ANV

i=k+1

> ”Fxnk xAk“Mz-HFxnkX

1.€.,
(3.4 ||FykaI|M2>%a for k=1,2,...
Moreover, by (3.2) we have

IVl <k1_‘: 1%, X, lIMy < Z IXnllae, < Z (Xallagy <7,

whence yell(Ey,, r). Applying the assumption of the theorem we obtain
that FyeE,,. On the other hand, from (34) and from the fact that
B, (k=1,2,..) are pairwise disjoint, we have

[ My(3a™ ! Fy(t), t)du(t) = j M,(3a™" Y. Fy(®)xs, (1), t)du(®)
T i=1

s o)

[ Ma(3a”! Fy(0)15,0), )dp0 > 3 1=

i=

n'M 8

1)

and so 3a”! Fy¢dom! m,- Consequently, Fy¢ E,,. We have thus arrived to
a contradiction.

II. Let us drop the assumption u(7T) < co. Let us suppose that the
measure u is o-finite and that the superposition operator F is not continuous
at zero in Ly, . Then there exists a sequence {x,} of elements of the space
Ly, such that conditions (3.1) and (3.2) are satlsﬁed We shall construct
sequences of functions {x,} and of sets {Bi} such that u(B,) < o,
B;nB; =@ for i#j and

(35) “FxnkXBk”Mz >%a (k = la 2, )

Let x, = x,. Applying Theorem 1.15 (f) and (3.1), a set B; can be chosen
equal to T\V, where Vis as in Theorem 1.15 (f) for ¢ = §a. Since u(B,) < o
and

1Fxy, 278, lIM, < 3a,

we have

”Fxnl XBIIIMZ ; ”Fxnl”Mz'_”Fxnl XT\BIHMZ > a_%a = %a'

Let us suppose that x,, and B, is already defined, at the same time u(B,) < o
and (3.5) is satisfied. By continuity of the operator F at zero in the case ¢
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finite measure, a natural number n,,, can be found such that

'lFxnk+1X k “Mz <%a'
U By
i=1
Moreover, in virtue of (3.1) and of Theorem 1.15 (f) there exists a set C,,; of
finite measure such that

|'Fxnk+1 XC“+1IIM2 >a.

We put
k
Biyy = Ckﬂ\.u1 B;.
i=
Hence

IlFxnk+1XBk+1”M2 = |IFxnk+1 XC,H.IIIMZ—.”Fxnk.f_lx 6 B”Mz = a—'%a =%a’
i=1 i

Let a function y be defined by formula (3.3). In virtue of (3.2) we have

@ @

My = (BptIMy = nliM ’

Ui, < 3 Wem 2y < X allae, <7
k=1 k=1

80 yeII(Ey, r). Therefore Fye Ey,. On the other hand, from (3.5) it follows
that

i M,(a™ ' 2Fy(1), t)du(t)

a0 @

= Y [ M;(2a" ' Fx, ()15, (1), t)du@®) > )} 1= oo,
k=1T k=1

so 2a~! Fy¢doml),. This means that Fy¢ E,,. A contradiction, thus F is

continuous at zero.

III. We now proceed to the consideration of the general case: we shall
show, without any additional assumptions, that the operator F is continu-
ous at an arbitrary point xo, of the set IT(Ey,,r). Let d =d(xo, Ep,).
Clearly, d < r. The continuity of the operator F at the point x, is equivalent
- to the continuity of the operator

le =F(xO+x)—Fxo

at zero in Ly, . The operator F, acts from the ball Sy, (r—d) into Ey,. In
virtue of Theorem 2.4, it acts from II (Epm,, r—d) into Ey,. Since F, 0 =0,
we have, by what has already been proved, that the operator F; is
continuous at zero in Ly, . =

From Theorem 3.1 we can deduce the corollary on the boundedness of
the set of values of the operator F on a ball in the space Ly, .
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3.2. CoroLLARY. If an N-function M, satisfies the A,-condition and F is a
superposition operator from Ly, into Ey,, then F is bounded on any ball
Su, (1) (r >0), ie,

sup {||Fxllp,: x€Spy, (r)} < .

Proof. Without loss of generality of the theorem we can assume that
FO = 0. Let us suppose that the theorem is not true. Then there exists a
sequence {x,} of elements of the space Ly, such that

”xn”Ml <ﬁ (n=1a 2’)
and

IFxnlp, >n  (n=1,2,..).
The set T can be decomposed into n pairwise disjoint measurable sets T{",
™, ..., T™ such that
(3.6) ] M, (B~ x,(0), )dpu(®) <1/n  (n=1,2,..).

(M

From the negation of the assertion, we have

[ My(n™'Fx,(1), )du() >1  (n=1,2,..),
T
then there exists at least one set T’ such that

(I) M, (n~ ! Fx, (1), t)du(t) > 1/n. -
T\
'o

Hence, in view of the convexity of the N-function M,, we obtain

[ M, (Fxn(t)x1g3>(z), t)du(t) = (f ) M, (n-n~ 1 Fx,(t), t)du(t)
T i TN
0

>n | My(n™!Fx,(t), t)du(t) > 1
"
0

for every natural number n. This means that
(3.7) IF Xy xronllag, > 1.
io
Now, we shall define a new sequence of functions {y,} by the formula

x,(t) for te T},

ynl®) = {0 for t¢ T.

In virtue of (3.6), the sequence {#~'y,} is modular convergent to zero. Since
M, satisfies the 4,-condition, then the modular convergence is equivalent to
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the convergence in the norm. Therefore

IVallsg, >0 as n— co.
Hence, applying Theorem 3.1, we obtain

IFyullpm, >0 as n— oo,

contrary to (3.7). Thus, the theorem in case FO =0 is proved. If FO # 0,
then we can put

F,x =Fx—FO.

Clearly, F; 0 =0, so norms of values of the operator F, on any ball are
bounded. From which it follows that

IFxlla, < IIFy Xlip, +11FOlly, < o0

for every xe Sy, (B). Thus the proof is concluded. =
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