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On some properties of the superposition operator 
in generalized Orlicz spaces of vector-valued functions

Abstract. In this paper we consider a superposition operator F  defined by the formula

Fx(t) = f ( t ,  x(t)),

where the function f :  Tx X  -*• X  satisfies the Carathéodory condition, Tis a measurable space, X 
is a separable, reflexive Banach space and x is a vector-valued function defined on T. Conditions 
are found under which the operator F, acting from some region of the generalized Orlicz space 
LMi into the space LMl, is continuous. Moreover, the autor formulates several propositions on
the properties of the operator F.

1. Introduction to the theory of Orlicz spaces.
1.1. Definition. Let 3C be a linear real space. A function /: 3C -> [0, oo] 

is called a modular on 9C, if for any x, ye3C  we have
1° I(x )  =  0 iff x =  0,
2° / ( - x )  =  /(x),
3° I (a x  +  f}y) ^  ctl (x) +  /1/ (d) for a, ^  0 and a +  /l =  1.

1.2. Properties (see [17]). (a) /(ax) ^  /(x) for |a| ^  1,
n n n

(b) /( Yj Я ;Х;)^ X  af J ( xi) f°r a( ^  0 such that £  a, =  1.
i =  1 i = 1 i =  1

13. Definition. The set

f/  =  { x e f :  lim/(Ax) =  0}
A - 0

is called a modular space.

1.4. Theorem. The functional ||-||, defined by the formula 

l|x|| =  in f {r j>  0 : I(x/rj) ^  1}

is a norm in 3Cj. This norm has the following properties:
(a) ||x|| ^  1 iff I(x )  ^  1,
(b) i f  /(x) ^  1, then I(x) ^  ||x|j,
(c) i f  I(x ) >  1, then I(x) >  ||x||.
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1.5. T heorem. Let x e f ; and fo r  к =  1, 2, . . .  Then the condition

||xk — x\\ 0 as k -+ o o ,

is equivalent to the condition

/ (A (xk — x ))-> 0 as к -» oo fo r  every X >  0.

The above theorem formulates convergence of the sequence {xk} to the 
element x with respect to the norm by means of modular. Apart from 
convergence in norm there is considered also a modular convergence on the 
space SCj.

1.6. Definition. A sequence {x„} of elements of the modular space SCj is 
said to be convergent to x with respect to the modular / (/-convergent) if 
there exists a constant X >  0 such that

/(X(xk — x)) -* 0 as к с о .

It follows from Theorem 1.5 that every sequence {xn} which converges in 
the norm of 3Cj to some element x is also /-convergent to x.

1.7. D efinition. A sequence {x„} of elements of the modular space 3Cj is 
said to satisfy the Cauchy condition if for every e >  0 and X >  0 one can find 
an N > 0 such that

/ (A(xk —x,)) < e ,
provided к, l >  N.

1.8. D efinition. The space 3Cj is called complete if each sequence {x„} 
satisfying the Cauchy condition is /-convergent to an element x e f j .

More about modular spaces can be found in [15], [17], and [18].
Hereunder we shall consider generalized Orlicz space as a particular 

case of a modular space. We assume henceforth that Tis a non-empty set, I  
is a a-algebra of subsets of T, p  is a positive сг-finite complete measure on I  
and X  is a separable Banach space with norm IHI*.

1.9. D efinition. A function M : l x  / - >  [0 , oo] is said to be an 
N-function if

(a) M  is i f  xZ-measurable, where i f  denotes the c-algebra of Borel 
subsets of X ,

(b) M { \ t) is even, convex and lower semicontinuous on X  for almost 
every teT ,

(c) M (0, t) =  0 a.e. in T,
(d) there exist two measurable functions a(- ) ,  /?(•): T -* (0, oo) such that 

implication

M \x> Pit) =>M{u, t) >  ct(t)

holds a.e. in T.
(e) M ( ,  t) is continuous at zero.
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In the following we assume that measurable functions taking their values 
in a Banach space X  are strongly measurable. By a Pettis theorem, if X  is 
separable, then the strong measurability is equivalent to the weak one.

Let us denote the set of Z-measurable functions from Tinto X  by 3CX. 
At the same time two functions which differ only on a set of measure zero 
will be considered as equal. A composition M (x (•)>') for xe3C x is a 
measurable function (see [7]).

1.10. R e m a r k .  Elements of the set 3CX  will be denoted by x(-),  y( ), z ( - ) 
or, in order to simplify the notation we will omit sometimes the brackets 
when it does not lead to a misunderstanding. Symbols u, v will be used for 
vectors from Banach space X.

We introduce the following functional I M by formula

Ijvf(^) =  j  t)dp{t).
T

Let

6 o m IM =  {х е Жх . I m (x) < oo}

and let lindom/jtf be the smallest linear space spanned on dom I M. From 
convexity of /M we have that dom I M is a convex set.

1.11. T h e o r e m . The functional I M is a modular on 3CX. в
1.12. D e f in it io n . A modular space defined by modular 1M is called 

generalized Orlicz space and is denoted by L M. The norm defined as in 
Theorem 1.4, is called the Luxemburg norm and is denoted by ||-||M.

1.13. T h e o r e m . The following conditions are equivalent:
(a) x e L M,
(b) there exists a sequence {x„} o f  elements o f  lin dom I M such that

lim I M(£{xn- x ) ) =  0

fo r  every £ >  0,
(c) there exists a £0 >  0 such that I M(Ç0 x) <  oo. в
Hereunder, let the following condition for ^-function M  be satisfied:
В : there exist an increasing sequence of measurable sets T„, n =

00
1 ,2 ,  . . . ,  with ju(T„) <  oo, U Tn = T ,  and a sequence of /i-measurable,

n= 1
non-negative functions /„, и =  1 , 2 , . . . ,  such that M (u, t) ^ f n(t) for ji-a.e. 
t e T  and НмЦ* ^ n, where

{  f n(t)dfi(t) <  oo
Ti

for i, n — 1, 2, . . .  (see [11]).
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We shall denote by E M the closure in L M of the set of all simple 
functions from T  into X  vanishing outside a subset, which is included in T( 
for some natural number L

1.15. T h e o r e m . I f  the condition В is satisfied, then E M has the following 
properties:

(a) E M is the largest linear subspace o f  dom I M,
(b) every measurable bounded function vanishing outside a finite number o f  

is an element o f  E M,
(c) x e E M if  and only i f  I M(£X) <  00 f or every Ç >  0,
(d) if  x e E m, then fo r  every e >  0 a Ô >  0 can be found such that

WxXaWm <£>

provided A e Z and p (A) < Ô,
(e) i f  the measure p  is separable, then the space E M is separable,
(1) fo r  every x e E m and fo r  every e >  0 there exists a set Vc~ Tsuch that 

p(T\V ) <  go and \\xxy\\M <B.

For the proofs of (a), (b), (c) and (d) we refer to [11]. Property (e) is 
a consequence of Theorem 3.2 in [2]. We will prove Property (1).

Proof .  Let x e E m. Then, in virtue of Theorem 1.15 (c), x) <  oo
for every £ > 0. Denoting Ц =  T\Tt (i =  1, 2, ...), we have

м(г\ю = /‘[Л(ПЩ]=м(7;)<со.
Moreover,

M (e~1 x(t)xv.(t), t) <  M (e~ l x{t), t)

a.e. in T. Since /M(£- 1x) <  oo, so from the Lebesgue theorem we obtain 

lim I M(£ l xXv,) =  lim j  M (e~ l x(t), t)dp(t) =  0.
i -» oo i -» oo V i

Hence, there exists i0 such that

I m(z

Therefore, putting V = ViQ, we have

WxXv\\M <  e and /̂ (Т\Ю < oo.

1.16. D e f in it io n . A s the distance between x e L m  and the space E M we 
shall regard the number

d{x , EM) =  inf{||x —y||M: y e E M}.

We shall denote by П (Е м,г )  the totality of functions x e L m  for which
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d(x , E M) <  r. The closure of П (Е М, r) with respect to the modular conver­
gence will be denoted by П (Е М, r).

The connections between the set dom I M and the space E M are 
described well enough by the following theorem

1.17. Theorem. We have

П {EM, 1) c  dom I M с  П (Е М, 1). ■

This result for the Orlicz norm goes back to Kozek [11]. The proof for 
the Luxemburg norm is similar. Moreover, for the Luxemburg norm the 
following theorem is true

1.18. Theorem. F or every x e L M, we have

d(x , E M) =  lim ||х-хи||м,
и -► 00

where

(t) =  ^  ^  n and tE T"’
X" )0  otherwise, я

The proof of this theorem is similar to that of the same theorem for 
the Orlicz norm (see [11]).

The A 2-condition which plays an important role in the theory of Orlicz 
spaces is here of the following form:

1.19. Definition. We say that the IV-function M satisfies the A 2-condi­
tion if there exist a constant К  >  1 and a non-negative summable function h 
such that

M (2u, t) ^  K M (u , t) +  h(t) a.e. in T.

1.20. Theorem. The N-function M satisfies the A2-condition i f  and only if

Em =  dom I M =  L M.

This theorem follows from Corollary 1.7.4 in [10], immediately.

1.21. Theorem. I f  the N -function M satisfies the A 2-condition, then the 
modular convergence and the norm convergence are equivalent (see [9]).

2. A superposition operator and its fundamental properties. Let M  be an
N-function satisfying condition B.

2.1. Definition. Suppose the function/: T x X - > X  satisfies the Cara- 
théodory conditions, i.e., it is continuous in u e X  for almost all t e T  and 
measurable for every u e X .  The operator F, defined by the formula

lF x ](t)  = f ( t ,  x(t)),

where x e f j f ,  is called a superposition operator.
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2.2. C o r o l l a r y . The operator F  transforms measurable functions into 
measurable functions.

Pro of .  Let X be a measurable function. In virtue of definition of 
measurability of vector functions (see [1]) a sequence of measurable simple 
functions |x„} converging to x in the norm || -\\x can be found. By continuity, 
for almost all t e T ,  we have

f ( t ,  x(t)) =  lim f ( t ,  x n(t)).
n-*OD

Moreover, let xn be given by
к

x n ( t )  =  X/ a i,nX A i n ( t ) f
i = 1

where, for every i, Ain are pairwise disjoint measurable sets and ai>ne X .  
Since for n =  1 , 2 , . . .  we obtain

Î5

-to for t e A Un,

f ( t ,  X„(t)) =  .
f ( *>  a 2,n) for t e A 2tK,

f  (L )L J v k,n for t e A k>n,

so /(•, *„(■■)) are measurable, by measurability of each f ( t ,  a i n) for 1 ^  i ^  k 
and n =  1, 2, . . .  Thus /  (*, *(•)) is measurable as a limit of a sequence of 
measurable functions.

23. C o r o l l a r y . The superposition operator has a partial additivity prop­
erty, i.e., fo r  functions x lf  x 2, . . . ,  x n such that fo r  i Ф j

xi (t)xj (t) =  0 ( t e T )

there holds the equality

F (x t + x 2 +  . . .  +  x„) =  F x t +  F x2 +  . . .  + F x „ - ( n -  1 )F (0 ),

where О denotes a function equal to zero.
Proof of this theorem is obvious. ■

2.4. T h e o r e m . Let and M 2. be N -functions satisfying condition B. 
(a) I f  the operator F  acts from  a ball

^M1(r) — {X  ̂L‘Ml - IMIa*! < r }

into the space L Ml or E Ml, then the operator F  acts from  FI(EMl, r) into the 
space L Ml or E Ml, respectively.

I f  we suppose additionally FO  =  0 and i f  F [ S Ml(r)] c  dom/M2, then F  
acts from  I I (E Ml, r ) into dom I Ml.
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(b) I f  the operator F  acts from  a ball

SEMl(r) =  { x e E Ml: ||x||Ml <  r)

into L Ml or E Ml, then it acts from  all o f  E Ml into L Ml or E Ml, respectively.
I f  FO =  0 and F fS ^ y r ) ]  c= dom I Ml, then F  acts from  all o f  E Ml into 

dom I Mr
Pro of .  First we shall prove both parts (a) and (b) of theorem in the case 

of [FO ] (t) = f  (t, 0) =  0 for every t e  T. Let x e F I (E Ml, r). Then, in virtue of 
Theorem 1.18, we have

where

x„(t) =

r > d ( x ,  E Mi) =  lim ||x-x„||Wl,
n - * a o

x(t) if ||x(f)||* <  n and t e T n,
|0 otherwise.

Hence there exists a natural number n0 such that

Obviously,

(X- X”0)(tH x ( r )
for t e  T„0 and ||x(f)||x <  no. 
otherwise.

Denoting

V0 =  { t e  Tno: ||x(0llx <  ”o}>

we obtain
(x ~ x „ 0)(t) =  x {t)x T\v0(t) =  У o(t)-

Therefore ||y0||Ml <  r• Moreover, from inclusion V0 cz TnQ there follows the 
inequality

F ( * o ) <  F(Tno) <  oo.

Thus xxv0^ E Ml as a measurable bounded function which vanishes outside 
a finite number of Tt (Theorem 1.15 (b)). Moreover, by Theorem 1.15(d) for 
r >  0 a Ô >  0 can be found such that for all V cz T  we have

\\xXv\\m1 <  r

provided p(V) < 0 .  Let us suppose that Vlf V2, . . . ,  Vk are pairwise disjointк
measurable subsets of the set V0 with р {у {) < 6  (i =  1, 2, . . . ,  k) and У Vti= 1
=  V0. We put yt =  xxvt- Then the function x can be written in the form

(2.1) *  =  У0 +  У1 +  +Ук,
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where _y,eSMl(r) (i — 1, 2, к) are pairwise disjoint. Applying Corollary 
2.3 in case FO =  0 we obtain

(2.2) F x  =  F y 0 + F y l + . . .  + F y k.

If F  [S Ml (r)] c  L Ml, then each of the terms at the right-hand side of formula
(2.2) is a function in L Ml. Therefore, F x  also belongs to LMl.

If F [ S Ml(r)] a d o r n  I  m2, then, in virtue of (2.2), we have

I m2(x) =  j  M 2(Fx(t), t)dfi(t) =  J  j  M 2 (Fyi (t)i t)dii(t) <  go,
T  i =  0  V {

i.e., F x  also belongs to dom I M2.
If F [ S Ml (r)] a  E Ml, then all the terms at the right-hand side of (2.2) are 

functions in E Ml. Therefore, F x  is also an element of E Ml.
Now, we shall prove part(b) of this theorem. To this end, we suppose 

that x e E Ml. Then r _ 1 x e £ Ml, so, by Theorem 1.15(c) and (a), it follows

/Ml(r_1 x) =  J M i (r~* x(t), t)dn(t) <  oo.
T

Let, as above,

\x{t) if \\x(t)\\x < n and t e  Tn,
X" (0 otherwise.

Obviously, x„ are measurable, bounded and x„(t) is convergent to x(t) almost 
everywhere in T. Moreover,

M i[r ~ 1(x(t) — x „ ( t ) ) , t ]^ M i( r ~ 1x (t) ,t )  a.e. in T

and if

A„ = { t e T :  x„(t) =  x(t)},

then

fi(T\(J A„) =  0.
n= 1

Hence and from the dominated convergence theorem we have

lim 7Ml [ r“ 1 (x — x„)] =  lim j  M x (r“ 1 x(t), t)dn(t) — 0.
n->00 n-*Q0 T \ A n

Therefore a natural number n0 can be found such that

I Ml [^- 1 ( ^ - ^ 0)] =  I Ml [^_ 1 ^r\4„0] < b

i.e.,

ItarUnJlMi < r •
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We put V0 = T\Ano and y0 =  xxVq• Then T\V0 c  T„Q, so

V(T\K) ^  F(T„0) <  oo.

From here, by Theorem 1.15(d) with e =  1 we find a Ô >  0 and pairwise
к

disjoint sets V1,V 2, . . . , V k such that У Ц =  T\V0, р(Ц) < Ô for
i = 1

le  {1, 2, . . . ,  k] and

\\r~l xxv.\\Ml <  1.

Denoting yt =  xxvr  we obtain

НуЛм! <  r (i =  1, 2, . . . ,  k).

Next, we describe x  in the form (2.1) and analogously as in part (a) of the 
theorem we obtain the assertion of part (b) for / (t , 0) =  0.

We now proceed to the consideration of the general case. We define

T iX  =/(•, * (• ))-/ (• , 0) = / i ( - ,  x ( ) )

for every x e X  a.e. in T. Since F j О =  0, we have, by what has already been 
proved, that the operator F t acts from FI(EMl, r) into the space L Ml or E Ml 
with assumptions of part (a) and F l acts from E Ml into space L Ml or E Ml 
with assumptions of part (b). Since /( •, 0) is an element of LM2 (FM2), 
therefore, by linearity of L Ml (EMl),

F x  = / ( * ,  x (■ )) =  F j  x + / ( * ,  0)

is an element of L Ml (E Ml) for every x e TI(EMi , r) [in part (a)] or for every 
x e E Ml [in part(b)]. This implies the assertion of the theorem. ■

The next property of the operator F  will be concerned with preservation 
by this operator of the following condition of the family 91 of functions,

(2.3) for every e >  0 a Ô >  0 can be found such that

WxXaWm <£>

for all functions of the family 91, provided ц(А) < Ô.

If F(T) < oo, then condition (2.3) for the family 91 is equivalent to the 
fact, that the family 91 has equi-absolutely continuous norms. In general, 
condition (2.3) is a little weaker than condition of possession by the family 91 
equi-absolutely continuous norms. Therefore, it will be said that the family 91 
has almost equi-absolutely continuous norms.

2.5. T h e o r e m . I f  the superposition operator F  acts from  I I (E Ml, r) into 
E m2, then the operator F  transforms a fam ily o f  functions with almost equi- 
absolutely continuous norms into fam ily o f  functions with almost equi-absolutely 
continuous norms.
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Proof .  We shall assume that a family 91 has almost equi-absolutely 
continuous norms and show that the image F  (91) has the same property. If 
we assume the contrary, there exist a sequence of functions yke91 and a 
sequence of sets Ak œ T  (k =  1 , 2 , . . . )  such that

lim ji (Ak) =  0
к ->ao

whereas

\\РУкХлк\\м2 > а  (k =  1 , 2 , . . . ) ,

where a is some positive number. Without loss of generality it can be 
assumed that

00

£  М Л ) <
k= 1

We put
00

Bt = U 4  (* =  1 , 2 , . . . ) .
i = k

By monotonicity of the norm, we have

\\РУкХвк\\м2 >  a (к =  1 , 2 ,  ...),

from which

J  M 2 (a~ lf ( t ,  yk{t)), t)dn(t) > 1  (k =  1 ,2 ,  ...). 
вк

Since ju(Bk)-> 0  as oo, then for jq , by absolute continuity of integral, 
there exists a number k 2 >  1 =  k k such that

j  M 2 (a~ 1f ( t , y 1(t)) ,t )d n (t)<  j  M 2{a~ 1f ( t , y k l ( t ) ) ,t )d n (t) -1 .

It follows from inclusion Bkl a  Bkl that

j  M 2 (a~ 1f ( t ,  yk l {t)), 1,
Bkk\Bk2

in other words

ll*>i &»к1\вк211м2 >  a.

Suppose, we have defined the number kn in such a manner that

\\р Укп- 1%вкп_ 1\вк \\м 2 >  a .

From inclusion Ak c= Bk it follows thatКП Kn

\\РУк„Хвк \\м2 >  \\РУкпХлк \\м2 >  a.
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Then, repeating the argument as for k 2 and choosing k„, a kn+l can be found 
such that

Now, let us denote
n+ 1 M2 >  «•

Cn =  Bkn\Bkn+1 (и =  1 , 2 , . . . )

and

x„(t) =  ykn(t) (и = 1 , 2 , . . . ) .

Obviously, C„ are pairwise disjoint sets, /.i(C„)-+0 as n-> oo and

(2.4) \\РхиХсл\\м2 > a  (и =  1, 2, ...).

Since the functions x„ for и =  1 , 2 , . . .  have almost equi-absolutely 
continuous norms, then without loss of generality one can assume that

00
(2.5) X  IK X cJIm! <  °o.

for t e C n, 

for t e T \  U C„.
n  — 1

We shall show that z e I l ( E Ml, r) for each r >  0. From convergence of series 
(2.5) there follows the existence of a natural number n0 such that

00
X \\XnXcJ\Mj_ < r

n= "o+l

Moreover, for every n the function x„Xcn has an absolutely continuous norm. 
Therefore, in virtue of finiteness of fi(C n), x nXcn is an element of the space 
E Ml, then also

" 0

X x nXc„£EMl.
n =  1

Thus,
” 0  oo oo

d(z, E Ml) ^  ||z- £  х„Хсп\\м1 =  II X xnXc„\\u1 <  X II^XcJlAf! < r,
n =  1 n =  r i Q +  1 n = n  0 + 1

from which it follows that z e T l{E Mv r). Let us note that

B z =  X  (Fx„)xcn +  (FO)xTo,
n  — 1

Let us define
xn(t)

z{t)
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where T0 =  T \ [ j C„. In view of assumption of the theorem we have
n — 1

F z e EMi . On the other hand, using the definition of Luxemburg norm for
(2.4), we obtain

f M 2 (a~ 1 Fz{t), t)dp{t) 
f

GO

= J M2[fl_1( X  Fxn{t)xcn(t) + FOxTo(t))> t]dp(t)
T n=  1

= f  J M2(a~1 Fxn(t)xcn(th t)dfi(t)+ J M2(a~l FO(ï)xTo(t), t)dp{t)
n= 1 T T

00  00 

^ E  ( M 2 (a”1 Fx„(t)xc„{t), t)dn(t) ^ £  1 = 00 •
n= 1 T n = 1

This means that a -' 1 F z фd o m IMl, so F z £ E Ml. We have thus arrived to a 
contradiction, ш

To end this section we shall show yet a simple property of superposition 
operator.

2.6. T h e o r e m . I f  ц (Т ) <  oo, then a superposition operator transforms 
sequences o f  functions which are convergent in measure into sequences o f  
functions which are convergent in measure also.

Pro of .  Let x „ -+ x  in measure p. Then for each subsequence (x„J of 
sequence {x„} one can find a subsequence {x„ } convergent to x everywhere. 
In virtue of continuity of f ( t ,  u) with respect to u, we deduce convergence of 
subsequence {Fx„k ) to F x  almost everywhere, from which we have that 
F x n -> F x  in measure. ■

3. Continuity of superposition operator.
3.1. T h e o r e m . I f  the operator F  acts from  I I {E Ml, r) into Е Мг, then F  is 

continuous at every point o f  П  ( £ Mj , r).

P ro o f. For clarity of proof, we divide it into three parts:
I. We shall show continuity of the operator F  in the case p(T ) <  oo and 

F 0  =  0.
II. We extend the result from part I to the case of the set T  of cr-finite 

measure.
III. We proceed to the consideration of the general case, i.e., show 

continuity of the operator F  without any additional assumptions.

I. We shall first assume that F  О =  0 and p(T ) < оо. If we assume the 
contrary, there exists a sequence of functions x „ e I I (E Ml , r) (n =  1, 2, ...) 
which is convergent in the norm to 0, whereas

(3.1) l|FxJ|M2> a  (« =  1 , 2 , . . . ) ,
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where a is some positive number. Without loss of generality it can be 
assumed that

(3.2) 2  IWImj <  r -
n= 1

Hereinafter, we shall construct sequences of numbers {ek}, of functions {x„ } 
and of sets Ak с  T  (k =  1, 2, ...), such that the following conditions are 
satisfied:

(a) £k+1 <
(b) ц{Ак) ^  £k,

(c) \\Fx„kXAk\\M2 > ï a ,
(d) if pt{E) < 2 e k + 1 for every set E a  T, then

\\Рх„кхЕ\\м2 < j a -

Let us assume that £x =  fi(T), xni(t) = х х(г), A x = T. In virtue of absolute 
continuity of the norm of the function F x 1 and of condition (3.1), it is easy to 
verify that there exists an e2 such that conditions (a), (b), (c) and (d) are 
satisfied. Let us suppose that Ek, x„k and Ak are already defined. We assume 
that ek+1 is a real number such that condition (d) will be fulfilled. The existence 
of this number is assured in view of the assumption Fx„fce £ M2 for each 
natural number k. Obviously, £k+1 satisfies condition (a). .Since x„->0  in the 
norm, then it is also convergent to zero in measure. Therefore, by The­
orem 2.6, Fx„ is convergent to zero in measure. Thus F x n cannot have 
equi-absolutely continuous norms, because it would be convergent in norm, 
i.e., continuous at zero in contradiction to the assumption (see [6]). Hence 
there exist a set Ak+1 and a function x„ such that fi{Ak+i) < £ k+i and

In virtue of the principle of mathematical induction we conclude that 
conditions (a), (b), (c) and (d) are satisfied for к =  1, 2, . ..

Now, let us define a function у by formula

(3.3)
for t e B k (к =  1, 2, ...), 

for ^  (J Bk,
k= 1

where Bk =  

=  0 .  Since

CO

Лк\ и
i = k+ 1

Ah (k =  1, 2, ...). Obviously, for i Ф j  we have B{ n B j

00 00

/̂ ( U ^i) ^  £i ^  ^ k+1’
i = к + 1 i = к + 1

10 — Prace Matematyczne 25.2
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then from (c) and (d) there follows the inequality

\\ЕуХвк\\м2 =  WF x nkX*  ** A \ \ \ AAk'. U A\
M2

>\\РхПкХлк\\м2 -\\РхПкх oo \\м2 ^ j a - j a  =  i a ,
U A i 

i = k +  1
i.e.,

(3.4) \\FyXek\\M2 >i<* for к =  1, 2, . ..

Moreover, by (3.2) we have
00 00 00

I\y\\Ml <  Z Н^к^ВкИм! <  Z ItaJlMt <  Z IWIjtfi < r ,
k=l k= 1 n= 1

whence у е П ( Е м , r). Applying the assumption of the theorem we obtain 
that F y e E Ml. On the other hand, from (3.4) and from the fact that 
Bk (k =  1, 2, ...) are pairwise disjoint, we have

00
J M j ( 3 a - 1^ ( t ) , t ) ^ W  =  f M 2(3fl-1 £  F y ( t ) XBl{t ) , t )dn(t )
T  T  i ~  1

ao oo

=  z $ M 2(3a~l F y {t)xBi(t), t)dfi{t) ^  Z 1 =  00,
i= IT  i=  1

and so Ъа~х F y $ é o m I M2. Consequently, F y $ E M . We have thus arrived to 
a contradiction.

II. Let us drop the assumption ц{Т) <  оо. Let us suppose that the 
measure /л is <r-finite and that the superposition operator F  is not continuous 
at zero in L Ml. Then there exists a sequence {*„} of elements of the space 
LMj such that conditions (3.1) and (3.2) are satisfied. We shall construct 
sequences of functions {x„k} and of sets {Bk} such that ц(В к) <  oo, 
Bt n B j  =  0  for i Ф j  and

(3.5) \\FxKkXBk\\M2 > i a  (* =  1 , 2 , . . . ) .

Let xni =  x 1. Applying Theorem 1.15 (f) and (3.1), a set B t can be chosen 
equal to T\V, where F is  as in Theorem 1.15 (1) for г = ? a .  Since /г(Вх) <  oo 
and

\\Ех ч Хт \В1\\м 2 < î f l ,

we have

\\Рхч хВ1\\м2 >  11^й111м2 -| | ^ В1 Хт\в1\\м2 > a - \ a = \ a .

Let us suppose that x„k and Bk is already defined, at the same time {л(Вк) <  о 
and (3.5) is satisfied. By continuity of the operator F  at zero in the case c
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finite measure, a natural number nk+1 can be found such that

\\F xnk + 1X к IIM2 < ? a -
U B ii— 1

Moreover, in virtue of (3.1) and of Theorem 1.15 (f) there exists a set Ck+1 of 
finite measure such that

11^ „к + 1 Хск+111м2 >  a-

We put

B k +  1 = Q  + l\ U &i-
i =  1

Hence

Р Х ,к+1Хвк+111м2 ^  ll^ » k + 1Xck + 1llA/2-| l^ „ k+1Z к Пм2 ^  a - \ a  =  \ a.
U-B,-1=1

Let a function у be defined by formula (3.3). In virtue of (3.2) we have
00 00

IMIj* !  <  Z  I I^ X bJ I m! ^  Z  М Ц  < r ,
к = 1 к =  1

so y e I l ( E Ml, r). Therefore F y e E Mz. On the other hand, from (3.5) it follows 
that

J  M 2(a~ 1 2Fy(t), t)dfi(t)
T

= z J м 2(2а-1 Fx„k{t)xBk{t), t)dp{t)^ £ 1 = oo,
k =  1 T k =  1

so 2a_1 Fy^dom /M2. This means that F y $ E Ml. A contradiction, thus F  is 
continuous at zero.

III. We now proceed to the consideration of the general case: we shall 
show, without any additional assumptions, that the operator F  is continu­
ous at an arbitrary point x 0 of the set I l (E Mi,r) . Let d =  d (x 0, E Ml). 
Clearly, d < r. The continuity of the operator F  at the point x 0 is equivalent 
to the continuity of the operator

F i x =  F (x 0 +  x) — F x 0

at zero in L M . The operator F x acts from the ball SMl(r — d) into F Mr In 
virtue of Theorem 2.4, it acts from FI(EMl, r — d) into E Ml. Since F x 0  — 0, 
we have, by what has already been proved, that the operator F j is 
continuous at zero in LMj. ■

From Theorem 3.1 we can deduce the corollary on the boundedness of 
the set of values of the operator F  on a ball in the space LMl.
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3.2. Corollary. I f  an N -function M x satisfies the A2-condition and F  is a 
superposition operator from  L Ml into E Ml, then F  is bounded on any ball 
SMl (r) (r >  0), Le.,

sup{||Fx||M2: x e S Ml (r)} <o o .

Pro of .  Without loss of generality of the theorem we can assume that 
FO — 0. Let us suppose that the theorem is not true. Then there exists a 
sequence {x„} of elements of the space L Ml such that

Ы м х < Р  (и =  1 , 2 , . . . )

and

11*Х.11м2 >  и (« = 1 ,2 ,  ...).

The set T  can be decomposed into и pairwise disjoint measurable sets 7?и), 
Ц п), . . . ,  7 jn) such that

(3.6) {  M x (fi~ l x„(t), t)dp(t) <  1/n (« =  1 , 2 , . . . ) .
j'(n)

i

From the negation of the assertion, we have

{  M 2(«“ 1 F x n(t), t)dp(t) > 1  (« =  1, 2, ...),
T

then there exists at least one set 7̂ 0n) such that

f M.2(«_ 1 Fx„(t), t)dp(t) >  l/«.
f in )

»0
Hence, in view of the convexity of the N -function M 2, we obtain

J M 2(F xn{t)xT{n)(t), t)dp(t) =
T  *0

J M 2(«-« 1 F x„{t),t)dp{t)
fin)
•0

> n J M 2(« 1 F xn(t), t)dp{t) >  1
f ( n )

•0
for every natural number «. This means that

(3.7) \\ЕХпХт[")\\м, >  1-
>0

Now, we shall define a new sequence of functions (y„) by the formula

;*„(*) for t e T ^ ,
0 fory„(0 =

In virtue of (3.6), the sequence {/? 1 yn} is modular convergent to zero. Since 
M x satisfies the d 2-condition, then the modular convergence is equivalent to
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the convergence in the norm. Therefore

М л # ! 0  a s  со.

Hence, applying Theorem 3.1, we obtain

II*>JIm2 o as n-> oo,

contrary to (3.7). Thus, the theorem in case FO  =  0 is proved. If FO Ф 0, 
then we can put

F l x  =  F x  — FO.

Clearly, F l О =  0, so norms of values of the operator F l on any ball are 
bounded. From which it follows that

\\Fx\\Ml ^  ll^i *IIm2 +  II^0|Im2 <  oo

for every x e S Ml(fi). Thus the proof is concluded. ■
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