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1. . Let f be a continuous function on the interval I = [−1, 1], and let

En(f) = dist (f,Pn) := inf{‖f − p‖I : p ∈ Pn},

where Pn stands for the space (of the restrictions to I) of the polynomials of degree
≤ n and ‖ · ‖I is the Chebyshev norm in the space C(I) of all continuous functions
on I. By a classical result of Bernstein ([2], [3]), if

(1) Enk(f) ≤Mρnk

for some strictly increasing subsequence {nk} of N and for positive constantsM and
ρ ∈ (0, 1), and if f vanishes on a subinterval F of I, then f vanishes on the whole
interval I. Such functions are called the Bernstein quasianalytic functions and their
set is denoted by B(I). Bernstein’s identity principle was essentially strengthened
by Szmuszkowiczówna [22] and independently by Lelong [9]. They proved that a
function f ∈ B(I) has to be the zero function whenever it vanishes on a subset F
of I of positive logarithmic capacity c(F ). (For the definition of the logarithmic
capacity of a subset F of the complex plane C, see e.g. [18].) The proofs provided
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by both authors are based on properties of Green’s functions. Given a compact set
E in C with a positive capacity c(E), we denote by GE the (generalized) Green
function with pole at ∞ for the unbounded connected component D∞(E) of the
set C \ E, i.e. GE is a (unique) function that is harmonic and strictly positive in
D∞(E) and such that

(i) lim
|z|→∞

(GE(z)− log |z|) = − log c(E),

and

(ii) the set of points ζ ∈ ∂D∞(E) such that GE(z)→ 0

as D∞(E) 3 z → ζ is of positive logarithmic capacity.

Let

(2) VE(z) =

{
GE(z), z ∈ D∞(E);

0, z ∈ C \D∞(E).

Then we have

Lemma 1.1 (Bernstein-Walsh Lemma) If P ∈ Pn, then

|P (z)| ≤ ‖P‖E exp{nVE(z)} for z ∈ C.

A similar identity principle to that of Szmuszkowiczówna and Lelong was also pro-
ved by Akutowicz [1] whose argument was based on a fundamental result of Leja
[8] concerning the construction of the Green’s function with the aid of Lagrange
interpolation polynomials. In all these indentity principles the assumption of posi-
tive capacity of the zero set of f ∈ B(I) is essential, in view of an example given
by Mazurkiewicz and Szmuszkowiczówna [12] of a non-zero function f ∈ B(I) that
is infinitely differentiable and vanishes on an uncountable subset of I. We remark
that such a function f cannot be quasianalytic in the sense of Denjoy-Carleman,
since it must vanish together with all its derivatives at some point of I. We add
that such functions are rare, since the intersection of the set B(I) and the set of all
Denjoy-Carleman functions is a residual subset of the space C∞(I) of all infinitely
differentiable functions on I endowed with its natural projective topology (see [17],
Theorem 14.4).

Although Bernstein’s quasianalytic functions have such a nice uniqueness pro-
perty, in general, they do not posses any smoothness. Following Mazurkiewicz [11],
the set B(I) is residual in the Banach space C(I). Hence, since by the well-known
result of Banach the set of nowhere differentiable functions is also residual in C(I),
the subset of the set B(I) consisting of nowhere differentiable functions is residual
as well. As was already observed by Bernstein, the more lacunary is the sequence
{nk} in (1), the worse is the regularity of f . On the other hand, if

lim sup
k→∞

nk+1

nk
<∞,
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then condition (1) is necessary and sufficient for f be analytically continuable in a
neighborhood (in C) of I. In a similar way, if

lim
k→∞

log nk+1

nk
= 0,

then condition (1) describes the infinitely differentiable functions on I. Let us also
mention the following interesting property of B(I) found by Markushevich [10]: any
function f ∈ C(I) can be written as the sum f = f1 + f2 with some f1, f2 ∈ B(I).
For a surprisingly short proof of the last property, based on a decomposition of a
Baire topological group by means of its residual subset, see [16] and [17].

The notion of Bernstein quasianalytic functions naturally extends to a compact
subset E of the complex plane C. Now the point is to prove a counterpart of the
Szmuszkowiczówna-Lelong result. However, this is not straightforward. The reason
is that Szmuszkowiczówna and Lelong’s argument (as well as that of Akutowicz)
heavily relies on the fact that the closure of a union of subintervals of I = [−1, 1]
with non-void intersection is still a subinterval of I. In this note we propose to
overcome this difficulty by applying the following known theorem of Janiszewski
(see e.g. [7])

Theorem 1.2 Let X be a continuum (a connected compact space), and let A = A  
X. Then every connected component C of the set A has a non-void intersection with
the set X \A.

Now we are ready to prove the following

Theorem 1.3 (Identity Principle for the class) B(E)) Let E ⊂ C be a
continuum not reducing to a single point and let f ∈ B(E). Suppose that f va-
nishes on a subset F of E with a positive logarithmic capacity c(F ). Then f = 0
on E.

Proof Let N := {z ∈ E : f(z) = 0}. The set N is compact and it contains the
set F . In particular, c(N) > 0. Suppose that N 6= E. By (ii) of the definition
of Green’s function, there exists a point a ∈ N such that GN is continuous at a.
Let C be the connected component of the set N containing the point a. Then
by Janiszewski’s Theorem, C ∩ E \N 6= ∅. Choose a point b ∈ C ∩ E \N . The
following two cases can occur:

1o b = a. Since f ∈ B(E), there exist a strongly increasing sequence {nk} ⊂ N,
polynomials pnk of degree ≤ nk (k = 1, 2, . . . ) and constants M > 0 and ρ ∈ (0, 1)
such that

‖f − pnk‖E ≤Mρnk .

Hence |pnk(z)| ≤ Mρnk if z ∈ N , k = 1, 2, . . . . Choose now R > 1 such that
ρR < 1. Then, since the function GN is continuous at the point a, one can find
δ > 0 such that exp VN (z) < R, if z belongs to the disk B(a, δ). Hence by the
Bernstein-Walsh Lemma, the sequence of polynomials {pnk} is uniformly convergent
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to zero in B(a, δ), whence f(z) = 0, if z ∈ E ∩ B(a, δ). This, however, leads to a
contradiction, since the disk B(a, δ) contains points of the set E \N .

2o b 6= a. In such a case, the set C is a continuum that does not reduce to a single
point. It is well-known (see e.g. [18]) that then the function VN is continuous at
every point of C, whence in particular at the point b. Now repeating the argument
of point 10 (where the point a is replaced by b) gives again a contradiction. Thus
we have proved that N = E, as claimed. �

Remark 1.4 Theorem 3 was stated without proof in [17]. To the author’s know-
ledge no proof of it has ever appeared in the literature. Thus, the presented proof
of Theorem 3 fulfils a gap in [17].

Besides the authors mentioned above, the functions of a one variable satisfying
(1) were also studied e. g. by Beurling [4], Mergelyan [13], Borichev, Nazarov and
Sodin, [5], and by no means is this list complete.

2. . The study of multivariate Bernstein quasianalytic functions was begun in
[14] and then developed in [17]. Skiba [21] studied such functions on algebraic sets
in the space CN . In all these papers, an important role has been played by Siciak’s
extremal function ΦE , associated with a compact subset E of CN , defined by

ΦE(z) = sup
n∈N

sup{|p(z)|1/n : p ∈ Pn(CN ), ‖p‖E ≤ 1}. z ∈ CN .

Siciak introduced this function in [19] in order to extend the well-known Bernstein-
Walsh theorem (see e.g. [18]) to the space CN . Siciak’s result reads as follows.

Theorem 2.1 1o. If f is a holomorphic function in an open neighbourhood of a
polynomially convex compact subset E of CN (i.e. E = Ê := {z ∈ CN : |p(z)| ≤
‖p‖E for all polynomials p in CN}), then

(3) lim sup
n→∞

n

√
dist(f,Pn(CN )) < 1.

2o. Let E be a compact subset of CN such that the function ΦE is continu-
ous in CN . If f : E 7→ C is a continuous function satisfying (3) then it can be
holomorphically extended to an open neighbourhood of E.

Observe that ΦE(z) ≥ 1 in CN and ΦE(z) = 1 iff z ∈ Ê. By a result of
Zakharyuta [23] and Siciak [20], the function log ΦE is equal to the Zakharyuta
extremal function

VE(z) := sup{u(z) : u ∈ L(CN ), u ≤ 0 on E},



W. Pleśniak 83

where L(CN ) is the Lelong class of plurisubharmonic functions in CN such that
u(z)− log ‖z‖ = O(1) as ‖z‖ → ∞. If K is a compact subset of CN , one can define
the logarithmic capacity of K by

c(K) = lim inf
‖z‖→∞

‖z‖
exp{V ∗K(z)} ,

where V ∗K(z) = lim sup
w→z

VK(w) is the upper semicontinuous regularization of VK . For

an arbitrary subset F of CN , we set c(F ) := sup{c(K) : K is a compact subset of F}.
It can be shown that c(E) = 0 if and only if the set E is pluripolar, which means
that there exists a plurisubharmonic function u in CN , u(z) 6≡ −∞, such that
E ⊂ {u(z) = −∞}. If N = 1, the capacity introduced above coincides with the
planar logarithmic capacity of Theorem 3. We also note that a countable union (in
particular, a finite union) of pluripolar sets is still pluripolar. By the developed in
the eighties of the last century Bedford and Taylor’s theory of the complex Monge-
Ampère operator, if E is a non-pluripolar compact subset of CN , the function V ∗E
is a solution of the homogeneous Monge-Ampère equation, which reduces in the
one-dimensional case to the Laplace equation. Therefore the function V ∗E is a mul-
tivariate counterpart of the planar Green function and if N = 1, the function VE is
simply equal to the function defined by (2). In particular, by a Bedford-Taylor re-
sult (see [6]), the set {VE(z) < V ∗E(z)} is pluripolar, whence one gets a multivariate
version of Kellogg’s Lemma: If c(E) > 0, the set of points in E where the func-
tion ΦE is discontinuous, is pluripolar. For more information about pluripotential
theory, the reader is referred to the monograph of Klimek [6].

The central problem of the multivariate theory obviously consists in establishing
a satisfactory uniqueness property for functions satisfying condition (1) in the se-
veral variables setting. An attempt at this direction was made in [14]. It could not
be satisfactory, since at that time the pluripotential theory methods were not yet
available. More successful are without doubt identity principles for the class B(E)
provided by Skiba [21].

Further on, the space RN is treated as the real part of the space CN so that
CN = RN + iRN . We first observe that if N > 1, Theorem 3 is not valid. It is seen
by the following

Example 2.2 Let E1 = [−2,−1] × [−1, 1] ⊂ R2, E2 = [1, 2] × [−1, 1] ⊂ R2 and
I = [−1, 1]×{0} ⊂ R2. Let E = E1∪I∪E2. By the Stone-Weierstrass theorem every
compact subset of the space RN is polynomially convex (see e.g. [6, Lemma 5.4.1]).
Hence by Theorem 4, there exist constants M > 0, ρ ∈ (0, 1) and polynomials
pn ∈ Pn(C2) such that

‖pn − 1‖E1
≤Mρn and ‖pn‖E2

≤Mρn.

Set Wn(x, y) = ypn(x, y). Then

Wn(x, y)→ f(x, y) =

{
y, (x, y) ∈ E1;

0, (x, y) ∈ I ∪ E2.
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Moreover, ‖f −Wn‖E ≤ Mρn, n = 1.2. . . . . Hence f ∈ B(E), f(x, y) 6≡ 0, but
N := {f = 0} ⊃ I ∪E2, and c(I ∪E2) > 0, since no subset K of RN with non-void
interior (in RN ) can be pluripolar in CN . (If I is a cube in RN , then by Siciak [19]
the function VE is continuous in CN and consequently, c(I) > 0.) Note that we
cannot now use the argument of the proof of Theorem 3, since the function VN is
discontinuous at every point of the set I \ {(1, 0)}.

Remark 2.3 The example above also shows that the assumption of continuity of
the function ΦE in Theorem 4 (2o) is necessary. Indeed, the function f of Example
5 fulfils condition (3) of Theorem 4 but it cannot be holomorphically extended to
any open neighbourhood of E.

Following Skiba [21], we say that a compact set E in CN is an NB-set, if for every
function f ∈ B(E) and every subset F of E with c(F ) > 0, if f = 0 on F then
f = 0 in E. From Theorem 3 one derives the following uniqueness property:

Corollary 2.4 Any set E = E1 × · · · ×EN ⊂ CN , where each Ej is a continuum
in C not reducing to a single point, is an NB-set.

Proof Let f ∈ B(E) be a function vanishing on a compact subset F of E with
c(F ) > 0. By the definition of the function ΦF , for the polynomials pnk of (1) (in
the multivariate setting) we have

(4) |pnk(z)| ≤ ‖pnk‖F [ΦF (z)]nk , z ∈ CN .

By Kellogg’s Lemma there is a point a = (a1 . . . , aN ) ∈ F such that ΦF is continuous
at a. Hence, given R > 1, one can find a number r > 1 such that ΦF (z) < R in the
polydisk P (a; r) = {z = (z1, . . . , zN ) : |zj | ≤ r, j = 1, . . . , N}. If we choose R so
that η := ρR < 1, then by (4) we get

|pnk(z)| ≤MρnkRnk = Mηnk , z ∈ P (a; r).

It follows that f = 0 in the set E ∩ P (a; r). In particular, f(z) = 0 on the set
C1 × · · · × CN , where Cj is the connected component of the set Ej ∩ {zj ∈ C :
|zj | ≤ r} that contains the point aj , j = 1, . . . , N. Now, an application of Theorem
3 completes the proof. �

Example 2.5 Let E1 = {z ∈ C : =z = sin( 1
<z ) if 0 < |<z| ≤ 1, and |=z| ≤

1 if <z = 0}. Let E2 = {w ∈ C : =w = 0 and |<w| ≤ 1}. Then the set E = E1×E2

is an NB-set in C2.

In [21], Skiba proved the following identity principle

Theorem 2.6 . Let E be a compact subset of CN such that any two points a, b ∈ E
can be joined by an analytic arc Γab ⊂ E, Then E is an NB-set.
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Note that the theorem above does not cover Corollary 7, since the set E of
Example 8 is not arcwise connected. Roughly speaking, Skiba’s result follows from
the fact that analytic substitutions preserve the Bernstein quasianalyticity. This,
in turn, follows from a "uniform"version of the Bernstein-Walsh-Siciak Theorem 4
that was first proved in [15]. It has appeared very useful in multivariate polynomial
approximation. If E is the closure of a bounded domain (i.e. an open connected
set), one can give a more convenient version of Theorem 8. We first start with the
real case.

Theorem 2.7 The closure of a bounded domain in RN is an NB-set.

Proof Let f be a Bernstein quasianalytic function on E = Ω, where Ω is a bounded
domain in RN . Suppose that f vanishes on a compact subset F of E with c(F ) > 0.
By an argument similar to that of the proof of Corollary 7, we can find a point a ∈ Ω
and a number ε > 0 such that f(x) = 0 in the ball B(a, ε) ⊂ Ω. Let b be an arbitrary
point in Ω, a 6= b. Any connected open set in RN is arcwise-connected. Therefore
the points a, b can be joined by an arc Γab ⊂ Ω homeomorphic to the line-segment
[0,1]. Let δ := dist(Γa,b,Rn \ Ω). By the Weierstrass approximation theorem, for
each n ∈ N, one can find a polynomial map pn : [0, 1] 3 t 7→ (pn1(t), . . . , pnN (t)) ∈
RN (of degree deg pn = max{deg pn1, . . . ,deg pnN} not necessarily ≤ n) such that
dist(Γab, pn([0, 1])) < 1

n . Set qn(t) = pn(t)− pn(0) + a for t ∈ [0.1]. We have

dist(qn([0, 1],RN \ Ω) ≥ δ − dist(qn([0, 1]),Γa,b) ≥ δ −
2

n
> 0

for n ≥ n0(δ). By [21], Lemma 3.3, the function f ◦ qn is quasianalytic on the
interval [0,1] and it vanishes on a subinterval [0, t0] such that qn([0, t0]) ⊂ B(a, ε).
Hence by the classical Bernstein theorem, f ◦ qn vanishes on the whole interval
[0,1]. In particular, if bn = qn(1), we get f(bn) = f(qn(1)) = 0. But if n→∞, then
bn → b and consequently, f(b) = 0. Now, by continuity of f , f = 0 on the whole
set E and the theorem follows. �

Theorem 10 can be easily extended to the complex case, since any compact set
E in CN can be treated as a compact subset of the space R2N , and any po-
lynomial p of N complex variables z = (z1, . . . , zN ) generates the polynomial
q(x1, y1, . . . , xN , yN ) := p(x1 + iy1, . . . , xN + iyN ) of 2N real variables. Hence,
if a function f fulfils condition (1) on E with respect to polynomials in complex
variables z1, . . . , zN , it is also quasianalytic on E with respect to 2N variables
x1, y1, . . . , xN , yN . Moreover, if f vanishes on a compact set F ⊂ E that is non-
pluripolar in CN then by the argument of the proof of Theorem 10 it vanishes on
a ball B ⊂ intE (in CN ) which (treated as a subset of the space R2N ⊂ C2N ) is a
non-pluripolar subset of the space C2N . Thus, from Theorem 10 we derive

Theorem 2.8 The closure of a bounded domain in CN is an NB-set.

Further examples of NB-sets can be provided by combining Theorems 10 and 11.
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Example 2.9 Let P1 = {(z1, z2) ∈ C2 : max{|z1 + 2|, |z2|} ≤ 1}, let P2 =
{(z1, z2) ∈ C2 : max{|z1−2|, |z2|} ≤ 1‖, and let J = {(x1, x2) ∈ R2 : max{|x1|, |x2|} ≤
1}. Let E = E1 ∪ J ∪ E2. Then E is an NB-set. Indeed, if F is a subset of E
with c(F ) > 0, then at least one of the sets F ∩ P1, F ∩ P2 and F ∩ J must be
non-pluripolar. Since each of the extremal functions ΦP1 , ΦP2 and ΦJ is continuous
in C2 (see [20] or [6]), applying Theorems 10 and/or 11 we prove our claim.



W. Pleśniak 87

References

[1] E.J. Akutowicz, Extrapolation and approximation of functions given on linear sets of positive
capacity, Math. Zeitschr. 89 (1965), 414-419.

[2] S. Bernstein, Sur la définition et les propriétés des fonctions analytiques d’une variable réelle,
Math. Ann 75 (1914), 449-468.

[3] S. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions
analytiques d’une variable réelle, Paris, Gauthier Villars, 1926.

[4] A. Beurling, Quasianalyticity. Mittag-Leffler Lectures on Complex Analysis, 1977-1978, Col-
lected Works, vol. I, Birkhäuser, Boston 1989.

[5] A. Borichev, F. Nazarov and M. Sodin, Lower bounds for quasianalytic functions.II. The
Bernstein quasianalytic functions, Math. Scand. 95 (2004), 44-58.

[6] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London 1991.

[7] K. Kuratowski, Wstȩp do teorii mnogości i topologii, PWN Warszawa 1955 (Polish).

[8] F. Leja, Sur les suites de polynômes, les ensembles fermés et la fonction de Green, Ann. Soc.
Polon. Math. 12 (1934), 57-71.

[9] P. Lelong, Sur une propriété simple des polynômes, C. R. Acad. Sci. Paris 224 (1947), 883-
885.

[10] A.I. Markushevich, On best approximation, Dokl. AN SSSR 44 (1944), 290-292 (Russian).

[11] S. Mazurkiewicz, Les fonctions quasi-analytiques dans l’espace fonctionnel, Mathematica
(Cluj) 13 (1937), 16-21.

[12] S. Mazurkiewicz and H. Szmuszkowiczówna, Sur les zéros des fonctions quasi-analytiques
(B), Bull. Acad. Polon. Sci. A (1937), 1-6

[13] S.M. Mergelyan, Some questions of the constructive function theory, Proc. Steklov Inst.
Math. 37, Moscow 1951 (Russian).

[14] W. Pleśniak, Quasianalytic functions of several complex variables, Zeszyty Nauk. Uniw.
Jagiello. (Prace Matematyczne) 15 (1971), 135-145

[15] W. Pleśniak On superposition of quasianalytic functions, Ann. Polon. Math. 26 (1972), 73-84.

[16] W. Pleśniak, Some decompositions of functional spaces by means of quasianalytic functions
of several variables, Bull. Acad. Polon. Sci., sér. sci. math. astronom. phys. 20 (1972), 827-831.

[17] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. 147
(1977), 1-66.

[18] T. Ransford. Potential theory in the complex plane, Cambridge Univ. Press 1995.

[19] J. Siciak, On some extremal functions and their applications in the theory of analytic func-
tions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.

[20] J. Siciak, Extremal plurisubharmonic functions in CN , Ann. Polon. Math. 39 (1981), 175-211.

[21] A. Skiba, Bernstein quasianalytic functions on algebraic sets, Univ. Iagello. Acta Math. 41
(2003), 215-223.



88 Identity principles for Bernstein quasianalytic functions

[22] H. Szmuszkowiczówna, Un théorème sur les polynômes et son application à la théorie des
fonctions quasi-analytiques, C.R. Acad. Sci. Paris 198 (1934), 1119-1120.

[23] V.P. Zakharyuta, Extremal plurisubharmonic functions, orthogonal polynomials and
Bernstein-Walsh theorem for analytic functions of several complex variables, Ann. Polon.
Math. 33 (1976), 137-148 (Russian).

Wieslaw Pleśniak
Wydział Matematyki i Informatyki, Uniwersytet Jagielloński
ul. Stanisława Łojasiewicza 6, 30-348 Kraków, Poland
E-mail: Wieslaw.Plesniak@im.uj.edu.pl

(Received: 14.09.2013)


