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The purpose of this paper is to generalize the known Hardy spaces
H? (p > 0) of analytic functions in the unit disec ([2], [4] and [5]) and
to present properties of these generalized spaces. This is done using the

of the general theory of modular spaces ([11] and

[12]) as well as the theory of Orlicz spaces ([3], [6], [7], [8], [9] and [10]).
Some generalizations of the Hardy spaces H? for p > 1 can be found
in [13], [14], [15] and [16]. However, the investigations in these papers



4 R. Lesdniewicz

are not based systematically on the theory of modular spaces of analytic
functions. The paper attempts to develop such a theory.

The paper consists of four chapters. The first chapter briefly outlines
the already known theory of Orlicz spaces and also presents some prop-
erties of analytic functions in the wunit disc, needed for further studies.
Hardy—Orlicz classes and spaces are introduced in the second chapter and
there the inclusion theorems are considered. The norm generated by the
function ¢ is defined in the third chapter in which also one concerns the
mutual relations of various kinds of convergence of the sequences in the
Hardy—Orlicz spaces. The fourth chapter considers the problem of the
existence of an s-homogeneous norm in Hardy-Orlicz spaces.

Theorems and definitions from other chapters are referred to by the
number of the chapter.

The main results of this paper have been already published in the
Bulletin de L’Academie Polonaise des Sciences 15 (1966).

Finally, I would like to express my warmest thanks to Professor
W. Orlicz for his helpful criticism, valuable advices and inspirations.

. INTRODUCTORY NOTIONS

1. @-functions

1.1. A real function ¢ defined for « > 0 is called a ¢-function, if it is
non-decreasing, continuous for % > 0, equal to 0 only at v = 0 and tending
to oo a8 # — oo,

1.2.1. Let ¢, and ¢, be two ¢-functions. ¢, is said to be non-weaker
than @,, in writing ¢, -3 ¢,, if

po(u) < apy(bu)  for uw > ug,

where a, b >0 and u,> 0 are constants.
Since the relation -3 is reflexive and transitive, .we may say that

1.2.2. ¢-functions ¢, and ¢, are called equivalent, in writing ¢; ~ @,,
if @; -3 @, and ¢, 3 @y, simultaneously.
It is clear that ¢, ~ @,, if and only if, for some constants a,, a,, b,, b, >0
and w#,> 0 the following inequality is satisfied:

@191 (b1 u) < @o(u) < @y (Bou)  for w = u,.

1.2.3. LeMMA. A necessary and sufficient condition in order that a p-func-
tion ¢ be equivalent to a convex p-function is that for some constants a, b >0
and w4y, = 0 the following inequality holds:

ug o (ug) = aurte(bu,)  for wy > uy > u,.
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Changing this inequality to the converse one we obtain a necessary
and sufficient condition in order that the ¢-function ¢ be equivalent to
a concave g-function ([6] and [7]).

1.3.1. A p-function ¢ is said te satisfy condition (A4,), if for some con-
stants d > 1 and u, > 0 there holds the inequality

e (2u) < dp(uw) Jor u = u,.

1.3.2. We say that a g-function ¢ satisfies condition (4,) for a >1,
if for some constants d, >1 and u, > 0 there holds the inequality

y plan) < d@p(u) for u > u,.

1.3.3. LEMMA. The following four conditions are equivalent for any
g-function:

1° ¢ satisfies condition (4,),

2° @ satisfies condition (A4,) for some a >1,

3° ¢ satisfies condition (4,) for all a >1,

4° there exist a concave @-function y and a number s >0 such that
p(u) ~ x(v’) ([6] and [7]).

1.3.4. LEMMA. If a g-function @, satisfies condition (A4,) and @, ~ @,,
then ¢, satisfies also condition (A,) (see [71).

1.4.1. We say that a e-function ¢ satisfies condition (V,), if for some
constants d > 1 and wu, > 0 there holds the inequality

20(u) < p(du) for u = u,.

1.4.2. A p-function ¢ is said to satisfy condition (V,) for a« > 1, if for
some constants d, > 1 and %, > 0 the following inequality holds:

ap(u) < p(d,u)  for u > u,.

1.4.3. LeMMA. The following four conditions arve equivalent for any
p-function:

1° ¢ satisfies condition (V,),

2° ¢ satisfies condition (V,) for some a >1,

3° ¢ satisfies condition (V,) for all a >1,

4° there ewist a convex p-function v and a number s >0 such that
p(u) ~p(»’) ([6] and [7]).

1.4.4. LEMMA If a ¢-function ¢, satisfies condition (V,) and ¢, ~ @,
then @, satisfies also condition (V,) (cf. [T]).
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1.5. LEMMA. Let p be a convex -function satisfying the following two
condilions:

(0,) lim % 'y(u) =0
wu—->0+

and

(o0;) lim u 'y(u) = oc.
U~>00

Then the function
' () = sup{uv—uyp(u)lu =0} for v=0

is also a convex p-function and satisfies conditions (0,) and (oo,). Moreover,
(v')" =y ([3], Chapter I, §2).

1.6.1. The fundamental notion applied in this paper will be that of
a log-convex g-function:

A @-function ¢ is called a log-convexr @-funclion, if it may be written
in the form

g(u) = @(logu) for w >0,

where @ is a convex function on the whole real axis, satisfying condi-
tion (oo,).

1.6.2. LEMMA. Fach log-conver ¢-function ¢ can be wrilten in the form

(77
(*) o (u) =f ti'pt)dt  for =0,
0
where p is a positive and non-decreasing function for t >0, tending to oo
as i — oc.
Conversely, every function ¢ finite for w = 0 which is of the form (*),
48 & log-convex ¢-function.
Proof. If ¢ is a log-convex ¢-function, then the function @ (x) = ¢(€")
is positive and convex on the whole real axis, tends to 0 as & — — oo,
and satisfies condition (co,). As a convex function, @ may be written
([3], Chapter I, Theorem 1.1) in the form

D(@) = Dlay)+ [ pi(r)dr,

%o
where p, is a non-decreasing funection on the whole axis. But @(x;) -0
as r, > —oo. Hence we get

(%) P(z) = [ p(v)dr (—co<w< 00).
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Now, from the fact that @ is positive we deduce that p, is also a positive
function. Since

D (@)—@(0)) = a7 [ p(r)dr < py(w)  for 30,
0

we get from condition (o0,), p,(#) = oo as z — oco. Substituting = logu
in (**) we obtain

log u

= f py(r)dr = ft_lpl(logt)dt = ft‘lp(t)dt for v >0,
—00 0 0

where p(f) = p,(logt) is a positive and non-decreasing function for ¢ > 0,
and p(f) — oo as t — oo.

Conversely, let a function ¢ fmlte for 4 > 0 be of the form (*). It is
seen directly that ¢ is a ¢-function. Substituting 4 = €® in (*) and writing
@(6") = @(z), the function @ becames of the form (*+), where p,(z) = p(€’)
is a non-decreasing function on the whole axis and tends to co ag ¢ — oco.
Since p, is non-decreasing, we get for » <y

(z-+y)/2

b ((v+79)/2) = f pi(v)dv

x (z+y)/2

< Je@ati( [ op@des | putoa)
(z+y)i2

=4 [p(0dr+ fpl(r)dr)——-%(cb(m)w(y)).

By the continuity of the function @, this means that @ is convex.
Now, since p,(r) - o ag v — oo, the inequality

1D (z) = 27! fpl dr > }p,(2/2) for >0

x/2
shows that @ satisfies condition (oc,), and the proof is concluded.

1.6.3. LEMMA. Every log-convex ¢-function is stricily increasing for
u = 0.

We deduce this directly from Lemma 1.6.2, since the function p(f)
n (*) is positive for ¢ > 0.

From this lemma it follows at once that a log-convex ¢-function
@ possesses an inverse ¢_,. The function ¢_, is obviously a ¢-function
itself, but it does not need be log-convex. For example, ¢ (%)= exp(u?)—1
is a log-convex g-function and possesses an inverse ¢_,(u) = log"*(1 + u)
which is not log-convex.
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1.6.4. LEMMA. Boery function ¢(u) = y(u®), where s >0 and y is
a convex @-function, is a log-convex @-function.

Proof. Obviously, ¢(4) = y(u°) is a @-function. It is also easily seen
that the function @(x) = p(e*) = y(¢**) is convex, because it is a super-
position of convex functions y and ¢**. Now, by Jensen’s inequality de-
fining convex funections, we have for the convex g-function v

1 1 1 1 1
w(1)=w(; v (1—;) '0) <—v—w(v)+ (1— ‘1)‘)'/’(0) =;w(’v)

for v >1. Hence
271D (w) = () = 2 e (1) for 2 >0.

Since 7' — oo a8 & —> oo, the function @ satisfies condition (oo,).

2. Orlicz spaces

2.1.1. Let ¢ be a ¢-function. For any complex-valued function f
defined and measurable in the interval <0, 2xn) we define

2r

LN = [ elf@l)a.

2.1.2. THEOREM. The functional F (-) possesses the following properties:

1° £,(f) =0, if and only if, f=0 (f(t)=0 almost everywhere in
<0, 2m)),

2° Solaf) = F,(f) for la] =1,

3° Folaf 1+ bfs) < I (f1) -+ (f2) for veal, a, b >0, a--b =1,

4° if S,(f) < oo, then S (af) -0 as a — 0 ([6] and [8]).

The above properties show that the functional £,(+) is an example
of a modular in the sense of Musielak and Orlicz [11].

2.1.3. Let us denote by L” the set: of functions f measurable in {0, 27)
for which £,(f) < co. The set L is called an Orlicz class (see [3]).

Orlicz classes L” are convex sets, symmetric with respeet to zero —
this follows from 2.1.2, 3° and 2°, immediately — but in general they
are not linear sets. Therefore the following notion is introduced.

By L*® we denote the set of measurablef unctions f such that af ¢ L?
for some a > 0 (depending on f). Clearly, the set L*® is the linear hull
of L? in the space of all measurable functions on <0, 2x). The set L*?
is called the Orlicz space. Moreover, we denote by M? the set of measurable
functions f such that afeL? for each a > 0. Applying 2.1.2 we verify easily
that M°® is the greatest linear subset of the space L*®, which is contained
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in L?. The set M? is called the space of finite elements in L*® ([6]-[8]
and [3]).
It is obvious that if ¢, () = ¢(u/m) and @, (u) = @(mu), then

oo ~ o ~
%
L ={J L and M? =) L%».
m=1 m=1

In case ¢(u) = uP, p >0, L7 is the space of functions integrable with
power p; we use then the usual symbol I? in place of L°.

2.1.4. THEOREM. The inclusion
o]
L? < ) L%
n=1
holds if and only if theve exist a positive integer m and numbers @ >0 and
Uy = 0 such that the following inequality is satisfied:
P (w) < dp(u)  for w>u, ([6] and [7]).
2.1.5. THEOREM. The inclusion

N L < I?

n=1

holds if and only if there exist a positive integer m and numbers d >0 and
Uy = 0 such that the following inequality is satisfied:

p(u) < dsup{p(u), pa(u), ..., @ ()} for w=u, ([6] and [7]).

2.1.6. TuEOREM. The inclusion L® < L*2 holds if and only if for some
constants d >0 and wu, > 0 there is satisfied the inequality

Po(u) < dpy(u)  for u > u,.
Thus, the necessary and sufficient condition for the equality L*1 = L%z
is the existence of constants dy, d, >0 and u,> 0 such that

g (4) < @a(u) < dopy(u)  for uz>u, ([6] and [7]).

2.2.1. TaEOREM. If L™ < L*2, then S, (f,) =0 tmplies 4, (f,) =0
for an arbitrary sequence (f,) of functions from L*1.

2.2.2. A sequence (f,,), f,eL"?, is called ¢-convergent or modular conver-
gent to fe L*?, in writing f, > f, if #,a (fo-f)) > 0 for a constant a >0
(depending on the sequence (f,)).

2.3.1. We define for feL*?,
Ifife = int{k > 0] £, (f/k) < k}.

This functional in L*? is called the norm generated by ¢.
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2.3.2. THEOREM. ||-||; possesses the following properties in L*?:
1° |15 is an F-norm,
2° I'% is a complete space with respect to H-H’;,

3°4f 1f1 (O < |fa(0)] for almost all te {0, 2x), then [f.|l, < |Ifully,

42 F,(N < Iflly 3 1flp <15 F.()) <1 implies |fil; <1,

5° if Ufully >0, then f, - 0,

6° |If,ll, = 0 if and only if £, (af,) — 0 for every a >0 ([6] and [8]).

The Orlicz space L7 as a Fréchet space with norm ||- |l will be denoted
by [L*7, [|-3]-

2.3.3. THEOREM. The space M7 is identical with the closed linear hull
in [L*, ||I-1;] of the set of bounded measurable functions on (0, 2x) ([6]
and [8]).

2.3.4. TuEOREM. The space M? is separable in the norm |-|j; ([6]
and [8]).

2.3.5. THEOREM. The following conditions are equivalent:
1° P2 =3 P13

2° L™ < L*%2,

3° M1 c M*,

4° [|fallgy, — O implies |flly, >0 for f,eL* n L™,

5 fu 2L 0 implies f, 72 0 for f,eL*™ n L*: ([6] and [8]).

2.3.6. THEOREM. The following conditions are equivalent:
1° ¢ satisfies condition (A,),

2° LY = L%,

3° L? = M?,

4° L** is a separable space in the norm ||,

5% fa 5> 0 implies ||f,/[} — 0 for f,eL*? ([6] and [8]).

2.4.1. THEOREM. If ¢(u) = p(u°), where 0 <s <1 and y is a convex
@-function, then an s-homogeneous norm may be defined in L*® by the formula

Iflie, = int{k > 0] £, (flE") < 1}.

Norms ||-|l; and |||, are then equivalent in the sense that Wfalls — 0
if and only if [ful% — 0 for f,<L* ([6], [8] and [9]).

2.4.2. THEOREM. If an s-homogeneous norm |-|° is defined in L*7,
0 < s<1, such that the space L% is complete with respect to this norm,
and convergence 1o 0 in this norm implies modular convergence to 0, then
@(u) ~ p(u®), where y is a convexr ¢-function ([6] and [9]).
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2.5.1. THEOREM. If w is a convex ¢-funclion satisfying conditions (0,)
and (o0o,), then a homogeneous norm may be defined in L** by means of
the formula

11l == sup{f If(Hg®)at.s,(g) < .L,geLW'}.

This norm is equivalent to the norms ||-|l’:, and ||-|Ii,; the equivalency
of "Ity and |3, (which is also homogeneous) may be written in the form
of the inequality ||fiiY, < Ifl(, < 20fl%y, where feL*, ([3], Chapter II).

2.5.2. THEOREM. If feL™, where v is a convexr g-function satisfying
conditions (0,) and (oo,), then

1
ifIl,y = int {% (142, (k) | >0]l ([3], Chapter II).

3. Classes N and N’ of analytic functions in the unit disc

3.1.1. We denote by N the set of functions F analytic in the disc
= {2| |2| < 1}, for which

27

up{f log™ | F (re")|dt [0 < » < 1}

where log™u = logsup{l, u} for u > 0.

3.1.2. THEOREM. A function F analytic and not vanishing identically
in the disc D belongs to N if and only if it can be written in the form

1 2 ’lt
(*) F(2) — B(2)-exp (2n f - te - an (t))

where h is a real-valued function of bounded total variation in {0, 2=> and
B is the Blaschke product

_ pldm t—10, 1 X 45
(2) ez]]z_énlé_] (&n =1/Z0)-

Here, d is a real number, m — a positive integer, and {, satisfy the
inequalities 0 < |0, <1 and XY (1—12,]) < co ([17], Chapter VII,

n
(7.30); [2D). .
3.1.3. THEOREM. If FeN, then for almost every t theve exists the limit

lim F(z) = (e,
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if # tends 1o € between two chords of the disc D starting at the point ¢ .
Moreover, if the function F' does not vanish identically in D, then log |F(e*)| < Lt
(71, Chapter VII, (7.25); [2]).

3.2.1. We denote by N’ the set of functions F e N for which the function
f in 3.1.2 (*) is of absolutely continuous positive variation in the interval
{0, 2. Moreover, we shall include in N’ also the function identically
equal to 0 in D.

3.2.2. ToEOREM. A function F analytic in the disc D belongs to the class
N’ if and only if the integrals

T
[ log*|F(re"dt, 0<r<1,
0

are uniformly (with respect to r) absolutely continuous functions of the va-
riable & ([17], Chapter VIII, (7.51)).

3.2.3. THEOREM. A4 functwn F of the class N belongs to N’ if and
only if

lim f log*t [F(re)| dt = f log* [F(¢*)| dt

r—1—g

([17], Chapter VII, (7.53)).

3.2.4. THEOREM. Let FeN' and let D be a non-negative, non-decreasing
and convex function for w = 0. Then

[ dflog* [F(reé))dt < [ (log* |F(e")])at

for every r, 0 <Ly <1 ([17], Chapter VII, (7.50)).

3.2.5. THEOREM. Let f be a non-negative function on the interval {0, 2x),
and let logf(-)eL'. Then there exists a function F e N’ such that |F(6%)| = f(t)
for almost all t from the imterval {0,2r) ([17], Chapter VII (7.33)).

3.2.6. THEOREM. Classes N and N' are linear sets in the space of functions
analytic in the disc D.

Proof. Let us remark that

log(14+u)—1log2 < log™u < log(1+u) for u> 0.

Now, let F and G analytic functions in D, and o and g be complex
numbers. For an arbitrary measurable set £ and arbitrary r, 0 <{r < 1,
we have
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Ef log* |aF (re) -G (re')| dt < Ef log (14 [aF (re) 4 pG (re)|) di
< Ef log (14 la| | ¥ (re®)|+ |B| |G (re™) ) dt
< Ef log((1+ lal) (1-F [B1) (14 |7 (re®)|) (1+ |G (re™)])) dt
= log((1-+lal)(1+ |8]))- mes B+ Ef log (1+ | F (re)|} di +
1- Ef log {1+ |G (re™)|) dt
< log (4 (1+4-la) (1+|B])) - mes B+ Ef log™ | F (re)| di+

+ [log*(G(re") dt.
B .
Hence we deduce, by 3.2.2, that if F,GeN’, then also aF-+5GeN’.
Taking in the above inequality = <0, 2x) we see that if F, G« N, then
also aF'4-fGeN.

II. HARDY-ORLICZ CLASSES AND SPACES.
COMPARISON OF CLASSES AND SPACES

1. The modular Ue(*)

To simplify the formulations of theorems and definitions we take here
the convention that the letter ¢ will always mean a log-convex g-function,
because our considerations will concern only log-convex ¢-function.

1.1.1. We define for any analytic function F in the disc D = {¢| |2| < 1}

27
po(ry F) = I, (F(re") = [ o(|F(re"))dt  for 0<r<1
0
and

po(F) = sup{u,(r, F)| 0 <r < 1}. ¢

1.1.2. THEOREM. Let I be an analytic function in the disc D. Then
u,(r, F) is a non-decreasing function for 0 <r <1, and so

to(F) = mpu,(r, F).

r—>1—
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Proof. It is known ([17], Chapter VII, (7.11)) that a function F
analytic in the disc D satisfies the inequality

2w

) 1
log|F(oe)| < 5 — |
a7
0

7~2_02 it
- log |F'(re™)| dt
r2—2rpcos (t— 1)+ o? og |F'(re")|

for arbitrary 0 < o <7 < 1. Since the function @(z) = ¢(€*) is non-
decreasing and convex on the whole real axis we get, by the Jensen’s
integral inequality

27

p2_ . 42
®(log | F(06™)]) < @( ;ﬁ Of - 21«97008 (fm mppr loglF(re“)ldt)
27
<> f - & (log | F' (re")]) dt
T 2nm 7 —2rocos(t— 1)+ o2 ° ’
ie.
° - P —of .
(*) @(1F (06™)]) < (1 (re)|) dt

21 ; r2—2rpcos(t— t)+ o?

for 0 < o < r < 1. Integrating this inequality with respect to 7, 0 < v < 2=,
and changing the order of integration at the right-hand side, we obtain

27 2mn
[ p(iF(ee™)dr < [ p(IF(reh)l)@t  for 0< o <r <1,
0 1]

and this coneludes the proof.
1.1.3. TuROREM. Let F be an analytic function in the disc D. Then

. po(F)
F <o |l ———— < 1.
# (@) < l(n(l_Izl) Jor I
Proof. Since
2__ o2 r 2
r—e gigg for 0<p<r <1,
r2—2rgcos(t—t)4+ 02 r—po r—op

it follows from inequality (*) in the proof of Theorem 1.1.2 that
2r

@(|F (0e7)]) < ;(1—1_5 (;f P(|F(reY)|)dt  for 0 <o <r < 1.

Passing to the limit as » - 1—, Theorem 1.1.2 yields

(| F (0e™))) %% for 0 <o <1.
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Since a log-convex ¢-function ¢ possesses an inverse ¢_, which is
a g@-function (see 1.1.6.3), we obtain hence the inequality given in the
theorem.

1.2.1. THEOREM. If F is an analytic function in the disc D such that
uo(F) < oo, then FeN'.

Proof. The function @(x) = ¢(e) is positive, non-decreasing, convex
on the whole real axis, and satisfies condition (oo;). Since it is convex

and positive, we may apply Jensen’s integral inequality for an arbitrary
set ¥ of positive measure and for an arbitrary r, 0 < < 1. We get

f log* ]F(re”)]dt) f (log* |F (ré") ) dt

1
@
(mesE mes P

2

o™ 17 [ - o it
<—— Of P (log " 1P (re") )t < — (Of @ (log | (re") ) dt+ 270 (0))

1
= (14, (75 B) 4270 (1)) <

mes E (g B+ 2m (1)

mes B

and hence

(*) (p(mesE f100+|F(fre )|dt) mes B < u, (F)+ 2rp(1).

Now, let us suppose there exist a sequence of measurable sets (FE,)
such that mesE, >0, mesE, -0, and a sequence (r,) of numbers
0 < r, <1 such that

log" |F(r,é')|dt=n>0 formn =1,2,.
f=3 T 7 2

E,

ey

where 5 is a consfant independent of ». Hence from the fact that the func-
tion @ is non-decreasing and satisfies condition (oco,) follows

Iim®

——— | log*|F(r,e")dt E,z2lim@o|{——]|. B, = oo.
lim ( mes f og (r,e")l )m% L, == lim (mesE) mes¥, =

n—>00

But this is a contradiction to inequality (*), whose right-hand side
has a constant finite value. Thus we conclude from (*) that the integrals

[log* [F(re)ldt (0 <r<1)
0

are uniformly (with respect to r) absolutely continuous functions of the
variable . By Theorem 1.3.2.2, we obtain the thesis of the theorem.
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1.2.2. THEOREM. If FeN', then

2

po(F) = S (F(e) = [ o(F(e)])at.
0
Proof. Since the function @ (z)= ¢(€°) is non-negative, non-decreasing
and convex, we conclude from Theorem 1.3.2.4, that
2n 2r
[ oflog* |F(re"))dt < [ o(log™ |F(e")|)dt  for 0 <r<1.

0 0
Hence, taking into account Theorem 1.3.1.3, we get by Fatou’s lemma

2n 2w

lim f D (log* |F(ré)|)dt = f @(log* |F (6")))dt

r=>1—g 0

Since
P (log™u) = P(logsup{l, u}) = sup {(0), P(ogu)} = sup{p(l), p(w)},

the above equality may be written in the form

2r

(%) hrlnfsup{qp )y (17 (ré")])} fsup{(p ), ¢(IF(e™)])} dt.
However, 0 < inf{gp(1), p(|F(re")|)} < ¢(1) for each r, 0 <r <1, and
each ¢. Moreover, by Theorem 1.3.1.3,
lim inf{g (1), ¢(|F(re"))} = int{p(1), p(|F ("))}

r—>1—

for almost all {. Hence
21 27

(#¥)  lim [ inf{p(1), p(|F(re)|)}dt = [ inflp(1), ¢(1F ("))} dt
r~>1— g 0
Adding both sides of equalities (%) and (x#), and taking into account
the identity sup{a, b}-+inf{a, b} = a+ b valid for any real a, b, we get

amn

lim f( Y+ e([Fre))dt = [ (p(1)+o(F () at

rl—y 0
Subtracting on both sides 2np(l) we obtain the required equality.

1.2.3. Remark. The assumption Fe¢N' in Theorem 1.2.2 cannot be

replaced by the weaker one FeN.
This will be shown by the example of the function

142

F(z) = exp (1—;;) (Jo] < 1).
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We have for this function

. 14 re' 1—p2
|F(ré¥)| = exp (re~_{:~7@—) = exp (———T—) for 0 <r <1,

1 1—2rcost--+2
Hence
2mn 2r
f10g+lF(rei’)|dt (T s—on for 0<r<l1,
: : 1—2rcost++2

and this means that FeN. Now, we show that u,(F) = oo for every
log-convex ¢-function ¢. By the inequality |sinz| < |,

. 21——7‘ 1—r\? L 5
1—cos(l—7r) = 2-sin 3 <2 2 = $(1—r)".

Hence we get for | <17
1—72 - 1—72 _ 1—¢2
1—2rcost+r2 - 1—2rcos(l—r)+r2  (1—71)2+2r(l—cos(1l—r))
1—172 1

> = .
(1—r)24r(1l—r)2 1—7r
Thus, we obtain for ¢(u) = @(logu)

27 27

po(r, F) = f (1B (ré"))) dt = j & (log | F (e ) dt

0

i 1—92 1—7r2
f ( ) di = f ¢<————~)dt
g 1—2rcost+r? 1—2rcost—r?

! flli<i-n
1
=20 1—
(1 )‘ "
Now, condition (oo,) for the function @ yields

1
im p,(r, F') > 2lim @(l )(1—1*) = oo,

r—1— r->1—

and this means that u,(F) = oco. On the other hand, let us remark that

|F(e%)] = lim e 1= 0 =1
— X e = @ g
ol P 1—2rcost+ r2

for 0 <t < 2=, and so

2

L (B () = [ p()dt = 2ng(1).

0

Roczniki PTM — Prace Matematyeczne XV 2
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1.3. THEOREM. The non-negative functional u,(-) possesses the following
properties on the set of analytic functions in D:

1° u (F) =0 if and only if F =0 (i.e. F(z) = 0 identically in D),

2° u,(aF) = p,(F) for numbers a with absolute value |a| =1,

3° po(aF,+bF,) < p,(F)+ u,(F;) for real a,b>0, atb =1,

4° if p,(¥F) < oo, then p,(aF) —~0 as a —0.

Proof. If F = 0, then obviously u,(#) = 0. Conversely, if u,(F) = 0,
then F = 0, by Theorem 1.1.3. Properties 2° and 3° are obtained from
the corresponding properties of £, (-) (see 1.2.1.2), immediately. Finally,
property 4° is deduced from Theorem 1.2.1 and 1.2.2, and from the analo-
gous property of £, (-).

Similary as the funetional .#,(-) for measurable functions of a real
variable, the functional p,(-) for analytic functions is an example of
a modular in the sense of Musielak and Orlicz [11].

1.4.1. We define two simple operators for analytic functions in the
dise D. :
Let F be an analytic function in the dise D, and let » and k be real

numbers, 0 <r < 1. We denote by T, F and S,F functions defined by
formulae

T,F(z) = F(rz) and S,F(z) = F(ze™) for zeD.
Cleary, operators 7, and 8, are distributive and transform analytic
functions in D into analytic function in D.

1.4.2. LevmA. Let ¥ be an analytic function in D. Then we have for
every v, 0 <r <1,

:uqa(r7 F) = ;uqJ(Tr-F)'

Proof. Let us remark that for an arbitrary fixed r, 0 <r < 1, the
function 7,F is bounded in D, and T, F(¢*)= F(re¥) for all ¢. Since T, F
is bounded, it belongs to N’. Hence, by Theorem 1.2.2,

2r 27

1o T,F) = [ o[ TF )it = [ o(Fee))at = pu,(r, F).

0

1.4.3. LevmA. If F is an analytic function in the disc D, then we have
for an arbitrary real number A

/’tqa(ShF) = :utp(F)

This follows immediately, from the fact that the functions ¢ (| F (re“)l),
0 < r <1, are 2n-periodic. .
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2, The definition of Hardy-Orlicz classes and spaces

2.1.1. Let us denote by H? the set of functions F analytic in D for
which u,(F) < co. In the sequel the set H” will be called the Hardy-
Orlicz class.

It follows directly from Theorems 1.2.1 and 1.3 that H? is a convex
set symetric with respect to zero in the class N'. In general, H? are not
linear sets. Therefore we define, just as in the case of functions of a real
variable:

We denote by H*® the set of analytic functions # such that aFeH?
for an a > 0 (depending in general on F). Obviously, the set H*? is the
linear hull of H? in N'. The set H*? will be called the Hardy-Orlicz space.

Moreover, we shall denote by K¥ the set of analytic functions F such
that aF<H? for every a > 0. It is easily shown that K¥ is the greatest
linear subset of the Hardy-Orlicz space H*? contained in H?. The set
K® will be called the space of finite elements in H™®.

Obviously, if ¢, (%) = ¢(u/m) and @, (w) = ¢(mu), then

H* = | H and K° =) H'.
m=1 m=1
Let us denote yet by K the set of functions F analytic in the dise D
and continuous in the closed dise D = {2} |2| <1} and by H™ the set
of functions F analytic and bounded in the disc D. The following inclusions
are evident:

KcHcK*cH «c H?< N < N.

In case ¢(u) = uP, p >0, H? is the Hardy space for the power p;
then we write H” in place of H?.

2.1.2. THEOREM. A function F anelytic in the disc D belongs to H®
(to H*®, K¥, respectively) if and only if it belongs to N’ and its limit function
F(e") belongs to L° (to L*%, M?, respectively).

This follows at onee from Theorem 1.3.1 and 1.3.2.

Let us turn to Theorems 3.2.3 and 1.3.2.6 and let us remark, that
the correspondence between an analytic function F from the class N and
its limit function F(¢) is an isomorphism of the class N onto the set
of measurable fuctions f of a real variable in (0, 2rn) for which there
exists a function FeN such that f(f) = lim F(ré¥) for almost all ¢ from

r—>1—

the interval <0, 2x). Thus, if we neglect the difference between isomorphic
spaces, we may write Theorem 2.1.2 in the form

H =N nL?, H" =N nL', K°=N n M.
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2.1.3. TUEOREM. If F belongs to H**' and F(6“) belongs to L2 (to L%z,
M*®2, respectively), then F belongs to H" (to H*%2, K%, respectively).

This follows from Theorem 2.1.2, immediately.

The above theorem is more general than an analogous theorem given
by Safronova [14] for convex ¢g-functions, because we suppose ¢ to be
only a log-convex ¢-function.

2.2. TaROREM. Bvery function F from the class N belongs to a Hardy—
Orlicz class H®.

Proof. We denote for a function FeN’
E, = {te<0,2n)|n—1< |F(e") <n} form =1,2,...

Applying the inequality log(l -+ u) < log2+logtu for » > 0 we have

o] 2T 21
Dlogn-mesH, < [ log(1+ | F(¢")])dt < 2log2 + [ Tog* |P(e")dt < oo,
1] : 0

n=2

It is known that one may choose a non-decreasing and tending to oo
sequence of real numbers a, such that still

Zan-logn-mesEn < 0.

n=2

Here we may suppose additionally that 0 < a, < a;log2; we construct
a function

la,t  for 0 <t <2,

a, for n—1<t<n, n=3,4,...

Since the function p is positive, non-decreasing for {> 0 and tends
to oo as ¢ -> oo, the function

U
@(u) = ft'lp(t)dt for u >0
0
is a log-convex ¢-function, by Lemma I1.1.6.2, Since
2 n
g(n) = [7p)dt = ax+ D a(logk—log(k—1))
0 k=3

n
< an(log2+ 2{logk—log(k——1))) =a,logn for n =3,4,...,
k=3 ’
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Theorem 1.3.2 gives

2r

olF) = [ o(IF(6")])dt < ¢(2)- (mes B+ mes By)+ Y p(n)mes B,
n=3

0
o0
< 2w (2)+ Zan-logn-mesEn < oo,
n=3

Thigs proves FeH?.

3. Comparison of classes and spaces

3.1.1. LEMMA. If f is a real function belonging to L? and satisfying the
imequality f(t) = ¢ for almost all T from the interval {0, 2%), where ¢ is a posi-
tive constant, then log f(-) e L'.

Proof. The function @{x) = ¢(¢”) satisfies condition (co;). Hence
there exists a real number x) > 0 such that » < @(x) for x> x,, and
2 < 2+ D(x) for all real x. Substituting # = logu we obtain

logu < @y+¢(u) foru >0.
Denoting
B = {t(0, 2m)|f(1) > 1}
we get

27t

[ Nogfide = [logf(nydi— [ logf(t)ar
E

4] (0,2r)\F

< 2rmy+ [ @(f(0)dt—2rlogint{l, ¢}
E

< 2n(w,—logini{l, c}) +7,(f) < oo.

3.1.2. THEOREM. The inclusion

M H” < H?

v=1

holds if and only if for a positive integer m and for some constants d > 0
the following inequality is satisfied:

(*) p(u) < d-sub{p;(v), po(u), ...y (W)} for u > u,.
Proof. If (*) holds, then applying Theorem 1.2.1.5, we have the fol-

lowing inclusion for Orlicz classes:

(%) (L% < L°.
r=1
We multiply this inclusion by N'. By 2.1.2, we get the inclusion for
Hardy-Orlicz classes given in the theorem.



22 R. Leéniewicz

Conversely, if inequality (*) does not hold, then according to Theorem
1.2.1.5, inclusion (**) also does not hold. Hence there exists a measurable
function ¢ such that geL® for each » and g¢L?. We take the function

t if Hi=1
s - [on 2=
1 elsewhere in (0, 27).
Since
I, () < I (9)+2mp, (1)  and  J,(f) = F,(9),

we have also feL? for each v and f¢ L?. Applying Lemma 3.1.1 we deduce
from feL®r and f(f) > 1 for {0, 2=) that logf(-)eL*. Hence, by Theorem
1.3.2.5, there exists a function FeN' such that |F(e")] = f(¢) for almost
all ¢ from the interval {0, 2xn). Applying Theorem 1.3.2 we get Fe<H®
for each v and F¢H®.

3.1.3. THROREM. The inclusion
H? c | J H*
T y=1

holds if and only if for a positive integer m and for some constants d > 0
and w, == 0 the following inequality is satisfied:

(%) O () < dp(u)  for w = u,.

Proof is performed similarly as in case 3.1.2. Namely, 1f (*) holds,
then Theorem I1.2.1.4 implies the inclusion

(%) L? < (U L%.
v=1

We multiply this inclusion by N'. By 2.1.2, we get the required in-
clusion. Now, if (x) does not hold, then (**) does not hold, teo. Hence
there exists a measurable function ¢ such that geL? and ¢ ¢ L% for each ».
We define the funection f as in the proof of 3.1.2. Since

Iolf) < Fplg)+279(1)  and S, (f) =5, (9),

we have feL” and f¢L® for each v. But feL® and f(f) > 1 whence, by
Lemma 3.1.1, logf(-)elr. Applying Theorem 1.3.2.5, we see that there
exists a function FeN' such that |F(e¥)] = f(f) for almost all ¢ from the
interval {0, 2x). According to Theorem 1.3.2, F'e H® and #¢H® for each ».

3.1.4. TarorEM. The inclusion H®* < H holds if and only if for
some constants d > 0 and u, > 0 the following inequality is satisfied:

@a(u) < dpy(u)  for u > u,.
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Thus, the equality H™ = H"2 holds if and only if for some constants
dyy dy >0 and u, > 0 we have

diipi(u) < go(u) < dyg(u)  for u = u,.

This Theorem is a special case of Theorem 3.1.2 (and also Theorem
3.1.3).

3.1.5. The inclusion
H‘P = m H‘pv

r=1
holds if and only if for each positive integer m there exists constants
d,, >0 and u, > 0 such that the inequalities
() < dpp(u)  for w > uy,
are satisfied for m =1, 2, ...
This follows from Theorem 3.1.4, immediately.
3.1.6, THREOREM. The inclusion

U H” < H*

=1 __

holds if and only if for each positive integer m there exists constants d,, >0
and U, > 0 such that the inequalities

glu) < dpgu(u)  for u > uy,

are satisfied for m = 1,2, ...
This follows from Theorem 1.3.4, immediately.
3.1.7. TurorREM. The identity

(%) H* = | H"
y=1

holds if and only if there exists a positive integer m for which
(%) H% < H*m = H®* for n =1,2,...

Proof. If (*) holds, then according to Theorem 3.1.3 there exists
a positive integer m such that ¢, («) < d-@(u) for » > u,, where d >0
and w,> 0. Thus, applying Theorem 3.1.4, we get H* < H’n. Hence
we have

H% | JHY = H* <« H’» for n =1,2,...,

v=1

and we obtain (x%). Conversely, it is obvious that («*) implies (*).
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3.1.8. THEOREM. The identity

() HY = () H™

y=1
holds if and only if there exists a positive integer m such that
m
(#*) H%c (Y H? = H® for n =1,2,...
r=]1

Proof. If (*) holdg, then we deduce from Theorem 3.1.2 the existence
of a positive integer m for which

(%) p(u) < d-sup{p (), @2(%), ..., Pu(w)}  for u > u,,

where d >0 and wu,> 0. We define ¢,(u) = ¢,(u) for n =1,2,...,m,
and ¢, (%) = @,(u) for » = m-+1,... By Theorem 3.1.2, we obtain from

inequality (%)

s

H% = O° > (| H» = () H".
y=1

y=

]
-
-

v

Hence follows (x%). The converse implication is obvious.
3.1.9. THEOREM. («) If H%» = H*r+1 gnd H?»+1 % Hnform =1, 2,...,
then

oe +\J H»
y=1

for each ¢.
(B) If H?» o Hf»+1 and H%n+1 5 H% for n = =1,2,..., then
H? # (N H*
y=1
for each ¢.

This follows from Theorems 3.1.7 and 3.1.8, immediately.

3.2.1. THEOREM. The necessary and sufficient condition for the inclusion.
H*' = H* is ¢, 3 ¢,. Thus, the equality H**1 = H*® holds if and only
if o1 ~ @s.

Proof. If ¢, 3 ¢,, then we have L*?1 < L**2, by Theorem 1.2.3.5.
We multiply this inclusion by N’. By 2.1.2, we get H*” < H*?2. Con-
versely, if the inclusion H*%' = H*?2 holds, then

o0 ~
4 Pm — I*e
H*' c | Hm = H*%,
m=1

where ¢,,(%) = @,(u/m). Applying Theorem 3.1.3 we obtain that for
positive integer m and for some constants d > 0 and %, > 0 there holds.
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the inequality
o (u/m) < d-pi(u)  for u = w,.
But this means @, 3 ¢;.

3.2.2. THEOREM. The necessary and sufficient condition for the inclusion.
Ko< ' is ¢, 3 ¢,. ‘

Proof. If ¢, 3 ¢, then we deduce from Theorem 3.2.1 at once that
K% c H" c H™,

Conversely, let us suppose ¢, -3 ¢; does not hold. Then there exists
a sequence (u,) increasing to oo such that

, =1 and  @(u,) >2"¢(n?u,) forawn=1,2,...
We define disjoint sets F, = (0, 2xn) of measures
Zmepy (1)

mes E —
" 2vp(ntw,)
and a funetion
neu for tel, , n =1,2,...
f(t) — n n? . ? 2 ?
1 elsewhere in {0, 2x).
We have for an arbitrary positive integer m
2
Fonf) = [ gufmi(o)at
S 2 (1) (1)
P, “n(pl
<2 1 Z mn, Z mnun _
g (1) < @1 ( S R ST IR, 2 (o u, o] P 1 (0,

< 27T<P1(1)+%(m um)'271'+27t¢’1(1) < .

2n [++]
1 1 2‘1 n 27, (1)
— —_ [ > ' -
j% ( m f) (}f P2 ( m f(t)) at - ¢-( m un) 2"901 (n?un)

n=m

s gy > D)
= U, ———————— 27 1)
Z ¢2(. n) (pl %2 u, TP, (

n=1m n=m

and

This means that feM® and f ¢L*"2. From that fed® < L*1 and
f(#) =1 for te{0, 2x) we obtain logf(-)eL', by Lemma 3.1.1. Now, by
Theorem 1.3.2.5, there exists a function FeN’ such that |F(e¥)| = f(t)
for almost all ¢ from the interval {0, 2x). Applying Theorem 1.3.2, we get
here Fe K% and F¢H"".

3.2.3. THEOREM. The inclusion K®' < K*2 holds if and only if ¢, -3 ¢,.

Proof. If ¢, 3¢,, then M%< M*, by Theorem I1.2.3.5. Multi-
plying this inclusion by N’ we obtain K% < K2, Conversely, if K% <« K*2,
then also K% < H"?2. By Theorem 3.2.2, we conclude ¢, -3 ¢, .
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3.2.4. The inclusion H**1 < K" holds if and only if for every positive
integer m there ewists constants d, >0 and wu, > 0 such that the inequal-
ities

{*) P (mu) < dy, gy () for w > u,

are satisfied for m = 1,2, ...
Proof. Supposing (*), Theorem 3.1.5 yields

(+%) H"' = () H™ = K%,

N v=1
where ¢,,(#) = @,(mu). Since K® is a linear set and H*?! is the linear
hull of H°1 in the class N', we get H* < K. Conversely, if the inclusion
H**t = K*: holds, then there holds also inclusion (##). Applying Theorem
3.1.5, we get (*). ,

3.3.1. THEOREM. The necessary and sufficient condition for the equality

K% = H*" 4s that ¢; ~ ¢, and ¢, satisfies condition (A,).

Proof. If K% = H*%2, then we deduce from Theorem 3.2.2 that
P2 =3 @y, le.

(*) Pa(u) < apy(bu)  for > uy (a,b >0, u,>0),
and from Theorem 3.2.4,
(%) pr(mu) < dpgy(u)  for w > uy, (d, >0, u, > 0)

for m =1,2,... We may suppose that the constant b in (*) is a positive
integer; in other case we could take the least positive integer greater
then & in place of b. From (*) and (**) we get

U,
2 (20) < a-gy (b 2u) < adygy(u)  for w> sup{ 2°,u2b}‘

Hence we obtain that ¢, ~ ¢, and ¢, satisfies condition (4,).

Conversely, let ¢, satisfy condition (4,), and let ¢, ~ ¢,. Then
K1 = K*2, by Theorem 3.2.3. Moreover, since ¢, satisfies (4,), we conclude
from Theorem 1.2.3.6, that M®2 = L*"’Z Multlplylng this equality by N’
we obtain K% = H*?2. Thus, K1 = H*%2,

3.3.2. THEOREM. The following four conditions are mutually equi-
valent:

1° ¢ satisfies condition (A,),

2° 0? = H*°,

3° H* = K°*,

4° K° = H*.
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Proof. From the preceding Theorem the equivalency of 1° and 4°
follows, immediately. Now, if 2° or 3° holds, then H? ig a linear set and
this implies 4°. Conversely, 4° implies 2° and 3°, because if 4° holds, then
K® c H? <« H*?.

3.3.3. TarorREM. If ¢ does not satisfy condition (A4,), then there exvists
functions Fy, Fye H*® such that )

() po () < co and p,(aF,) = oo for a >1,
(B) wp(aF,) < oo for 0 <a <1 and u,(F,) = oo,
Proof. Let ¢,(u) = ¢((L+1/n)u). If (x) does not hold, then

H® < | H™.

v=1
By Theorem 3.1.3, we have then for a positive integer and for some
constants d >0 and wu,> 0 the inequality
p((L4+1/n)u) < d-p(u)  for u > u,.

By Lemma 1.1.3.3, ¢ satisfies condition (4,).
Let ¢,(u) = ¢((1—1/(n+1))u). If (8) does not hold, then

N 7% < 1.
r=1

But then we conclude from Theorem 3.1.2 that for a positive integer
m and for some d >0 and w,> 0 there holds the inequality

P(U) < d5UD G (W), §2(10), .. G ()} = d‘p((l‘ mil)u)

for u > u,.
Replacing in this inequality # by (1+1/m)u, we get
P((L+1/m)u) < dp(u)  for u> u,.

Hence, ¢ satisfies condition (4,).

IM1. SPACES H*? WITH NORM GENERATED RY ¢.
COMPARISON OF CONVERGENCE OF SEQUENCES

1. Spaces H*? with norm generated by ¢

1.1.1. The space H*® is algebraically isomorphic with the subspace
of the space L%, consisting of limit function F(e") of functions FeH*®
{see I1.2.1.2). According to this isomorphism we may define the norm
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in the space H*? as the norm generated by of the respective elements of
the space L*¢ (see 1.2.3.1). Namely, we take for FeH™®

(*) I1El, = 1 (6")lp-
Then we get from Theorem I.2.3. 2 and from Theorem II.1.3.2,
immediately :
1.1.2. THEOREM. ||-||, possesses the following properties in H*?:
1° Ji-|l, 48 an F-norm,
2° if |F (e < |Fo(6") for almost all 1, then |F.ll, < |F,l,,
 po(B) < Wi, if 1P, <15 p(F) <1 implies ||Fll, <1
4° |FNl, = 0 if and only if u,(aF,) —0 for every a > 0.
1.1.3. THEOREM. If F<H™®, then
(*) IFll, = inf{k > 0] u, (F/k) < k}.

Proof. According to the definition of the norm generated by ¢ in
the space L*? (see 1.2.3.1), we conclude from 1.1.1 (*) for FeH*® that

1P|, = 1nf{k>0]f( (]f)) k}

Since H*® < N', according to Theorem. 11.1.3.2 for every & > 0 there
holds #,(F(¢")/k) = p,(F/k). Hence we conclude (*).

Obviously, formula (*) of 1.1.3 may serwe as a definition of the
norm generated by ¢ in H*?; then equality (%) of 1.1.1 becones a theorem
for FeH™.

1.2.1. THEOREM. Let F be an analytic function in the disc D. Then
T,FeK < H* for each 0 <r <1, and |T,F||, is a non-decreasing func-
tion for 0 <<r << 1. Hence

sup {|IT, Fll, |0 < r <1} = lim || T, FY,.

r—>l—

Proof. Obviously, T,F<K < H*® for each 0 <r < 1. Now, by Theo-
rems 1.2.1 and I1.1.4.2 we have for 0 <{r, <r, <1 and every k >0,
(T, Flk) < po (T, F[k). Hence we obtain

IT,, Fll, = inf{k > 0] p, (T, Flk) < k} < inf{k > 0| po (T, F[E) < k}
= 1T, £l -

1.2.2. THEOREM. An analytic function F in the disc D belongs to H*?
if and only if sup{||T,F),|0 <7 <1} < oo.

1.2.3. THEOREM. If FeH"?, then
I1Fll, = sup{lIT, Fll,|0 <r <1} = lim ||T, F||,.

r—>1—
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Proof of 1.2.2 and 1.2.3. Let FeH*®. We take an arbitrary number
k> ||F|,. By Theorem 1.1.3 we have u,(F/k) < k. Hence, by Theorens
1.2.1 and II.1.4.2, we get u, (T, F/k) <k for each 0 <7 < 1. According
to Theorem 1.1.3, this implies ||T,.F|, <k for each 0 <7 < 1. Hence,
sup{|T, F|,|0 <7 <1} < k. Thus, there holds the inequality:

(*) sup {| L, Fll,| 0 <7 < 1} < [1Ff],.

Now, let sup{|T,#[,10 <r <1} < co. We take an arbitrary number
k > sup{|T, F|,|0 <r < 1}. Hence, by Theorem 1.1.3, we have u,(T,F/k)
<k for each 0 <r < 1. According to Theorem II.1.4.2, we get hence

po (k) = sup {u (T, F[k)|0 <r <1} <

Consequently, we obtain FeH". Moreover, by Theorem 1.1.3,
{lFll, < k. Thus, there holds the inequality

(%) 1), < sup {7, Fll,|0 < r <1},

If FeH"™, then inequalities (*) and (#*) and Theorem 1.2.1 yield
the equality given in Theorem 1.2.3. Thus, we have finished the proof
of Theorems 1.2.2 and 1.2.3. :

1.2.4. One may define a norm |f-||, in H*? also by means of the formula
|7, = sup {IF (re")|,|0 < r < 1}.

This definition of the norm [|-||, does not require the knowledge
of the space H*? itself. Namely, from Theorems 1.2.1, 1.2.2, 1.2.3 and
1.1.1 follows that | #]|, may be defined by means of this formula for every
functions I analytic in the dise D. The space H*? is obtained then as
the set of functions F' analytic in the dise D for which ||F|, < co. This
property is not possessed by the definition of this norm by means of
formula 1.1.1 (*). By Remark I1.1.3.3, we obtain even that there exist
functions F analytic in the disc D, possessing a limit function F(e")e L*?,
which do not belong to H*?. An example of such a function is given by
F(2) = exp ((L+2)/(1—2).

1.3.1. TuroreM. If FeH™, then
21l )
F <o |—F * zeD.
PR <e¢ ‘(n(l—[zl) 1Fll,  for ze

Proof. We take an arbitrary k& > ||F||,. By Theorem 1.1.3, pu, (F/k) < k
According to Theorem 11.1.2.2, we have
1] ( 4 (FIR)

PR I ey

) for zeD.
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Since ¢_, is an increasing function, we get hence

k
P2 <o, ( ) k  for zeD.
7T

(1—1al)
Passing with k& — ||F]|, we obtain the inequality given in the theo-
rem, because ¢_; is a continuous function.

1.3.2. TurOREM. The space H*? is complete with respect to the morm
-l -

Proof. Let (F,) be an arbitrary sequence of functions from H*® such
that ||F,— F,,ll, =0 as n, m — oco. Then, by Teorem 1.3.1, F, —F,, — 0
almost uniformly in the disc D as %, m — oo. Hence there exists
a function F analytic in the disc D such that #,, — F almost uniformly
in the disec D as m-—> oc. Now, we take an arbitrary number ¢ > 0. Accord-
ing to the assumption, there exists a positive integer mn, such that
F,— Fpll, < ¢ for all n, m > n,. Applying Theorems 1.1.3 and 1[.1.2.1,
we obtain hence for all 0 <r <1, and n, m = n

2

T F n’it__F it P —F P —F
f¢(M)(Zt :M(T,_n_ﬂ)g% (u)ge.
& & &
[}

Keeping 0 < r <1 fixed and passing to the limit with m — oo, we

2n iy it _
f (p( P, (ré")— F(re")| )dt _ Mw(r,ﬂn_eﬂ)@

get

€
0

for all 0 <7 <1 and u > n,. Hence we obtain

F,—F
P |———

)ge for n = n,.
&

From this inequality we deduce ¥, — F «H*?, and so FeH". More-
over, by Theorem 1.1.3 we obtain from this inequality ||F,,— F||, < ¢ for
n = fy. But this proves |F,—F|, -0 as n — oo.

In the sequel we shall use sometimes the symbol [H*?, ||-||,] to
denote the Fréchet space H™ with the norm [[-{,.

1.4.1. THEOREM. If FecH™?, then ||kF|,/k is a non-increasing function
for E>0.
Proof. Applying Theorem 1.1.3 we get for £ >0

-,

1 1 kP ) v
% [kF|, = —l;inf{s > 0\/4‘,,( ) < e} = lnf{n > 0] u, (77—) < k'q}.

£
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Now, we take 0 < k, < k,. Since the inequality u,(F/yn) < k5 implies.
po(Fln) < kyn for every n >0, we have

L ik my, = inf{n >0l (7)< km} int {n >0/, (VF) < kzn}
ky ] 7

1
=—— |y Fl,.

2

x | 8F

1.4.2. THEOREM. Let FeH®. If 0 < ||F|l, < 5, then l i
P

Proof. Since 0/||F||, > 1, the last theorem gives
IEl, | OF |
< [l
o 1l I,

and we conclude the theorem.

1.5.1. We define for FeH*

(], = inf{k > 0|pu,(F[k) < oo}.

1.5.2. THEOREM. The functional [ -], possesses the following properties
in H*:

1° [F], = 0 if and only if FeK?,

2° [al'], = |a|[F], for an arbitrary complex number a,

3° [Fy+F,l, < [Fy],+ [Fal,,

4° [F], < |IFll,,

5° [F], = Lim|kF)|,/k.

k—o0
Proof. 1° If FeK?, then pu,(F/k) < co for every k>0, and so
[£], = 0. Conversely, if [F], =0, then u,(F/k) < co for every k >0,
whence FeK?.
2° If a = 0, then 2° is obvious. In other case, Theorem II.1.5 2°
gives

. al! . F
[aF], = mf{k > 0l u, (T) < oo} = \a]lnf{s > 0] p, (—e—) < oo}: la| [F'],.

3° We take arbitraly numbers k; > [F,], and k, > [F,],. Then
(F1/ky) < oo and u,(Fy/k,) < co. By Theorem 11.1.5 3° we get

= ——— e b 0o,
Ho ky+ ks He ki ks Ky LT kz He He ]2

This means that [F,+ F,], < k,+k,. Hence we obtain the trian-
gle inequality 3°.
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4° We take an arbitrary number %k > | F{,. By Theorem 1.1.3 we
have then u,(F/k) < k. Hence [F], < k, and inequality 4° follows.
5° We deduce from properties 2° and 4° of functional [-], that
[F1, < |kF|,/k for every &k > 0. Hence, taking into account Theorem
1.4.1 we get the inequality
1
[F], < lim m kE,.
k-0 N
Now, we take an arbitrary number e > [F],. Then u,(F/s) < oo.
Thus, there exists a number & >0 such that u,(F/e) < ke. Since

1
R, = inf e > 01, (Fe) < ke,

we obtain [[kF|,/k < e&. Hence we conclude from Theorem 1.4.1 that
lim ||k F|,/k < e. Thus, we have the inequality

k00
.1
lim - k7, < [F],,
koo v
and the proof of 5° is finished.
In the following, the functional [-], will be called the pseudonorm
generated by ¢.
1.5.3. THEOREM. K° is a closed subspace of the space [H*?, |- ||,].

Proof. Let (F,) be a sequence of functions from K* convergent
in norm to the function FeH*. By the preceding theorem, we have
[F,], =0 for each #, and lim [F,— F], = 0. Hence, the triangle ine-

quality 0 < [F], < [F,—F],+[F,], gives [F], = 0. Thus, FeK*.
In the sequel we shall use sometimes the symbol [K?, ||-]|,] to denote
the Fréchet space K? with the norm |-],. ‘

2. Structural properties of the space H*?

2.1.1. Lemma. Let (f,) be a sequence of veal-volued, non-negative
functions integrable in 0, 27) and convergent in measure to a function f
integrable in (0, 2x). If

lim | it = }nf(t)dt,

then for every measurable set B < {0, 2w) we have also

lim [f(ndt = [f@)a.
F

n—>o0 ¥
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Proof. Let us suppose the thesis of lemma does not hold for a meas-
urable set U <= (0, 2xw). Then one may extract from the sequence (f,)
a subsequence (f,) convergent to almost everywhere in {0, 2xn) and
such that the limits

im [f,(0d and lm [ fe(dt
n'—-oo B n o0 <0,2m)\E
exist and

im [f, (t)di ff

n——rooF

Then we have, by Fatou’s lemma
lim [ f,(2)dt > ff(t
n——)DOE
and

im [ f.(dt> [ fae.
=00 (0,2m)\ B <0,2m)\E

Adding these inequalities we obtain

lim f for @)t > f f(t)d

n'~—>00 g
a contradiction to ().

2.1.2. TarorEM. Let F, (n=1,2,...) and F be functions of the class
H?.If F,(¢") — F(e")in measure on the interval {0, 2x) and pu,(F,) — u,(F),
then ,uq,(%(anF)) - 0.

Proof. First, we prove the theorem under additional assumption
that F,(e*) — F(e") almost everywhere. Since (zp(iFn(ei')])) is a sequence
of non-negative and integrable functions on <0, 2w) convergent to the
integrable function ¢{|F(¢*)|) almost everywhere in (0,2rn), and since
according to Theorem II1.1.3.2

2r

lim f (1P () dt = [ o(IF(e"))dt,

the above lemma gives for every measurable set F < {0, 2m)

lim [p(F,()at = [plF)a.

n—>co @

Since

[o(31F (Y~ Fiety)at < [ (31 F (M) +31F (")) dt
E E

f o(sup {|F,(¢")], |F(¢")})dt = f sup g (17, (e")]), ¢ (1F ("))} dt

< [o(lF (M) di+ [ o(IF(e"))dt,
K E

Roczniki PTM — Prace Matematyczne XV 3
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we get hence

im [ (317, (e~ F(e))dt<2 [p(IF)dt.

n—>00 17 E
1

' 27
Let ¢>0 be arbitrary. Since u,(F) = [o¢(|F(e")|)dt < co, there
exist 6 > 0 such that o

[o(1F () dt < &f2.
E

for an arbitrary set E < (0, 27t) of measure mes E < 8. But F,(¢") — F(¢")
almost everywhere. Hence, by Egorov’s theorem, there exists a set
E, = {0, 2%) of measure mesE, < ¢ such that F,(¢") — F(e") uniformly
on {0, 2x)\E,. Thus,

2r

fim [ (3|7, (69— F())at
n—»ooo
<hm [o@IB " —F)atlim [ p3P,("—Fe)a
n—>00 g, 00 (0,2m)\Ep
<2 [o(IP(eh)at <.
By

Hence we conclude
lim [ ¢(31F,(¢")— F ()t = 0.
n—>00 g

By Theorem I1.1.3.2 we deduce u,(}(F,—F)) — 0.

Now, let F,(e*) - F(¢") in measure on {0, 27).

Let us suppose the thesis of the theorem does not hold. Then a subse-
quence (F,) may be extracted from the sequence (F,) such that there
exists the limit
(*) lllm‘uq;(%(an—F)) >0

and F,. (¢") - F(6") almost everywhere. Since F,.(¢*) — F(¢") almost
everywhere and u,(F,) - p,(F), we obtain from the above proved part
of the theorem that u,(}(F,—F)) —0, a contradiction to (x).
2.1.3. TueoreM. If FeH®, then p,(3(T,F—F))—>0 as r—>1—.
Proof. Obviously, the functions 7,F belong to H® for 0 <<r < 1.
But according to Theorem 1.3.1.3, T,F(6") = F(ré") - F(¢*) almost
everywhere, and according to Theorems 1.2.1 and II.1.4.2,

P T F) = py(r, F) = p(F) as r—1—.
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Hence, by the previous theorem we obtain
o 5 (T, F—F)) -0 asr—>1—.

2.1.4. THEOREM. If F<H?, then u,(3(S,F—F)) —~0 as h - 0.

Proof. Applying Theorem IT1.1.4.3 we find that wu,(8,¥) = u, (F)
for any real k. Hence S, F ¢ H? for each h, and u,(8,F) — p,(F) as b — 0.
Now, we may conclude Theorem 2.1.4 from Theorem 2.1.2 if we prove
that 8,F(e") — F(e*) as b — 0 in measure on <0, 2x).

We take numbers &, n > 0 arbitrarily. Since F(ré") — F(e") almost
everywhere as r —~1—, we have

mes {te{0, 2x)| | F(re')— F ()| = 5/3} < &/2
for some #, 0 < r< 1. Since the function F(re")— F(*) is 2x-periodic,
we have also
mes{te (0, 27)| |F (re"“™) — F (M) = 5/3} < ¢/2

for every h. Next, the function F(re¢") is 2=-periodic and continuous,
and thus it is uniformly continunous. Hence there exists a é > 0 such that

|F (re' M) — F(re)| < 53 for |h] < &
for all . Thus we get for |h| << S
mes {te (0, 27)| | F (") — F(e¥)] = n)
< mes {te 0, 27)| [F (M) — F(re'" ™) = y/3} +
+ mes{te0, 2n)| |F(re M)y — F(re?)| = 5/3}+
+mes{te 0, 27)| |F(re")— F(e")] = 5/3} < &/2+ ¢/2 = &.
This proves 8, F(¢") — F(e*) as h — 0 in measure on <0, 2x).

2.1.5. THEOREM. If FeK", then |T,F—F|, -0 as r - 1—.

Proof. If FeK?, then aF¢H? for each a > 0. Hence, by Theorem
2.1.3, p,(4a(T,F—F)) — 0 as r - 1— for each ¢ > 0. Applying Theorem
1.1.2 (4°) we thus obtain ||T,F—F|, -0 as r ->1—.

2.1.6. THEOREM. If FeK®, then [S,F—F|,—~>0 as h — 0.

This theorem is deduced from Theorem 2.1.4 in a similar manner
a8 Theorem 2.1.5 from Theorem 2.1.3.

2.2.1. TueoreM. [K*%, ||-|l,] is a separable space, and set of polyno-
mials with complex rational coefficients is dense in [K?, |-|I,].

Proof. Let F be an arbitrary function from K?. We take an arbitrary
number ¢ > 0. Taking into account Theorem 2.1.5 we choose r such that
IT,F-—F|, < 4e, 0 <7 < 1. Now, let us develop F in a power series

F(z) =aptaz+ ... +a,2"+ ... for zeD.
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Then the function 7T,.F may be developed in the power series
T.F(2) = F(rz) = o, +arz+ ... +a,r"2"+ ...

convergent in the dise {z||2| < 1/r}, whence uniformly convergent in the
closed dise D = {z]]¢] < 1}. We take #» so large that the polynomial

P(2) = ay+ayrz+...4a,r"2"

satisfies the inequality |T,F(z)— P(2)| < Lep_,(¢/4m) for all zeD. Now,
we choose complex rational numbers &, such that

A &
| 7 — | < 2’”3(}91(471) for k =0,1,...,n

The polynomial @(z) = b+ b2+ ..4-b,2" has complex rational
coefficients and

|T, F(2)—Q ()| <IT, F(2)—P(2)|+ |P(2) —Q (2)|

n

<IT,F()~P @)+ Z s — by

i) Sl <ol

for all zeD. Hence we get, by Theorem 11.1.3.2,

€

2 Fo(2 . .
o (F 2 7-0) = [ 921750 — ()0 <

2°
Thus, according to Theorem 1.1.3 we have [T, F—@||, < e. Conse-

quently,

o=

1#—Qlly < [F—T, Fll,+ 1T, F—Qll, < e/2+¢/2 = &.

This proves the set of polynomials with complex rational coefficients
is dense in [K?, [[-{|,]

2.2.2. TuroreEM. The space [H*®, ||-||,] is separable if and only if ¢
satisfies condition (A,). ,

Proof. If ¢ safisfies condition (4,), then according to Theorem
11.3.3.2 we have H*® = K? and we conclude from the preceding theorem
that [H™, ||-[|,] is separable.

Now, let us suppose ¢ does not satisfy condition (4,). By Lemma
1.1.3.3 the function ¢ does not satisfy condition (4,) for any a > 1. Hence
there exists a sequence of numbers u, > (n+1)? such that

1
q?((1+ m) un) >2%p(u,),  glu,) =1
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Since

1 Uy, n-+-2 1 n-+2 1 1
1 _ — il
( + n+1) u,— 1 n-+1 (l+ un——l) < n-+1 (l+ n2+2n) l+n’

we have also

90((1 + %) (th— 1)) > 2% (u,).

We take a sequence of pairwise disjoint sets F, in <0, 2x) such that

2r
mes l, = ———
2"p(uy)
and we define real functions
u,—1 for te&,,

Jalh) = {0 for tec0, 2m)\J,.

Next, we define a family of real functions

fn(t) = 1"Ir‘771f1(.t)+772f2(t)+---+77nfn(t)+'--7

where # = (,) is an arbitrary sequence of terms 0 and 1. We have for
functions of this family '

Folf) < I (L+fit+-fot o+ +-00)

< 2mp(1)+ D gl mesE, < 2mp(1)+ 2.

n=1

Hence and from fact that f, () > 1 for all £¢{0, 2x) we get, by Lemma,
I1.3.1.1, logf,(-)eL'. Applying Theorem I1.3.2.5 we obtain function
F,eN' such that |F,(¢%)| = f,(t) for almost all 1¢{0, 2n). By Theorem
11.1.3.2 we have u,(¥,) < 2np(1)+ 2= and this means that F,eH® < H*®
for every 7. Now, we take two different sequences 4 = (#,) and "' = (1,,),
and let 7, # #,.. Then we get, taking into account Theorem II.1.3.2

He (2 (Fn'- Fn"))

2n

= ((1—]— %) (Fno—F,)n)) = f q)((l—]— %) [Fn,(git)__pn,, (e“)[) dat

> [ (4 Sfimatei— 1zl = [ol[1 )it m)a

0 0

= q)((l—l— —71;) (um—l)) -mes E,, >2rx > 2.
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This proves that ||F,.— F,-[l, > ;. Thus, there is a set of power of
continuum of functions in H* 3 whose distances are > 1. Hence the space
[H*, ||I-1l,] is not separable.

2.3. THEOREM. If FeH™, then
[F], < inf{|F—G[l,| G K} < Iim [T, F— F|,, < 2[F],.

r—>1—

Proof. We deduce from Theorem 1.4.1 that inf{||k(F—G)|,/kIG<K"}
is a non-increasing funection for k¥ > 0. Now, we take an arbitrary number
& > inf {3k (F—G)||, |G'« K?}. There exist a number k, >0 and a function
Gy K? such that &> ||ky(F— Gy)|l,/k,. Hence we get, by Theorems 1.4.1
and 1.5.2 (5%

1 .1
£ 2 = ko (F'— Go)l, > lim =~ [k (F—Go)ll, = [F—G,],-
0 k—o0

But [F—G,], = [F],, because G,eK?. Thus ¢ > [F],. Hence, there
holds the inequality

(*) [F], < hmmf{—HkF G)nq,iaem} inf {|F — G,|G <K}

k—>00

Now, we take an arbitrary number & > 2[F],. Then u,(2F[e) < oo,
and this means that 2F/e< H®. By Theorem 2.1.3 we get u,((T,F— F)/e) -
—0 as r —1—, Hence we conclude, applying Theorem 1.1.2 (4°) that

IEHTTF——F < &. Thus there holds the inequality

r—>1—

(%) lim|| T, F— F|, < 2[F],.

r—>1—

lly <

Since T,.FeK? for every 0 <7 < 1, inequalities (*) and (**) imply
the inequality given in the theorem.

3. Comparison of convergence of sequences

3.1.1. THEOREM. Let (F,) be a sequence of f@métions from H*. If
U (Fy,) — 0, then F, — 0 almost uniformly in the disec D.

This follows from Theorem II.1.2.2 immediately

3.1.2. TurorEM. Let (F,) be a sequence of functions from H¥. Then
po(Fy) — 0 if and anly if £, (F, (") — 0.
This follows from Theorem II1.1.3.2.

3.2.1. TuEOREM. Let the inequality

@o(u) < dpy(w)  for uw> u,
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be satisfied for some constants d >0 and u, > 0. Then Yo (Fy) — 0 implies
Ho,(Fy) — 0 for an arbitrary sequence (F,) of the class H".

This theorem is obtained from the previous one applying Theorems
1.2.1.6 and I.2.2.1.

3.2.2. In order to abbreviate the formulation of some theorems we
introduce the following notion:
We denote by (H™)f the set of sequences (F,) such that F,<H™ and

Ho(Fy) =0
3.2.3. ToeorREM. The inclusion

(H°°)

FCS_

(%) ri% H

kolds if and only if for some positive integers m and n and for some constants
d>0 and uy,>0 there is satisfied the inequality

(x*) P () < d-sup @1 (1), @ (1) ooy Pu (W)} for u > u,.

Proof. We write @, (1) = sup{p (%), g2(4), ..., ¢n(u)}. Inequality
{*#*) may be written in the form

(%%%) Po(w) < dp,(u)  for u > u,.

If inequality (**) holds, then of course (#**) holds, too, and so by
Theorem 3.2.1 (H°°)"’m < (H”")‘”n Since

@, (u) < é?m(’u,)é @y (%) F@o() + . ..+ @y (0) for v =1,2,...,m,

we have
Q@ (@ = = < @ < U @

If (**) does not hold, then of course (***) does not hold, too. Then
for each m and » there exists w,, >0 such that

&n (um,n) 2m+n(pm (um n) and (pl (um,n) >m.

We take pairwise disjoint sets F,, , in the interval <0, 2x) oi measures

2mm

mesk,, , = —-
5 +n,
and we define real functions

Ui for tek,,,, n =1,2,...,m,

Ju(t) = :
(Pm)_1(1/m)  elsewhere in <0, 27).
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We have for each »<<m

2w

I o () <5, (fn) —f P [ (D)) A < 27:— - 2 P (U ) S B,

1 m
< 27‘{7—%@—2‘:14— 'Q—m

and

2w .
I () = [ #(fu®)dt > o,(w,,) mes By, > 2mm.
0
Now, let us note that every function f, is bounded on the interval
0,2x), and logf,(-)eL'. By Theorem 1.3.2.5 there exist functions
F,eN' such that \Fm(e”)l = f,.(t) for almost all £¢{0,2=x). We show
that every function ¥, is bounded in the dise D. Namely, applymg Theorem
I1.1.3.2 to the function ¢(u) = 4”, p >0, we get

:unp(F = (f'm) Aﬂ(sup{fm(t <t< 2n})p
and so, by Theorem II.1.2.2

1/p
[I’m(z)]<(1__2 ) sup{f,, ()10 <t < 2n} for zeD.

l2|
Passing to the limit as p — oo we obtain
| P (2)] < sup{f, ()0 <1t <2x} for zeD.

Hence we deduce that every function F,, is bounded in the dise D.
Applying Theorem I11.1.3.2 once more for » << m we get now

1
;uq:,(Fm) =4, (fm) 27'5_ +2Tc"— and /‘;,(Fm) = 'f;,(fm) > 2mm.

Hence we conclude that the sequence (F,) belongs to (H*)§» for
each », and does not belong to (H*)§» for any ».

3.2.4. THEOREM. If u, (F,) — 0 implies u,, (Fy) — 0 for every sequence
(F,) of functions from H™, then there are constants d >0 and 4, > 0 such
that

Pa(u) < dpi(u)  for u = u,.

This follows from the previous theoren, immediately. It is a con-
verse to Theorem 3.2.1.

3.2.5. THEOREM. The following theorems of Chapter II remain valid,
if we replace class H? by class of sequences (H™)], respectively: 3.1.2, 3.1.3,
3.1.5, 3.1.6, 3.1.7, 3.1.8 and 3.1.9.
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Indeed, let us remark that Theorems 11.3.1.2 and 11.3.1.3 formulated
for classes of sequences (H*)J, follow from Theorem 3.2.3, immediately.
Moreover, Theorem II.3.1.4 also in case of classes of sequences (H*) is
contained in the above quoted Theorem 3.2.1 and 3.2.4. Next theorems
of Chapter IT mentioned above are obtained for classes of sequences
(H*)? analogously us for classes of functions H°®.

3.3.1. Convergence of sequences in the space H*? meant in the sense
p,(F,—F) — 0 is not in general of linear character. Therefore we intro-
duce also in H™ the following notion of convergence:

A sequence (F,) of functions from H* is called g-convergent or mo-
dular convergent to a function F ¢ H*?, in writing F, > F, if Yol A(F,— F))—>0
for a constant 1 >0 (depending in general on the sequence (F,)).

This convergence is of a linear character. Obviously, the norm
convergence in. H*? is also of a linear character. Let us recall that a se-
quence (F,) of functions from H*® is norm convergent to a function
FeH™, ie. |F,— F|,~ 0 if and only if /‘@(;"(-Fn_F)) — 0 for every 1 >0
(see Theorem 1.1.2.4°).

It is obvious that ||F,], -0 implies w,(#,) -0 and u,(F,) —0
implies #, %> 0 for an arbitrary sequence (F,) of functions from H*?.

3.3.2. THEOREM. () If @, -3 ¢;, then F, o implies F, %0 for an.
arbitrary sequence (F,) of functions from H™1.

B) If F, %o implies F,, %o for an arbitrary sequence (F,) of func-
tions from H*™, then ¢, -3 ¢,.

3.3.3. THEOREM. (o) If ¢» 3 ¢y, then ||F,|l, — 0 implies Ellp, —> 0
for an arbitrary sequence (F,) of functions from H**1.

(B) If ||E,lly, — O implies ||Fyfl,, — 0 for an arbitrary sequence (F,)
of functions from H™, then @, 3 ¢,.

Proof of Theorems 3.3.2 and 3.3.3. Let ¢, 3 ¢,. By Theorem I1.3.2.1
we have then H*1 < H*?2, and so a sequence (F,) of functions from H*?1
is simultaneously a sequence of functions from H*?2. Since the inequality

o (u) < a g (bu) for u = u,
is satisfied for some constants a, b > 0 and %, > 0, we deduce from Theorem.

. . A
3.2.1 that for a given A >0, Ho, (AF,) — 0 implies p,, (? Fn) — 0. Hence

F, 3 0 implies 7, = 0, and |F,)l,, >0 implies |F,[, — 0. Thus, part
(«) of Theorems 3.3.2 and 3.3.3 is proved. Part (B) of these Theorems
follows from part (8) of the following theorem, immediately:

3.3.4. TuroreM. («) If ¢ 3¢, then (F,|l, — 0 implies F, %o
Jor an arbitrary sequence (F,) of functions from H™*.
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(B) If IF,ll,, — O implies F, %0 for every sequence (F,) of functions
from H™, then ¢, 3 ¢;.

Proof. Part («) of thiz theorem follows from part («) of Theorems
3.3.2 and 3.3.3.

To prove part (B), we write ¢,,(u) = ¢,(mu) and @, (u) = @,(u/m).
Let us remark that the assumption of part (B) of our theoremn may be
written in the form

N (H®)e < U (H™)r.
y= v=1

Henece it follows, by Theorem 3.2.3 that there are positive integers
m, » and constants d >0 and wu, > 0 such that

pa(ufn) = @, () < dsup{py(u), @ (0), ...y @ (W)} = dipy(mu)  for u > uy.

Hence we conclude that ¢, 3 ¢;, thus finishing the proof of part
(f) of Theorem 3.3.4.

3.3.5. TarorEM. («) If for each positive integer m there exist constants
d,, >0 and u,, =0 such that

(*) Po(mu) < dpgr(u)  for w=uy,, m =1,2,..,

then F, *% 0 implies |F,
from H™1,

) If F, 2o vmplies [[F,|l,, — 0 for every sequence (F,) of functions
from H>, then for each positive integer m there exist constants d,, >0 and
Uy, = 0 such that (*) holds.

Proof. If (*) is satisfied, then according to Theorem I11.3.2.4 we
have the inclusion H**t « K. Hence the sequence (F,) of functions
from H*%t is simultaneously a sequence of functions from K. By Theorem
3.2.1 we deduce from (*) that for a given 4 >0, u, (ZF,L) —>0 implies
fp,(mAF,) — 0 for each positive integer m. Hence F, A 0 1mp11es
lEllp,— 0, and part («) of the theorem is proved.

Let ¢, (u) = ¢, (u/m) and @,(¥) =@ (mu). If F, o implies
{[Fyllg, — 0 for every sequence (F,) of functions from H™, then

g, — O for an arbitrary sequence (F,) of functions

() = U (™) < () (H®)p < (H®)m
v=1 v=1

for m =1,2,... Hence we get, applying Theorem 3.2.4 that for each
positive integer m there exist constants d,, >0 and u, > 0 such that
- (*) holds.

3.4.1. THEOREM. () If ¢ ~ ¢, and @, satisfies condition (A,), then
P!
for an arbitrary sequence (F,) of functions from H*?2, F, =20 if and only
if |\Fylly, — 0.
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(B) If for every sequence (F,) of functions from H™, F, 20 if and
only if [[Fyll,, — 0, then ¢ ~q, and g, satisfies condition (/,).

Proof. If ¢, ~¢, and ¢, satisfies condition (4,), then applying
Theorem 11.3.3.1 we have K%t = H™2. Hence the sequence (¥,) of fune-
tions from H*% is a sequence of functions from A%, simultaneously. Since
@, satisfies condition (4,), we deduce by Lemma 1.1.3.3 that for each
positive integer m there are constants d,, > 0 and «,, > 0 such that

@y (mu) < dpp(u)  for wuz=wu, (m =1,2,...).

Hence we obtain, according to part (oc) of the previous theorem,

that F, — 20 implies ||F,[,, — 0. Thus F, 20t and only if ||#,[,, — 0.
Next, by Theorem 3.3.3 (a), from the assumption ¢, ~ ¢, we deduce
that |[F,[l,, — 0 if and only if {[F,}, --0. So we obtain that F, 2o it
and ounly if (F, [, — 0, thus ﬁnishing the proof of part («) of the theorem.

Now, let us suppose that f, i 0 if and only if | F,llg, — 0 for every
sequence (F,) of functions from II”. Then, by Theorem 3.3.4 (8),
P2 3 1, e

(*) gy (u) < agy(bu)  for w = wuy (6,0 >0, 4, > 0),
and by Theorem 3.3.5 (B),
(%%) @ (mu) < dyyga(w)  for w>u, (d, >0,wu, > 0)

for m = 1,2,... We may suppose the constant b in (*) to be a positive
integer, for in other case we could take the smallest positive integer
greater than & in place of 5. From (*) and (**) we get

0o (2u) < gy (b-2u) < adypp, (w)  for w = sup{Iug, Uy},

Hence ¢, ~ ¢, and ¢, satisfies condition (4,).

3.4.2, THREOREM. The following four conditions are mulually equiva-
lent:

1° ¢ satisfies condition (A,),

2° F, = 0 if and only if u,(F,)—0

3% po (L) — 0 af and only if |F,|, — 0,

4° F, = 0 if and only if |F,|, - 0.

Here we take in 2°, 3° and 4° sequences (I7,) of functions from H*?,

Proof. The equivalency of conditions 1° and 4° follows from the
previous theorem, immediately. If condition 4° holds, then of course
conditions 2° and 3° hold, too. Now, if 2° holds, then u,(3F,) — 0 implies
Uo(F,) — 0 for every sequence (F,) of functions from H™. Ience, by
Theorem 3.2.4 the inequality

plu) < dpGu)  for u = u,
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is satisfied for some constants d >0 and U, = 0. We conclude that ¢
satisfies condition (4,). Similarly, if 3° holds, then u,(F,) — 0 implies
4o (2F,) — 0 for every sequence (F,) of functions from H™. Hence, by
Theorem 3.2.4, ¢ satisfies eondition (A4,). Consequently 2° as well as 3°
implies 1°.

3.4.3. THEOREM. If ¢ does not satisfy condition (A,), then there exist
sequences (F,) and (G,) of functions from H™ such that

() py(F,) =0 and u,(AF,) — oo for 1>1,

(B) po(AG,) — 0 for 0 <A <1 and p,(G,) — oc.

Proof. Let ¢,(u) =¢((1+1/y)u) and ¢,(4) =¢(u). By Lemma
1.1.3.3 inequality (*%) from Theorem 3.2.3 is equivalent to the fact that
@ satisfies condition (4,). Thus, if ¢ does not satisfy condition (4;), then
the proof of Theorem 3.2.3 follows existence of a sequence (F,) of func-

tions from H® such that

1 m
thy (Fr) = MW,(Fm) < 2711;;{ —!—275?371

and 1
(145 ) = 1, B 2.

for each » << m. Hence we get («). Now, let

@, (u) = w((l—
v
It is easily verified that inequality (%*) of Theorem 3.2.3 is equivalent

to the fact that ¢ satisfies condition (4,). Hence, if ¢ does not satisfy con-
dition (4,), then there exists a sequence (&,) of functions from H™ such

that
2 ((1 -

for each » << m. Hence we get (B).

ll)u) and &v(u)¥¢(u).

1 1 m
— = G,) <2n— +2
v+1)Gm) o, (Em) “m T am 2m

and
:utp(Gm) = /"EV(Gm) >2mm

IV. SPACES H*? WITH AN s-HOMOGENEOUS NORM (0 <s< 1)
1. Spaces H*? with an s-homegeneous norm (0 < s< 1)

1.1.1. In case when ¢(u) = p(u°), where 0 <s <1 and y is convex
g-function, we may define an s-homogeneous norm on the space H*® by
means of that defined in L*® (see 1.2.4.1) in a similar manner as in T11.1.1.1.
Namely, we take for FeH™ ‘

(*) “F”scp = ”F(ez)”;p'
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Since the norms ||-[, and [f-|;, are then equivalent in L*?, we deduce
that also the norms |-, and |||, are equivalent in H™,

1.1.2. THEOREM. Let ¢(u) = p(u’), where 0 <s <1 and y is a con-
vex @-function. If FeH"™, then

F
(%) 1|y, = inf {k > 0lu, (W) < 1}_

Proof. According to the definition of the s-homogeneous norm
I 15, in L*® (see 1.2.4.1) and to L.1.1 (x) for FeH™ we have

[|1F]lqp = inf {k > 07, (%) < 1}.

Since H* < N', we deduce from Theorem I1.1.3.2 that for every
k>0 there holds £, (F(6")/k'). = u,(F/k') Hence we obtain formula
(*) of the theorem.

It is obtain that in case of ¢(u) = p(u°), where 0 <s <1 and yp is
a convex g-function, formula (*) of 1.1.2 may be applied as the definition
of the s-homogeneous norm |- ||, in H*?; then formula (*) of 1.1.1 becomes
a theorem for FeH™.

1.1.3. THEOREM. Let ¢(u) = p(u®), where 0 <s <1 and p s a con-
vex g-function, and let F' be an analytic function in the disc D. Then ||T, F|,,
18 a non-decreasing function of the variable r, 0 < r < 1. Hence

sup{||T, Fls,|0 <7 < 1} = lim |1, F,,.

r—>l—
Proof. By Theorems II.1.2.1 and 11.1.4.2 we have 0 <7, <7, <1
and for every k >0, ,uq,(TrlF/k”s)<,uq,(T,2F/k”s). Hence we obtain,
according to the last theorem

IT,, Fllyy = inf{k > 0| u, (T, F/E) < 1}
< int{k > 0l p, (T, FIk'®) < 1} = |IT,, Fll,,-

1.1.4. THEOREM. Let p(u) = p(u°), where 0 < s <1 and y is a convex
@-function. A function F analytic in the disc D belongs to H*® if and only
if sup{||T, Fll, 0 <r <1} < oo. If, moerover, F<H"®, then

1Elsp = sup{|IT, Flls, |0 <r <1} = lirlll 1T, Fs,ll -

Proof. Let FeH"™. We take an arbitrary number &k > ||F|,,. B
Theorem 1.1.2 we have then u,(F/k'®)<1. Hence, applying Theorems
11.1.2.1 and T1.1.4.2 we get u, (T, F/k'*) < 1 for every 0 < r < 1. According
to Theorem 1.1.2 we obtain |7,Fl,, <k for every 0 <r <1. Thus,
sup{||T,Fl,,10 <r <1} < k. Hence there holds the inequality

{*) sup {I7, Fllop |0 < 7 < 1} < [[Fllg,-
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Now, let sup{||7, F|s |0 <7 < 1} < oo hold for a function F analytic
in the dise D. We take an arbitrary number & satisfying the inequality
k > sup{||T,F|,|0 < r < 1}. Hence u,(T,F/k'") <1 for 0 <7 < 1. Then,
by Theorem 11.1.4.2 we get u,(F/k'®)<1. Hence we obtain FeH*®.
Moreover, by Theorem 1.1.2, |[F|,, < k. Thus the following inequality
holds: :

(%) 1Fllsp < sUp{|IT, Fllsp 10 < 7 <1}

If FeH", then inequalities (*) and (x*) yield the equality given
in the theorem.

1.1.5. If ¢(u) = yp(¥°), where 0 <s <1 and p is a convex g-func-
tion, then the norm ||, in H* may be defined also by means of the

formula
[Pl = sup{|[F(re")|l, 10 <7 < 1}.

1f we define the norm |||, in H*® by means of this formula, then
equality (*) of 1.1.1 for FeH"™ will follow from Theorem 1.1.4.

The definition of the norm ||-|,, be means of this formula has the
property, that it does not require the knowledge of the space H*® itself.
Namely, it follows from Theorems 1.1.3 and 1.1.4 that for every function #
analytic in the dise D, ||F||, may be defined by the above formula, and
that the space H™® is obtained then as the set of functions F analytic
in the disc D for which || F||;, < co. The definition of this norm by means of
formula (%) of 1.1.1 does not possess this property; for example, the
function F(z) = exp (?) has a limit function F(é“) belonging to L*?,

but it does not belong to H™.

1.1.6. THEOREM. Let p(u) = p(u’), where 0 < s<<1 and p 8 a con-
vew g-function. If F<H™, then

|F(2)] < tp_l( )HFH;.;S for zeD.

_r
m(1—])

Proof. We take an arbitrary number k > ||[F|,,. By Theorem 1.1.2
we have pu,(F/k'®)<1. From Theorem II.1.2.2 we get

L (B
P <m0

IW ) ‘fol' zeD.

Since ¢_; is increasing, we obtain hence
|IF(z) < ¢ (__1——_ ks for zeD.
ST m(— )

Passing with % to the limit, ¥ — ||F||,,, we get the required inequality.
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1.2.1. If y is a convex ¢-function satisfying conditions (0,) and
(00,), then a homogeneous norm may be defined in H*' also by means
of the formula

1Ely = I1F' (€l

where [|- ll’(“w is the homogeneous norm in L*” defined in 1.2.5.1. This norm

is equivalent to any of the norms |-]|, and |-], and the equivalency of
Il and |- Hw iy given by means of the inequality ||Fll,, < [[F||,, < 2P,
where FeH"™ (see 1.2.5.1).

1.2.2. THEOREM. If FeH™, where v is a convex ¢-function satisfying
conditions (0,) and (oo,), then

1
£y = inf {Z (14 u, (EF))| &> 0}.

This follows from Theorem I.2.5.2 and I1.1.3.2 immediately.

1.2.3. THEOREM. Let v be a convexr function satisfying conditions
(01) and (ooy), and let I be an analytic function in the disc D. Then ||T, F' [(w)
is a non-decreasing function for 0 < r < 1.

This follows from Theorem 1.2.1 and from the previous theorem,
immediately.

1.2,4. THEOREM. Let v be a convex g-function satisfying conditions
(0,) and (oco,). A function F analytic in the disc D belongs to H* if and
only if sup{|IT,Fll,)|0 <r <1} < oco. If, moreover, Fell*, then

1Ny = sup{IT, Flly,) |0 <r <1} = lim T, F,.
r—>1—

Proof. Let FeH*. By Theorem I01.1.2.1 and I1.1.4.2 we have
py (BT, F) < p,(kF) for every 0 < r < 1 and every k > 0. Hence we obtain,
by Theorem 1.2.2

sup {{|7, Fli,) 10 < v < 1} < [[Fly-

Now, let us suppose that sup {|Z, Fll,,10 <7 <1} < oo for a function
¥ analytle in the dise D.

Since |G|, < |G|, for all G<H™, we have then sup{HT Fl, |0 <
<1} < co. Applying Theorem 1.1.4 we get hence FeH*?. Now, we take
an arbitrary number % > sup{||T,F|i,)|0 <r < 1}. According to the
definition of the norm ||-H(*,p) in L™ (see 1.2.5.1) we have then

21
sup -{sup{f B (re) g (1) dt] £, (9) < 1, gLl 0 <r < 1} <k.
0

Thus

[ 1F(re"yg(]dt <&

0
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for all 0 <7 <1 and all functions geL* such that £, (g) <1. Keeping
the function g fixed and passing to the limit as r — 1—We get, by Fatou’s
lemma,

2n
[ 1B (eYg(t)dt <
0
for all functions geL* such that .#,(g) < 1. Hence we obtain [F||,, =
= []F(e’i‘)]]:;) <k, and for F<H"™ we conclude the inequality
[Ellyy < sup{{iT, Fli,y 10 <7 < 1},
thus finishing the proof.

1.3. In Hardy spaces H?, 0 <p <1, a p-homogeneous norm is
defined by the formula

T
IIFHp=—2;f |F(e!yPdt, FeH?

(f17], Chapter VII). Spaces H?,0 < p<1, are a special case of spaces
H*?, obtained by taking ¢(u) = u” where 0 < p < 1. Let us find in this
case the connection between norms ||-{, and ||-[,,,, and the norm ||-|],:

it Ip 27
i, = int k>0|f ‘E(i-)\{ dt < }:inf{k>0]f |1«“(e“)1pdt<k1+iﬂ}

= inf{k > 0|2 |[Fll, < K7} = (2m)" 0P B0 D)
and

1Pl = mf{k>0|fl k”p

= int{k > 0|2 ||Fl|, < k} = 2n||F|,.

/4

dt < 1} _ int {k = 0] f F(éYPat < k}
0

In Hardy spaces H”, p >1, a homogeneous norm is defined by

the formula
27

1 e
i = (5o [ wepa) ,  wenr

([17], Chapter VII; 2). Spaces H?,p > 1, are just spaces H*¥ for v(u)
= u?, where p > 1. Let us compare norms |-||, and |-{|,, with the norm
fI-1l, also in this case:

F(eit) D

dt < k} = inf {k > 0] Of |F () |Pdt < klﬂ’}

1, = int]

k
= inf{k > 0|2x||F| < k'*7} = (2m)O+2)| F|p/0+P)



On Hardy-Orlicz spaces, 1 49

and
, P p o S A
£, = inf {k > 0] f ' dt < 1} = mf{k >0]0f | F(e")|Pdt < k”J-

k
= inf{k > 0|2x | F|]} < K7} = (27)'7 | F],.

Since y(u) = w”, p > 1, is a convex ¢-function satisfying conditions
(0,) and (oo,), in H” iy defined yet homogeneous norm |- [i,,. We find
the connection between this norm and the norm ||-|,. First, we have

1 1
171l = 1nf{ (1+ f |RE ()| at) >0} — inf {% (1+ kP 2= ||FE) & > 0}.

Since the real function (1+°2={F|F)/k for k>0, where FeH?
and F 0, assumes its least value if —1/k*+4(p—1)k""*2r|IF|f =0,
ie. for k = ((p—1)"""(2n)'7||F[,)", we have

1/p

(e

3

- (2m)' P (1

1l = (p—1)V?(2m)V7|F| (1+ L
w = P Flp\ 1457

where 1/p+1/p’ =

2. Problems of existence of an s-homogeneous norm (0 < s < 1) in H*?

2.1.1. THEOREM. If an F-norm |-|, is defined in H™® such that

1° 0*? is complete with respect to this norm,

° F,eH™®, ||F,ll, =0 imply F, — 0 almost uniformly in the disc D,
then this norm is equivalent to the norm generated by ¢.

Proof. Let I(-) be the identity map of H*? onto, itself. If ||F, — F|,
— 0 and |[I(F,)—@|, -0, then F, — F almost uniformly in the disc D,
and also I(F,) — @ almost uniformly in the dise D, whence I(F) = @
From the closed graph theorem ([1], p. 41, Theorem 7) follows that
l#,)lo — 0 implies [|F,fl, — 0 for every sequence (F,) of functions from
H*®. The fact that lF,ll, — 0 implies {|F,|j, =0 is proved, analogously.

2.1.2. THEOREM. An s-homogeneous norm |-|l, (0 < s < 1) satisfying
the conditions ‘

1° H*® is complete with respect to this norm,

2° F,eH*, |F,|l, > 0 imply F, —~0 almost uniformly in the disc D,
exist in H*? if and only if ¢(u) ~ yp(u®), where y is a convex g-function.

Proof. T.et us suppose, there exists an s-homogeneous norm |- |,
in H*? (0 < s < 1) satisfying conditions 1° and 2°. By the previous theorem,
this norm is equivalent to the norm generated by ¢. Hence there exists
@ constant o6, 0 < 6 <1, such that ||F[, <26 implies [Fll, <1, and
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£, < 26 implies ||[F|, < 1. We shall show that then the following ine-
quality holds for 0 < a® < ¢ and a’p(ué™')>1

(%) plau) < 20 p(ud™?).

Let us suppose this inequality is not satisfied. Then there exist
numbers @ and # such that 0<a®*< 3§, ap(ud™")>1 and ¢@(ai)
>26ap(ud™"). Let us denote by » a positive integer for which 6/2
< na® < 4. We deflne, in <0, 2%), n closed and disjoint lnterva,ls 6>
of length t, —t = 35p(#o~")"L. Let =, =1, +i0p(ud™)™ and 7, =14 —
—0p(uo~1)"'. Next, we define n real functions continuous on the in-
terval {0, 2m):

0 for 0<t<t and ] <t < 2,
t—1t, , ,
’ ’ for tv<t<‘[ﬂ7
L= "
A 5] for 1, <t <1, ,
t:’,‘__t r? rr
e ey vl fOI'Ty <t<t,,.
tv-—rv

Since the functions f, are continuous on {0, 2=x), we may choose
for every ¢ > 0 trigonometric polynomials

™y
Tv (t) = 2 Cpy éikt

=—m,
such that |f,(t)—T,(t)| <en for all te(0,2n), » =1,2,...,n Let
m = sup{my, Mm,, ..., m,}. The complex polynomials
Z: kazk—km
k=—m,

possess a limit function P, (e “) = ¢™T,(t). Hence
£, @) — P, (¢ — TN <15, —T, (%) < ¢/n

jf‘ﬁ(t)—@nﬂ(e”‘) pRON VT o)

v=1 y=1

<lf (t)*ZTv(t)Kj\fp(t)—Tv(m <e

and

for all ¢e{0, 2x). Since the function ¢ is continuous for » > 0 and the
functions f, are uniformly bounded, we may suppose that e is chosen
so small that the following inequalities hold:

lp(us™2f, (1) — p(us™" | P, (eY)))) < ?51?5 for v =1,2,...,n
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and

]qa(&& Z"fvm) — (@i jﬂ(@“) )] < b—ln—

for all te<0, 2w). Hence we get for » =1,2,...,n

’lf&P,, . 27 . :
y,,,( e )@q,(ua ') = [ gl B

2n

< [ @l (0) 430 < p@d ) (B — 1) +10

0
< 35-}-%5 = 29,
and this means that [[uP,[, <25. Thus we have |[[uP,[,<1 for
v=1,2,...,n and

n

n
o <@ DALl < @n < 6.
v=1

n
Hence |au 3 P,
=1

n
» <1, and so p,(eu 3 P,)<1. But, on the other
hand, =t
2n n

(e}t > }nw(&& Eﬁ(t))dt—g

> Vo ai)(r) — 1)~} = np(@in)-1p(us™) ™ —1

Thus we have a contradiction. Consequently, inequality (*) is satis-
fied. Let us remark that inequality (*) holds also for 6 < a®<1 and
% = 0, since then we have

plaw) < 626 2p(ud™") < 26 %@ p(ud ™).

Now, substituting a® = ¢(ué~")™" into (*) we get ¢ (p(ud™") " u) < 2672
for 4 > dp_,(1). From this inequality follows the existence of a constant
¥y > 0 such that ¢(uo~") " w < ov}/* for u > 6vy. Hence, taking u = 4 9'%,
we obtain the inequality ¢(®'f)o™ = v, for v = v,. We take v, > v, > v,.
Then 0 <v,9;'<1 and 0,9 '¢(0”)>v,9,' >1. Now, substituting
o’ =v,9;! and u = 6wl into (*) we get the inequality

1807 p(d0)) < v7lp(v)  for v, > v, > .

Hence, by Lemma 1.1.2.3, ¢(v'/%) is equivalent to a convex g¢-func-
tion y(v), Le. p(u) ~ p(w’).
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Conversely, let ¢(u) ~g@,(u) = p(#°), where 0 <s<1 and wy is
a convex g-function. By Theorem I1.3.2.1 we then H*® = H*?1. Applying
1.1.1 we conclude that ||- ||, is an s-homogeneous norm in H*? such that
the space H*? is complete with respect to this norm. Moreover, from The
orem 1.1.6 we deduce that F,<H™® and IF,)lsp, — 0 implies F, — 0-
almost uniformly in the disc D.

Now, some corollaries will be deduced from Theorem 2.1.2.

2.1.3. THEOREM. If limu™° @(u) = 0 for a given 0 <s <1, then mo

U—>0C

s-homogeneous norm may be defined in H'® such that H*? is complete with
respect to this norm and convergence to 0 with respect to this norm implies
almost uniform convergence to 0 in the disc D.

Proof. Let us suppose that conversely, an s-homogeneous norm
possessing the above mentioned properties may be defined in H*?. From
the proof of Theorem 2.1.2 follows that there exists a constant v, > 0 such
that @(0*)v™' > vy for v > v,. Hence we get limu ™ *¢ () > v, >0, a con-
tradiction with our assumption. Yoo

2.1.4. THEOREM. In Hardy spaces HP?,0 <p <1, no s-homogeneous
norm may be defined, p < s <1, such that H” is complete with respect to
this norm and convergence to 0 with respect to this norm implies almost
uniform convergence to 0 in the disc D.

This theorem follows from Theorem 2.1.3 immediately, since

limu®u? =0 for 0 <p <s<1.
U—>00
In the special case s = 1, Theorem 2.1.4 gives the known result of

Livingstone [5] (compare also [4]).

2.1.5. Remark. There exist spaces H*? such that for no s, 0 <s <1,
an s-homogeneous norm may be defined in H*® such that H*? is complete
with respect to this norm and convergence to 0 with respect to this norm
implies almost uniform convergence to 0 in the dise D.

We show this by the example of the space H*®, where ¢(u) —
= log?(1+u), p > 1. .

First of all let us note that function ¢(u) = log?(1+u), p > 1, is a
log-convex ¢-function. This follows from Theorem I.1.6.2 immediately,
because the function

d
p(t) = (t) = plog? ' (14+-1) —— T

is positive and non-decreasing for t >0 and p(f) - o as t - co. But
log(1+u)\?
limu*log? (1 u) = (lim ———&il) =0

S,
w0 u*'?

for every 0 <s<1; hence, we conclude from Theorem 2.1.3 that for
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no s, 0 < s < 1, an s-homogeneous norm satisfying the above formulated
conditions may defined in the space A%, where ¢(u) = log?(1+u), p > 1.

. 2.2.1. A set X <« H is called bounded in the space [H*?, ||-||,], if for
every sequenee (F,) of elements F,eX and every sequence of numbers
(a@,) convergent to 0, |la,F, [, — 0.

If X is a bounded set in [H™?, | ], then there exists a positive
integer » such that {|JF/all, <1 for all FeX, whence applying the tri-
angle inequality to the norm we get |[F|l, < »n. This means that a set X
bounded in the space [H™?, I-l,] is in this space bounded in the norm.

We prove now that

2.2.2. THEOREM. If ¢ satisfies condition (V,), then every set X e H'™®
bounded in the norm of the space [H™?, |- ||, ] is bounded in this space.

Proof. If ¢ satisfies condition (V,), then the inequality 2¢(u) < ¢ (du)
for u = w, is satistied for some constants d > 1 and u, > 0. Hence we get
for an arbitrary positive integer =

2%p(u) < 2" e(du) < ... < p(d"u)  for u > u,.
Substituting 4 = d""v to this inequality we obtain
p(d ") <2 "¢ (v) for v = d"u,.

Now, let 6 be a fixed number such that ||F||, < 6 for all FeX. We
take an arbitrary number ¢ > 0 and we choose n so large that there hold
the inequalities

8 ‘ 1 0
—T<e¢ and —&—; ¥, (Eﬁ;—l;) <1
We set

1 b)
T @dye, T\ )
We denote E(F) = {te{0,2n)| |F(e")| > éd"u,} for FeX. Now,
applying Theorem I11.1.3.2 we get for an arbitrary complex number
a such that |a| < and for an arbitrary FeX

gn=t v TR :
%(——aﬁ):J 90(2 1ia|-—~—6———)dt= j+

8 E(i) €0,27)\E(F)

. 1 il
< | w(—?]-'-im )l') 1=+ 27 (3 (24)" o)

d" 0
E(r)
< 1 J (.';F(eit)l)dt.]{_ ) < 1 (F)+ )
= on , ¥ ) on = on Ho —5 on
E(F)
_b b _ 0
= gn +72‘7f T gn-1
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But this proves that [jaF||, < §/2" ' < e for all complex numbers
@ with moduli |a| < 5 and for all FeX. Hence it follows that X is a bounded
set in the space [H™?, [||,]-

2.2.3. THEOREM. If ¢ does not satisfy condition (V,), then none of
the balls {F<H™| |F||,< 8}, 6>0, is a bounded set in the space
LA™, |- llp)-

Proof. If ¢ does not satisfy condition (V,), then there exists a se-
quence of numbers (u,) such that

20(27"uw,) > p(u,) > 20:

We define sets ¥, in the interval <0,2rx) of measures mes E,
= 10p(u,)", and real functions

U, for teE,,

n

0 =:l6¢~1(fz) for te<0, 2w\ E,.

T

Obviously, log f,(-)eL' forn = 1,2, ... Hence, by Theorem I.3.2.5
there exist functions F,eN’ such that |[F,(¢")| = f,(¢) for almost all ¢
from (0, 2w). Applying Theorem 11.1.3.2 to there functions we get

F 0
(B )< stmennis £an =22
g

0 0 7 g
and
4 F, F, fa B 5
hleveare B = 4 n i ‘ 9
/‘«P(é 2n+2) Mo (271,5) ¢(2n6)>¢(2 Uy,) IIl(—)'%En>4
Hence
1 [ S
Foll, < é I - _F 2
P <o wd ot | >

for all n. But this proves that the ball {F¢H"*?| |F||, < 8} is not a bounded
set in the space [H™?, ||-|,].

2.2.4. THEOREM. An s-homogeneous norm |-, 0 < s <1, such that
H™ is complete with respect to this norm and convergence to 0 with respect
to this norm implies almost uniform convergence to 0 in the disc D exists
in H*® if and only if ¢ satisfies condition (V).

Proof. If an s-homogeneous norm [|-lj;, 0 < s<1, possessing the
above properties exists in H*?, then this norm is equivalent to the norm
generated by ¢, according to Theorem 2.1.1. Hence there exists a 4 >0
such that |[I7||, < ¢ implies ||F||, < 1. Since the norm |- |, is s-homogeneous,
the set {Fe<H"| ||F|, <1} is bounded in the space [H*?,|-|,]. But both
norms ||-|l, and |||, are equivalent; hence the set {FeH"?||F|, <1} is
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bounded also in the space [H',|-{,]. Thus the set {FeH™| [F||, < 6}
is bounded in this space. Hence it follows, by Theorem 2.2.3 that ¢ sat-
isfies condition (V).

Conversely, if ¢ satisfies condition (V,), then we may conclude from
Lemma I.1.4.3 that there exist a number s’ > 0 and a convex ¢-function yp
such that ¢ ~ ¢,, where g, (%) = »(u*). Let s = inf{s’, 1}. Since 0 < s < 1
and ¢, (u®) = p(u¥"®) is a convex ¢-function, according to 1.1.1 one
may define an s-homogeneous norm |- |, in O™, Obviously, the space
H**1 ig complete with respect to the norm li+llsp, - Moreover, it follows
from Theorem 1.1.6 that if F,<I™ and [F,|,, —0, then
F,— 0 almost uniformly in the disc D. But ¢ ~ ¢,. From Theorem 11.3.2.1
we get H*® = H™1 and this concludes the proof.

Taking into accound Lemma 1.1.4.3 it is easily seen that Theorem
2.2.4 is weaker than Theorem 2.1.2. Nevertheless, we proved it indepen-
dently of Theorem 2.1.2.

2.3. TerorEM. All theorems of this Section remain valid if we replace
H*® by K° in the formulations of these theorems.

Theorem 2.1.1 for K” is proved analogously as for II*?. Theorem
2.1.2 for K” holds, since the polynomials used in the proof of this theorem
are obviously elements of K%, and on the other hand, K?® is a subspace
of the space H*?. Theorem 2.1.3 for K° is a corollary to Theorem 2.1.2
formulated for K?. Remark 2.1.5 remains valid for K%, because the func-
tion @(u) = log?(1-+w), p > 1, satisfies condition (4,) and so H*® = K°,
by Theorem I1.3.3.2. Next, Theorem 2.2.2 remains valid for K?, since K°
is a subspace of the space H*®. Theorem 2.2.3 in the formulation for K?
holds, because the functions f, used in the proof of this theorem are
bounded in {0, 2m), and thus the analytic functions ¥, obtained applying
Theorem 1.3.2.5 belong to H™ < K® (compare the proof of Theorem
I11.3.2.2). Finally, Theorem 2.2.4 for K? is proved analogously as for H*?,
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