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The purpose of this paper is to generalize the known Hardy spaces 
H p  (p  >  0 ) of analytic functions in the unit disc ([2 ], [4] and [5]) and 
to present properties of these generalized spaces. This is done using the 
methods and results of the general theory of modular spaces ([11] and 
[12]) as well as the theory of Orlicz spaces ([3 ], [6], [7], [8], [9] and [10]).

Some generalizations of the H ardy spaces H p for p  >  1 can be found 
in [13], [14], [15] and [16]. However, the investigations in these papers
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are not based systematically on the theory of modular spaces of analytic 
functions. The paper attempts to develop such a theory.

The paper consists of four chapters. The first chapter briefly outlines 
the already known theory of Orlicz spaces and also presents some prop­
erties of analytic functions in the unit disc, needed for further studies. 
Hardy-Orlicz classes and spaces are introduced in the second chapter and 
there the inclusion theorems are considered. The norm generated by the 
function 99 is defined in the third chapter in which also one concerns the 
mutual relations of various kinds of convergence of the sequences in the 
Hardy-Orlicz spaces. The fourth chapter considers the problem of the 
existence of an s-homogeneous norm in Hardy-Orlicz spaces.

Theorems and definitions from other chapters are referred to by the 
number of the chapter.

The main results of this paper have been already published in the 
Bulletin de L’Academie Polonaise des Sciences 15 (1966).

Finally, I would Uke to express my warmest thanks to Professor 
W. Orlicz for his helpful criticism, valuable advices and inspirations.

Г. INTRODUCTORY NOTIONS }
1. ^-functions

1.1. A real function 99 defined for и >  0 is called a cp-function, if it is 
non-decreasing, continuous for и >  0, equal to 0 only at u =  0 and tending 
to oo as и — oo.

1.2.1. Let <px and 99 2 be two 99-functions. 99 x is said to be non-wealcer 
than 992, in writing (p2 -3 <px, if

992(u) ^  a<px(bu) for u ^ u 0,

where а, Ъ > 0  and u0 >  0 are constants.
Since the relation -3 is reflexive and transitive, ,we may say that

1.2.2. 99-functions (px and <p2 are called equivalent, in writing cpx ~(p2, 
if <px -3 992 and <p2 -3 <px, simultaneously.

It is clear that 9 x̂‘—' 9^2, if and only if, for some constants ax, a2, bx, b2 >  0 
and u0 >  0 the following inequality is satisfied:

ax(px(bxu) <  9o2(u) <  a2(px{b2u) for и >  щ.

1.2.3. Lemma. A necessary and sufficient condition in order that a <p-f unc­
tion 99 be equivalent to a convex cp-function is that for some constants a , b >  0 
and щ >  0 the following inequality holds :
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Changing this inequality to the converse one we obtain a necessary 
and sufficient condition in order th a t the 99-function 99 be equivalent to 
a concave 99-function ([6] and [7]).

1.3.1. A 99-function 99 is said to satisfy condition {A2), if for some con­
stants d  >  1 and щ  >  0 there holds the inequality

<p{2u) <  d(p{u) for u0.

1.3.2. We say th a t a 99-ftmction 99 satisfies condition (Zla) for a > 1 , 
if for some constants da >  1 and ua >  0 there holds the inequality

v 99 (au) <  da<p(u) for u ^  ua.

1.3.3. L em m a . The following four conditions are equivalent for any 
99-function :

1° 99 satisfies condition (zi2),
2° 99 satisfies condition (Aa) for some a >  1,
3° 99 satisfies condition (Ла) for all a >  1,
4° there exist a concave 99-function % and a number s >  0 such that 

9>(«) ~  ([6] and [7]).
1.3.4. Lem m a . I f  a (p-function <px satisfies condition (zl2) and 9ox ^ 992, 

then 992 satisfies also condition (zl2) (see [7]).

1.4.1. We say th a t a 99-function 99 satisfies condition ( F2), if for some 
constants d >  1 and >  0 there holds the inequality

299 (it) ^  99 {du) for u ^  щ.

1.4.2. A 99-function 99 is said to satisfy condition (Fa) for a >  1 , if for 
some constants da >  1 and ua >  0 the following inequality holds :

acp{u) ^<p(dau) for u ^ u a.

1.4.3. Lem m a . The following four conditions are equivalent for any 
cp-f unction :

1° 99 satisfies condition (F2),
2° 99 satisfies condition (Fa) for some a >  1,
3° 99 satisfies condition (Fa) /o r all a >  1 ,
4° йеге a convex (p-function xp and a number s >  0 йа£

99{и) ~ y { u s) ([6] and [7]).
1.4.4. L em m a  If a cp-f unction 9ox satisfies condition ( F 2) and <px <— 992, 

then (p2 satisfies also condition (F 2) (cf. [7]).
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1.5. Lemma. Let ip be a convex (p-function satisfying the following two 
conditio ns :

(Ox) lim и~1гр(и) =  0
«-> 0+

and
(oof) lim и~1чр(и) — oo.

U ~ > C O

Then the function

ip'(v) =  sup{w — xp(u) \u >  0} for v >  0

is also a convex cp-function and satisfies conditions (Oj) and ( oox). Moreover, 
(ip')' =  xp ([3], Chapter I, §2).

1.6.1. The fundamental notion applied in this paper will be that of 
a log-convex ^-function:

A ^-function (p is called a log-convex (p-function, if it may be written 
in the form

<p(u) =  0 (log^) for u >  0,

where Ф is a convex function on the whole real axis, satisfying condi­
tion (oo^.

1.6.2. Lemma. Each log-convex <p-function cp can be written in the form
U

(*) <p(u) = J  t~1p(t)dt for u^ O ,
о

where p is a positive and non-decreasing function for t >  0, tending to oo 
as t -> oo.

Conversely, every function cp finite for и >  0 which is of the form (*), 
is a log-convex cp-function.

Proof. If cp is a log-convex ^-function, then the function Ф(х) — <p(ex) 
is positive and convex on the whole real axis, tends to 0 as x -> — oo, 
and satisfies condition ( oo1). As a convex function, Ф may be written 
([3], Chapter I, Theorem 1.1) in the form

X

ф(х) =  Ф(х0)+  f  p x(x)dx,
4

where p x is a non-decreasing function on the whole axis. But Ф(х0) ->0 
as x0 -> — oo. Hence we get

X

(**) Ф(х) — J p x(x)dx ( — o o < x < o o ) .
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Now, from the fact that Ф is positive we deduce that p x is also a positive 
function. Since

X

х~1[Ф(х) — Ф(0)) = x~l J  р 1(т)с1т <  p x(x) for x > 0 ,
0

we get from condition ( oox), p x(x) -> oo as x ->• oo. Substituting x — logu 
in (**) we obtain

log и  и  и

9о (и) = J  p x{r)dr =  J  t~lp x(\ogt)dt = J  t~1p(t)dt  for u >  0,
— oo 0 0

where p{t) = p x(\ogt) is a positive and non-decreasing function for t >  0, 
and -> oo as t -» oo.

Conversely, let a function 99 finite for и  >  0 be of the form (*). It is 
seen directly that 99 is a 99-function. Substituting и = ex in (*) and writing 
99 (tf*) = Ф{х), the function Ф becames of the form (**), where p x{r) = p{ex) 
is a non-decreasing function on the whole axis and tends to 00 as r -> oo. 
Since p x is non-decreasing, we get for x < y

{x+y)l 2

Ф((х+у)12) = / pA r )d r
— OO

Ж  (# + 3 / ) / 2  2/

<  J p 1(r)dr+^( J  p x(T)dT+ J  p A ^ d r }
— OO Ж (x+y)/2

X у

= &( f  P i ( T) dr +  f  PArfdr)  =  ЦФ(а*) +  Ф(у)).
— OO —00

By the continuity of the function Ф, this means that Ф is convex. 
Now, since p x(r) 00 as т oo, the inequality

х~1Ф{х)'^х~1 f  p x(r)dr > ъРЛх/2) for x >  0
£C/2

shows that Ф satisfies condition (оог), and the proof is concluded.
1.6.3. L em m a . Every log-convex <p-function is strictly increasing for 

и  >  0.
We deduce this directly from Lemma 1.6.2, since the function p(t) 

in (*) is positive for t >  0.
From this lemma it follows at once that a log-convex 99-function 

99 possesses an inverse <p_x . The function <p_x is obviously a 99-function 
itself, but it does not need be log-convex. For example, 9o(u) = ехр (^2) — 1 
is a log-convex 99-function and possesses an inversecp_x{u) =  log1/2( 1-fit) 
which is not log-convex.
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1.6.4. Lemma. Every function cp{u) — ip{us), where s > 0  and ip is 
a convex (p-function, is a log-convex y>-function.

Proof. Obviously, (p(u) =  ip(u8) is a ^-function. It is also easily seen 
that the function Ф(х) =  (p{ex) =  ip{esx) is convex, because it is a super­
position of convex functions tp and e*®. jSTow, by Jensen’s inequality de­
fining convex functions, we have for the convex ^-function ip

ip{l) =  ip\ — *®+ ( l ——) *0 ) <  — y>{v)+ ( l — —)y(°) =  — y>(y)\V  \ VI J V \ v f  V

for v >  1. Hence

х~1Ф(х) =  x~1ip(esx) ^  x~1esxip( 1 ) for x > 0 .

Since x^e™ -> oo as x -> oo, the function Ф satisfies condition ( oox).

2. Orlicz spaces

2.1.1. Let (p be a ^-function. For any complex-valued function /  
defined and measurable in the interval <0, 2тг) we define

2tc

Л Ш  =  /  ?(1/№ 1)<в.
0

2.1.2. Theorem. The functional S v{-) possesses the following properties:
1° S v(f) = 0, if  and only if, f — 0 {fit) =  0 almost everywhere in

<0, 2iz)),
2° Л («Л  =  ЛСП for |a| =  1 ,
3° ^ (a / i+ b /a )  <  ^ ( / i ) + ^ v(/a) M  real, a , b ^ 0 , а +  Ъ =  1 ,
4° if S v(f) <  oo, then J 9{,af) -> 0 as a -> 0 ([6] and [8]).
The above properties show that the functional S v{-) is an example 

of a modular in the sense of Musielak and Orlicz [1 1 ].
2.1.3. Let us denote by 17 the set of functions /  measurable in <0,2tz) 

for which S 9{f) <  oo. The set IF is called an Orlicz class (see [3]).
Orlicz classes I*  are convex sets, symmetric with respect to zero — 

this follows from 2.1.2, 3° and 2°, immediately — but in general they 
are not linear sets. Therefore the following notion is introduced.

By L*9 we denote the set of measurablef unctions f  such that af e I 9 
for some a >  0 (depending on /). Clearly, the set L*9 is the linear hull 
of I 9 in the space of all measurable functions on <0,2 tc). The set I*9 
is called the Orlicz space. Moreover, we denote by M9 the set of measurable 
functions /  such that a f e l9 for each a >  0. Applying 2.1.2 we verify easily 
that M9 is the greatest linear subset of the space L*9, which is contained
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in L9. The set M9 is called the space of finite elements in L*,p ([6]-[8] 
and [3]).

It is obvions that if pm(u) — p(u/m) and pm(u) =  q9 (mu), then
00 л oo v

L*9 =  U  №  and M9 =  П  LVm-
m = 1 m =  1

In case (p{u) =  up, p > 0 ,  L9 is the space of functions integrable with 
power p ; we use then the usual symbol Lp in place of L9.

2.1.4. T h e o r e m . The inclusion

F c l J  L vn
71=1

holds if and only if there exist a positive integer m and numbers d >  0 and 
щ >  0 such that the following ineguality is satisfied :

<pm(u) ^  d<p(u) for u ^ u 0 ([6] and [7]).

2.1.5. T h e o r e m . The inclusion
OO
n  L*n cz L 9

71=1

holds if and only if there exist a positive integer m and numbers d >  0 and 
u0 >  0 such that the following inequality is satisfied :

<p{u) < d sup {«Pi (ад), <ръ{и), . . . ,  (pm{u)} for u ^ u 0 ([6] and [7]).

2.1.6. T h e o r e m . The inclusion I / 1 c  I / 2 holds if and only if for some 
constants d >  0 and uQ >  0 there is satisfied the inequality

рг{и) <  dp^u) for u ^ u 0.

Thus, the necessary and sufficient condition for the equality I / 1 =  I / 2 
is the existence of constants dx, d2>  0 and u0 >  0 such that

dj.Pi {ц) ^  d2px(u) for u ^ u 0 ([6] and [7]).

2.2.1. Th e o r e m . I f  L91 c  L92, then (fn) -> 0 implies S 9i(Jn) -> 0 
for an arbitrary sequence (fn) of functions from L91.

2.2.2. A sequence (fn), fneL*9, is called p-convergent or modular conver­
gent to / e L*9, in writing fn f, if У^а (fn-f) ) -> 0 for a constant a >  0 
(depending on the sequence (fn)).

2.3.1. We define for feL*9,

l i f t  = in f { J fc>0| S ' W X l t } .

This functional in L*9 is called the norm generated by p.
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2.3.2. Theorem. ||-||* possesses the following properties in L*<p:
1° ||'ll* is an F-norm,
2° L*v is a complete space with respect to ||*||*,
3° if 1/iWI <  \f2{t)\ for almost all te <0, 2тг), then ll/J*^  ||/2||*,
4° Л(/Х11/1С 4  II/IC<1; > » ( /)<  4 implies \\f\\l <  1 ,
3 °  i f  W f n t  0 »  M e n  f n ^  0 ,

6° ll/J*->0 if and only if S v(afn) -+ 0 for every a >  0 ([6] and [8]). 
The Orlicz space L*<p as a Fréchet space with norm |j-||* will be denoted 

by [L*MI-IÇ].
2.3.3. Theorem. The space Mv is identical with the closed linear hull 

in [L*<p, ||-Ц*] of the set of bounded measurable functions on <0,2тг) ([6] 
and [8]).

2.3.4. Theorem. The space M9 is separable in the norm ||*[|* ([6] 
and [8]).

2.3.5. Theorem. The following conditions are equivalent:
1° (p2 -3 9>i,
2° ^  c  
3° C Mv2,
4° ll/Ji; -* о implies \\fX2 ^  0 for fn*L** n
5° fn %  о implies f n ^t 0 for f^L*^  n L*4>ï ([6] and [8]).

2.3.6. Theorem. The following conditions are equivalent:
1° 99 satisfies condition (zl2),
2° L* =  L*v,
3° Lv =
4° L*(p is a separable space in the norm ||*||*,
5° / Л о  implies ||/J|J 0 for fneL*v ([6] and [8]).

2.4.1. Theorem. If cp(u) =  y>{us), where 0 <  s <  1 and ip is a convex 
y-function, then an s-homogeneous norm may be defined in L*v by the formula

ll/C  = in f { fc > 0 | / . ( I l f ' - K l } .

Norms ||-II* and Ц-Ц*̂  are then equivalent in the sense that ||/J|* 0
if  and only if WfJl -  0 for fneL** ([6], [8] and [9]).

2.4.2. Theorem. If  an s-homogeneous norm ||-||° is defined in L*4*, 
0 <  s <  1 , such that the space L*ç is complete with respect to this norm, 
and convergence to 0 in this norm implies modular convergence to 0, then 
y(u) ~  yi(us), where yj is a convex cp-function ([6] and [9]).
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2.5.1. T h e o r e m . If ip is a convex q>-function satisfying conditions (Ox) 
and ( o o x) , then a homogeneous norm may be defined in L*v by means of 
the formula

2tc

\\f\t) =  sup{ J  \f(t)g(t)\dt\/vfg) <  1 , g€Lv'Y 
0

This norm is equivalent to the norms ||-||* and || - J|iv; the equivalency 
of ||• ||*v) and | j f v {which is also homogeneous) may be written in the form 
of the inequality ||/|fv <  ||/||*v) <  2||/||*(v), where feL*v ([3], Chapter II).

2.5.2. T h e o r e m . If feL*v, where ip is a convex cp-function satisfying 
conditions (Oi) and ( оог), then

ll/llw =  in il~  (X +  Jfr(kf)) Ift >  oj ([3], Chapter II).

3. Classes N and W of analytic functions in the unit disc

3.1.1. We denote by N  the set of functions F analytic in the disc 
D =  {z\ \z\ <  1}, for which

2tt
sup IJ  log+ IF {relt)\dt [ 0 <  r <  ij <  oo, 

о
where log+u =  log sup {1 , u} for и >  0.

3.1.2. T h e o r e m . A function F analytic and not vanishing identically 
in the disc D belongs to N if and only if it can be written in the form

2тг ^
(*) F(z) =  B{z)-exp 1^- j  dh{t)\,

' 0

where h is a real-valued function of bounded total variation in <0, 2 тс) and 
В is the Blaschke product

BO) =  eidz-  /  7  f r  (C =  1/f.) •

Here, d is a real number, m — a positive integer, and Cn satisfy the 
inequalities 0 <  |£J <  1 and l o -  j t j )  <  OO ([17], Chapter YII,

71
(7.30); [2]).

3.1.3. T h e o r e m . If FeN, then for almost every t there exists the limit

lim F(z) =  F(eu),
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if £ tends to elt between two chords of the disc D starting at the point eil. 
Moreover, if the function F does not vanish identically in D, then log \F(ei%)\ eLL 
([17], Chapter VII, (7.26); [2]).

3.2.1. We denote by N' the set of functions FeN  for which the function 
h in 3.1.2 (*) is of absolutely continuous positive variation in the interval 
<0,27t>. Moreover, we shall include in N' also the function identically 
equal to 0 in JD.

3.2.2. Theorem. A function F analytic in the disc В belongs to the class 
N' if and only if the integrals

X

f  log+ \F(reu)\dt, 0 < r < l ,  
о

are uniformly (with respect to r) absolutely continuous functions of the va­
riable x ([17], Chapter VIII, (7.51)).

3.2.3. Theorem. A function F of the class N  belongs to N' if and 
only if

lim
r—̂l —/

2n
\og+ \F(reu)\dt =  f  log+ |F(eu)\dt 

0

([17], Chapter VII, (7.53)).
3.2.4. Theorem. Let FeN' and let Ф be a non-negative, non-decreasing 

and convex function for и A 0. Then
2rc 2n

f  0(log+ \F(reil) l ) d t^ f  0{log+ \F(eu)\)dt
о 0

for every r, 0 < r < l  ([17], Chapter VII, (7.50)).
3.2.5. Theorem. Let f  be a non-negative function on the interval <0, 2тс), 

and let log/(  • ) eL1. Then there exists a function FeN' such that \F(elt) \ =  f(t) 
for almost all t from the interval <0,2u) ([17], Chapter VII (7.33)).

3.2.6. Theorem. Classes N and N' are linear sets in the space of functions 
analytic in the disc D.

Proof. Let us remark that

log (1 +  u) — log2 <  log+ и <  log (1 u) for и >  0.

Vow, let F  and G analytic functions in B, and a and § be complex 
numbers. For an arbitrary measurable set E and arbitrary r, 0 < r  <  1, 
we have
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J log+ IaF(reu) +(№(re11) \ dt <  J  log (l +  IaF(reu) +  @G(reil)|) dt
E E

<  f  lo g (l+  |«| \F(reu)\ +  \p\ \G(reil)\)dt
E

<  / log((l+  H )(l +  \P\)(1+ \F(reil)\)(l+ \G(rél)\))dt
E

=  lo g (( l+ |a |) ( l+ |j8|))-m es^+ J lo g (l+  \F(reu)\)dt +
E

+  J  log(l-f- \G(rext)\)dt
E

<  log(4(1+ |a |)( l+  |j3|))*mesÆ7+ Jlog+ \F(reu)\dt-\-
E

+  J  log+1G (rext) I dt.
E

Hence we deduce, by 3.2.2, that if F,GeN',  then also aF+pGelf'. 
Taking in the above inequality E =  <0,2 тс) we see that if F,GeN, then 
also aF+pGeN.

II. HARDY-ORLICZ CLASSES AND SPACES. 
COMPARISON OF CLASSES AND SPACES

1. The modular y<p(')

To simplify the formulations of theorems and definitions we take here 
the convention that the letter cp will always mean a log-convex ^-function, 
because our considerations will concern only log-convex ^-function.

1.1.1. We define for any analytic function F in the disc В — {z\ \z\ <  1}

2 TC
pv(r,F) =  J^(F(reu)) =  J  <p{\F(relt)\)dt for 0 < r < l

о
and

juv(F) =  sup{^(r, F)\ 0 <  r <  1}. J

1 . 1 . 2 .  T h e o r e m . Let F be an analytic function in the disc D. Then 
jj,v(r, F) is a non-decreasing function for 0 <  r <  1, and so

Уср(Е) =  lim ^(r, F).
r-> 1-



14 Ii. L e s n i e w i c z

Proof. It is known ([17], Chapter VII, (7.11)) that a function F  
analytic in the disc D satisfies the inequality

2т:

l o g |^ ( e ô K —  г —2tv J r2 —
r̂  — Q1

2r^cos(i— т)+ q‘‘ log \F{re%t)\ dt

for arbitrary 0 <  g <  r <  1 . Since the function Ф(х) =  <р{ех) is non­
decreasing and convex on the whole real axis we get, by the Jensen’s, 
integral inequality

2tu 2

"2~ л2 log \F(тв̂ ) I dt I
r* — z r o c o s u — r)-t- 0“

2tt
1

2n

к  Г
2tz J

i.e.
1

'QGO&(t— T) +  Q2

Ф (log\F (гег*)\) dt,■2rQGOB(t— t)+  q2

(*) ^ ( е Л И - ^ г /
0

r2 — Q2
2rQC,0&{t— t)+  q2

<p(\F {reu)\) dt

for 0 <  q <  r <  1. Integrating this inequality with respect to r, 0 <  r <  2nr 
and changing the order of integration at the right-hand side, we obtain

/  Ç>(|J4oO|)dT <  J q)(\F{re%t)\)dt f o r O < £ < r < l ,  
о о

and this concludes the proof.
1.1.3. Theorem. Let F be an analytic function in the disc D. Then

l-P(*)l <  y - i l - ^ T T-l for |г| <T t(i-N )
Proof. Since

Г2— Q2 p 2
< --------- < for 0 <  Q < r <  1 ,

r2 — 2r^cos(i— t) +  q2 r —Q r —Q 

it follows from inequality (*) in the proof of Theorem 1.1.2 that
4Ti

y (l^ (eO I)<  TC(|, i  - f  <r{\F(ré I dt for 0 <  о <  r <  1 .

Passing to the limit as r 1 — , Theorem 1.1.2 yields

Pv{F)
n { l—e)

for 0 <  о <  1,
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Since a log-convex ^-function <p possesses an inverse (p_x which is 
a ^-function (see 1.1.6.3), we obtain hence the inequality given in the 
theorem.

1.2.1. Th e o r e m . If F is an analytic function in the disc D stick that 
f*v(F) <  oo, then FeM ' .

Proof. The function Ф{х) — <p(ex) is positive, non-decreasing, convex 
on the whole real axis, and satisfies condition ( ocq). Since it is convex 
and positive, we may apply Jensen’s integral inequality for an arbitrary 
set F of positive measure and for an arbitrary r, 0 <  r <  1 . We get

Ф\— -—- f log+\F(relt)\ dt\ < ------— f  0(log+ \F(relt)\)dt
\mes-Ë7 J / mes F J ' ’' E E

2 n 2 тс
< —-— f  Ф(1оя+ |Р(гвй)|)<й<------— f Г 0llog\F(reu)\)dt +  2n0(O)mes E J ' ’ mes E \J 1о 0

=  F )+ 2 ^  

and hence

(*) Ф — J log+ \F(relt)\dtj-mesE <  pv(F)-\-2n<p{l).

Now, let us suppose there exist a sequence of measurable sets (En) 
such that me&Fn > 0 ,  m.esEn ->0, and a sequence (rn) of numbers 
0 <  rn <  1 such that

f log+ \F(rnelt)\dt >  7] >  0 for n = 1 , 2 , . . . ,

where y is a constant independent of n. Hence from the fact that the func­
tion Ф is non-decreasing and satisfies condition ( ocq) follows

1нпФ(-----—  f  log+ \F (гпег1) \ dt) - mes En >  lim Ф (---------} • mes En — oo,
со \mes En J J oo \ mes En}ВП

But this is a contradiction to inequality (*), whose right-hand side 
has a constant finite value. Thus we conclude from (*) that the integrals

X

j  log+ \F{relt)\dt (0 <  r <  1 )
0

are uniformly (with respect to r) absolutely continuous functions of the 
variable x. By Theorem 1.3.2.2, we obtain the thesis of the theorem.
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1.2.2. Th e o r e m . If  F e N ', then
2 TÇ

pr(F) =  - / ,И « ‘')) =  /  v (\F(e“)\)dt.
0

Pro of. Since the function Ф{х) — y{ex) is non-negative, non-decreasing 
and convex, we conclude from Theorem 1.3.2.4, that

2rc 2tt

J 0(log+ \F{reü)\)dt <  f  Ф (\og+ \F{eu)\)dt for 0 <  r <  1. 
о 0

Hence, taking into account Theorem 1.3.1.3, we get by Fatou’s lemma
2тс 2tt

lim f  0(log+ \F(reit)\)dt =  J  <2>(log+ \F(eu)\)dt. 
о 0

Since

0(log+R) =  Ф(logsup{1, и}) =  sup{<£(0), Ф (log ад)} =  8ир{9?(1 ), <p{u)}, 

the above equality may be written in the form
2k  2

(*) lim f sup {99(1 ), <p(\F(reu)\)]dt =  j  sup jçj(l), <р(№(е?*)\)} dt.
о 0

However, 0 <  inf{99(1 ), 9?(|Р(гбй)|)} ^  99(1 ) for each r, 0 ^  r <  1 , and 
each t. Moreover, by Theorem 1.3.1.3,

lim inf {99(1 ), (p(\F(reu)\)} =  inf {99(1 ), (p(\F{ea)\)}
7*—>1 —

for almost all t. Hence
271 27T

(**) lim J inf {99(1 ), y(\F(reü)\)] dt =  J  inf {99(1 ), y(\F{elt)\)\dt.
r~*! -  0 0

Adding both sides of equalities (*) and (**), and taking into account 
the identity sup {a , 6} +  inf {a, b) =  a valid for any real а,Ъ, we get

271 2n

lim J  (99(1 ) +  9?(I-F(reu)|))dt =  J (<?>(1 ) +  <И-^(^)|)Ц.
r->i- о 0

Subtracting on both sides 27199(1 ) we obtain the required equality.
1.2.3. Remark. The assumption FeN'  in Theorem 1.2.2 cannot be 

replaced by the weaker one FeN.
This will be shown by the example of the function

F{z) =  exp
1 — z (l«l <  !)•
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We have for this function

\F(relt)I =  exp (re
1 -\-ré 
1 — ré = exp 1 — r2

1 — 2r cos t-\-r2
for 0 <  r <  1 .

Hence
2 П
J' log+ \F(reü)\dt — J 1 — r2

1 —2rcostf +  r2
dt =  2tu for 0 <  r <  1 ,

and this means that FeN. Now, we show that /t<p(F) =  oo for every 
log-convex ^-function q>. By the inequality |sinæ| <  N>

1 — r /1 —r \2 „
1 — cos(l — r) = 2 * sin2----- - < 2 (-------) = -|(1 — r)2.

Hence we get for \t\ <  1 — r 

1 — r2 1 — r2 1 —r2
1 —2rcost +  r2 1 —2rcos(l —r) +  r2 (1 — r)2-f 2r(l — cos(l — r))

1 —r2 1
^  (1 — r)2+ r ( l  —r)2 1 — r

Thus, we obtain for cp(u) =  Ф (log ад)
2л 2л

p9{r,F)  =  J  <p(\F[reü)\)dt =  J  Ф(log\F(re%t)\)dt

2 TC

“ / 4
1 — r2

1 —2r cos £-}-r2 } 

>  2Ф —-I (1 — r).

\ * >  f  ф (— h i r ! — \
/ J \ 1 —2rcostf—r2 /

dt
WKl-r}

Now, condition (oox) for the function Ф yields

lim /1 J r , F) >  21im Ф
— r-> X— \ 1  V

(1 — r) —  OO,

and this means that fiv(F ) =  oo. On the other hand, let us remark that

1 — r2\F(eu)\ — lim exp
r^J- 1 — 2rcost +  r2,

for 0 < t <  2 щ  and so
2л

J ^ F ^ é ) )  =  J  <p( l ) d t  =  2тир(1) .

=  é  =  1

R oczniki PTM — P race M atem atyczne XV 2
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1.3. Th eo r em . The non-negative functional possesses the following
properties on the set of analytic functions in B:

1° y 9{F) =  0 if and only if F =  0 (i.e. F(z) = 0  identically in D),
2° y^aF) — y,p{F) for numbers a with absolute value |a| =  1 ,
3° fiyiaF^+bFz)^ y^Ffj +  y^Ff) for real ar b^O , a + b  =  1 ,
4° if y^F) <  oo, then y v(aF) 0 as a -> 0.
Proof. If F =  0, then obviously y 9{F) =  0. Conversely, if y^F) =  0, 

then F =  0, by Theorem 1.1.3. Properties 2° and 3° are obtained from 
the corresponding properties of j^ - )  (see 1.2.1.2), immediately. Finally, 
property 4° is deduced from Theorem 1.2.1 and 1.2.2, and from the analo­
gous property of </,,(•).

Similary as the functional </,,(•) for measurable functions of a real 
variable, the functional y v(-) for analytic functions is an example of 
a modular in the sense of Musielak and Orlicz [11].

1.4.1. We define two simple operators for analytic functions in the 
disc D.

Let F be an analytic function in the disc D, and let r and h be real 
numbers, 0 <  r <  1 . We denote by TrF and 8hF functions defined by 
formulae

TrF{z) =  F(rz) and 8hF(z) — F(ze%h) for zeB.

Cleary, operators Tr and 8h are distributive and transform analytic 
functions in В  into analytic function in B.

1.4.2. Lem m a . Let F be an analytic function in B. Then we have for 
every r, 0 <  r <  1 ,

P9(r, F) =  ^ ( T rF).

Proof. Let us remark that for an arbitrary fixed r, 0 <  r <  1, the 
function TrF is bounded in D, and TrF(elt) =  F(relt) for all t. Since TrF  
is bounded, it belongs to N'. Hence, by Theorem 1.2.2,

2тг 2n
l*r{TrF) =  f  <f(\TrF(_ea)\)dt = /  v (\F{rel,)\)dt =  ^ { r ,F ) .

0 0

1.4.3. L e m m a . If F is an analytic function in the disc B, then we have 
for an arbitrary real number h

P<p(8hF) =  PviF)-

This follows immediately, from the fact that the functions (p (\F(relt)\), 
0 <  r <  1, are 27t-periodic.
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2. The definition of Hardy-Orlicz classes and spaces

2.1.1. Let us denote by H9 the set of functions F analytic in D  for 
which /av ( F )  <  o o . In the sequel the set H9 will be called the Hardy- 
Orlicz class.

It follows directly from Theorems 1.2.1 and 1.3 that II9 is a convex 
set symétrie with respect to zero in the class N'. In general, H9 are not 
linear sets. Therefore we define, just as in the case of functions of a real 
variable :

We denote by H*9 the set of analytic functions F  such that aFeH9 
for an a >  0 (depending in general on F). Obviously, the set H*9 is the 
linear hull of H9 in N'. The set H*9 will be called the Hardy-Orlicz space.

Moreover, we shall denote by K ,p the set of analytic functions F such 
that aFeH9 for every a >  0. It is easily shown that K 9 is the greatest 
linear subset of the Hardy-Orlicz space H*<p contained in H9. The set 
K 9 will be called the space of finite elements in H*9.

Obviously, if (pm{u) =  g>(ujm) and <pm(u) =  <p(mti), then
OO OO

H*9 =  U  H 9>n and К 9 =  П  H9n.
m=l m=l

Let us denote yet by К  the set of functions F analytic in the disc D 
and continuous in the closed disc D — {z\ |z) <  1} and by H00 the set 
of functions F  analytic and bounded in the disc D. The following inclusions 
are evident:

К  с  H°° с  К 9 с  H9 c  H*9 <= N' c  N.

In case cp{u) = u v ,p  > 0, H9 is the Hardy space for the power p; 
then we write Hv in place of H9.

2.1.2. T h e o r e m . A function F analytic in the disc D belongs to H9 
{to H*9, K 9, respectively) if and only if it belongs to N' and its limit function 
F(e1’) belongs to L9 (to L*9, M9, respectively).

This follows at once from Theorem 1.3.1 and 1.3.2.
Let us turn to Theorems 3.2.3 and 1.3.2.6 and let us remark, that 

the correspondence between an analytic function F from the class N  and 
its limit function F(e1') is an isomorphism of the class N  onto the set 
of measurable fuctions /  of a real variable in <0, 2n) for which there 
exists a function FeN  such that f(t) — lim F(reü) for almost all t from

r - > l  —

the interval <0, 2n). Thus, if we neglect the difference between isomorphic 
spaces, we may write Theorem 2.1.2 in the form

H 9 =  N '  n  L 9, H * 9 = N '  n  L *9, K 9 — N '  r\ M 9.
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2.1.3. T h eo r em . I f  F belongs to H a n d  F (ег') belongs to If* {to L*4>2, 
M respectively), then F belongs to H*2 {to H*% TP2, respectively).

This follows from Theorem 2.1.2, immediately.
The above theorem is more general than an analogous theorem given 

by Safronova [14] for convex 99-functions, because we suppose <p to be 
only a log-convex 99-function.

2.2. Th e o r e m . Every function F from the class N' belongs to a Hardy- 
Orlicz class H<p.

Proof. We denote for a function FeN'

En =  0 € <0? 2tc)| n — 1 <  \F{elt)\ < n }  for n =  1 , 2 , ...

Applying the inequality log (1 + ад) <  log2 -f- log+ ад for ад >  0 we have

OO 2т: 27T

y^logn-mesEn^. f  log (l+  |Р(ег<)|)<Й <  27rlog2 +  J  log+ \F{eu)\dt <  00.
w=2 0 0

It is known that one may choose a non-decreasing and tending to 00 
sequence of real numbers an such that still

OO
an - log ад- mes En <  00.

n=2

Here we may suppose additionally that 0 <  a2 <  «3log2; we construct

for 0 <  t <  2 ,
for n — 1 ^ t  <  n, n =  3 , 4 , . . .

Since the function p is positive, non-decreasing for t >  0 and tends 
to 00 as t -> 00, the function

a function

Pit)
o^2 ̂

U
cp(ад) =  J  t~rp{t)dt for ад> 0 

о

is a log-convex 99-function, by Lemma I.1.6.2, Since

n  n

<p{n) =  f t~lp{t)dt =  u2 +  Y%(log&—log(Л; — 1 ))
0 &=3

П
<  u„(log2 +  ^(logfc — log(& — 1 ))) =  a jogn  for n = 3 , 4 , . . . ,  

3
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Theorem 1.3.2 gives
2n oo

^ (F ) =  j  cp(\F{elt)\)dt <  ç?(2)-(mes-E^d-mesi/2) +  Jj?<p{n)me&]3n
0 n — 3

oo
< 2 tcç9(2)+ • log n • mes Fn <  oo.

ГЬ=Ъ
This proves FtH*.

3. Comparison of classes and spaces

3.1.1. Lem m a . If f  is a real function belonging to IF and satisfying the 
ineguality f ( t) >  e for almost all t from the interval <0, 2тс), where c is a posi­
tive constant, then logf(-)eLl .

Proof. The function Ф(х) =  (p(ex) satisfies condition ( oo1). Hence 
there exists a real number x0 >  0 such that x <  Ф(х) for x >  x0, and 

х0-\-Ф(х) for all real x. Substituting x =  log и we obtain

Denoting 

we get

logR. <  x0-\-(p(u) io r u > 0 .  

E =  {<£<0,2tc)|/(<)>1}

J |log/(*)|d« =  f\ogf(t)d l— J  logf(t)dt
{0,2n)\EE

2тсж0+  J <p(f(t))dt — 2jcloginf {1 , c)

< 2тс(ж0 — log inf {1 , c})+J%(/) <  oo. 

3.1.2. Th e o r e m . The inclusion

П H*' c  H43
V=1

üobis if and only if for a positive integer m and for some constants d >  0 
the following inequality is satisfied:

(*) (p{u) <  fZ*sup{991(R), <pz(u), . . . ,  f o r u ^ u Q.

Proof. If (*) holds, then applying Theorem 1.2.1.5, we have the fol­
lowing inclusion for Orlicz classes:

OO

(**) r \ L v'<=Lv.
v= 1

We multiply this inclusion by N '. By 2.1 .2, we get the inclusion for 
Hardy-Orlicz classes given in the theorem.
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Conversely, if inequality (*) does not hold, then according to Theorem 
1.2.1.5, inclusion (**) also does not hold. Hence there exists a measurable 
function g such that gelf* for each v and g 4 1? . We take the function

\\9{t)\ i t \ g ( t ) \ > l ,
j{t) =

11 elsewhere in <0, 2n) .
Since

Л , (/) <  iff) +  2™Pvi 1 ) and (/) >  (g) ,

we have also feL (Pv for each v and f i l F . Applying Lemma 3.1.1 we deduce 
from feL^  and f(t) ^  1 for £e<0, 2тг) that log/(-)eLx. Hence, by Theorem 
L3.2.5, there exists a function FeN' such that \F{elt)\ — f( t) for almost 
all t from the interval <0,2тг). Applying Theorem 1.3.2 we get F eJFv 
for each v and F4H4>.

3.1.3. Th e o r e m . The inelusion
OO

F c  (J Hv*
• v—X

holds if and only if  for a positive integer m and for some constants d >  0 
and u0 >  0 the following inequality is satisfied :

(*) <Prn(u) ^  d(p{u) for U^ U0.

Proof is performed similarly as in case 3.1.2. Namely, if (*) holds, 
then Theorem 1.2.1.4 implies the inclusion

OO

(**) 17 c  (J Lv>v.
v— 1

We multiply this inclusion by A'. By 2.1.2, we get the required in­
clusion. Now, if (*) does not hold, then (**) does not hold, too. Hence 
there exists a measurable function g such that g eh4* and g iL 4>v for each v. 
We define the function /  as in the proof of 3.1.2. Since

Л ( / ) <  +  and S V' { f ) > S Vp{jg),

we have feL 9 and f i L <Pv for each v. But / eL9 and fit) >  1 whence, by 
Lemma 3.1.1, log/(-)eL1. Applying Theorem 1.3.2.5, we see that there 
exists a function FeN' such that \Fieü)\ = f ( t)  for almost all t from the 
interval <0,2n). According to Theorem 1.3.2, F ell4’ and F iH 4>v for each v.

3.1.4. Th e o r e m . The inelusion IF1 a FF* holds if and only if for 
some constants d >  0 and u0 >  0 the following inequality is satisfied :

<Pz{u) <  dq?1(u) for u ^  u0.
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Thus, the equality TPX =  IP2 holds if and only if for some constants 
dx, d% >  0 and u0 >  0 we have

d i:<Pi[u) <  (p%{u) <  dz-(px(u) for u ^ u 0.

This Theorem is a special case of Theorem 3.1.2 (and also Theorem 
3.1.3).

3.1.5. The inclusion
OO

m  с  п  H9*
v—l

holds if and only if for each positive integer m there exists constants 
dm >  0 and um >  0 such that the inequalities

<Pmiu) ^  dm'(p (u) for U >  Um

are satisfied for m = 1 , 2 , . . .
This follows from Theorem 3.1.4, immediately.
3.1.6. T h eo r em . The inclusion

OO

U  TPV c  №
v=l_

holds if and only if for each positive integer m there exists constants dm >  0 
and um >  0 such that the inequalities

<p(u)< dmcpm{u) for и >  um.

are satisfied for m = 1 , 2 , . . .
This follows from Theorem 1.3.4, immediately.
3.1.7. Th e o r e m . The identity

OO

(*) h v =  и  h ^
v = l

holds if and only if there exists a positive integer m for which

(**) Шп cz W m =  TP for n = 1 , 2 , . . .

Proof. If (*) holds, then according to Theorem 3.1.3 there exists 
a positive integer m such that cpm{u) <  d-<p(u) for и >  u0, where d >  0 
and u0 >  0. Thus, applying Theorem 3.1.4, we get TP a TP™. Hence 
we have

OO

Jpn c  Я 9’*' =  IP a IPm for n = 1 , 2 , . . . ,
v = l

and we obtain (**). Conversely, it is obvious that (**) implies (*).
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3.1.8. Theorem. The identity
СО

(*) Я 95 =  П  Я 9’*
v=i

holds if mid only if there exists a positive integer m such that
Ш

( **) ВУп c  P) H4>v — Ш for n = 1 , 2 , . . .
v==l

Proof. If (*) holds, then we deduce from Theorem 3.1.2 the existence 
of a positive integer m for which

(***) <p(u) <  Л’Шр{(рг(и), (ръ{и), . . . ,  (pm{u)} ÎOYU^Uq,

where d > 0  and щ >  0. We define <pn{u) =  <pn{u) for n = 1 , 2  , . . . ,m,  
and q>n{u) =  ç>m(w) for n — m-f 1, ... By Theorem 3.1.2, we obtain from 
inequality (***)

со оо „  m

П ^  =  г ь п  я*” =  п  я*'.
v=l »>=1 v= 1

Hence follows (**). The converse implication is obvious.
3.1.9. Theorem, (a) If Ш* с= Я 9̂ 1 amï Я 9̂ 1 #  H9* for n = 1 , 2 , . . . ,

then
СО

Я* #  U  Я 9’”
J>=1

for each ср.
((3) I f  Я ч>п => Я 9’и+1 шгй Я 9’»г+1 #  Я 95»1 for п =  = 1 , 2, .. . ,  then

СО

н* ф о  я 9’*’
v=i

/or ср.
This follows from Theorems 3.1.7 and 3.1.8, immediately.

3.2.1. Theorem. The necessary and sufficient condition for the inclusion 
ц*п с  я *9*2 is -3 ç)x. Thus, Й6 equality Я *9’1 =  Я *9”2 TwZds if and only
if (рг ~çp2.

Proof. If <p2 -3 9>i, then we have _L*9’1 с  A*9"2, by Theorem 1.2.3.5. 
We multiply this inclusion by N'. By 2.1 .2, we get Я *9’1 с: Я*9’2. Con­
versely, if the inclusion Я *91 c= Я *92 holds, then

oo ^

Я95! с  и  Я9’»1 =  Я*”2,
m=l

where cpm{u) =  q>2(u/m). Applying Theorem 3.1.3 we obtain that for 
positive integer m and for some constants d >  0 and >  0 there holds
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the inequality
<pz(u}m) <  d-cp^u) for и >  u0.

But this means cp2 -3 ^ .
3.2.2. Th e o r e m . The necessary and sufficient condition for the inclusion 

IP 1 c: is (p% -3 9q.
Proof. If cp2 -3 <Pi, then we deduce from Theorem 3.2.1 at once that

I F i  c  H * * 1 c= H * * 2 .

Conversely, let ns suppose <p2 -3 çq does not hold. Then there exists- 
a sequence iun) increasing to oo such that

ux >  1 and <pAuf) > 2 n<px{n2un) for n = 1 , 2 , . . .
We define disjoint sets Fn <= <0,27i) of measures

and a function

m

nies En 2тсуд(1)
2n(Pl{n2un)

n-un for teEn, n = 1 , 2 , . . . ,
1 elsewhere in <0, 2n) .

We have for an arbitrary positive integer m
2n

=  J  9h (w/(t))tf<
0

m —1

<  2тс9?1(1 )+  ^  (px{mnun)
n= 1

2rcffi(l)
2 > 1( Л П)

OO
^  tpAmnuJ Zncpii 1)

2 n<Pi(n2un)

and
<  2tc991(1 ) +  Ç,i (w 2%»)*27t +  2tc991(1 ) <  oo,

2ti99i(1)
1/9,2 ( m /  992 ( m Ш ^  A  ^  ( m Чг/ 2 > x' ' 0 ' n=m ' TAV w/

00 00

This means that feM ‘l 1 and / s' f*r- . From that 1 c= 7/;i and
/(*) >  1 for €̂< 0̂,2tc) we obtain log/(*)eX1, by Lemma 3.1.1. Now, by 
Theorem 1.3.2.5, there exists a function FeN' such that \F(elt)\ = f( t)  
for almost all t from the interval <0, 2-л:). Applying Theorem 1.3.2, we get 
here F eK ъ  and F^H*4*2.

3.2.3. T h e o r e m . The inclusion IP 1 c= IP 2 holds if and only if <p2 -3 <pi . 
Proof. If <p2 -3 (pi, then i f ’’1 c  F 2, by Theorem 1.2.3.5. Multi­

plying this inclusion by JSf' we obtain IP 1 <= IP2. Conversely, if IP 1 c= / Р 2, 
then also IPi c  H**2. By Theorem 3.2.2, we conclude cp2 -3 y x.
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3.2.4. The inclusion H*9’1 c  IP2 holds if and only if for every positive 
integer m there exists constants dm>  0 and um >  0 such that the inequal­
ities

(*) <p2(mu) <  dm-cpx{u) for u ^ u m

■are satisfied for m — 1 , 2 , . . .
Proof. Supposing (*), Theorem 3.1.5 yields

<(**) cz П H4’» =  K**,
v = l

where <pm(u) =  <p2(mu). Since К 9,3 is a linear set and H*91 is the linear 
hull of IP 1 in the class N', we get H*n cz IP2. Conversely, if the inclusion 

<- j£P2 then there holds also inclusion (**). Applying Theorem
3.1.5, we get (*).

3.3.1. T h e o r e m . The necessary and sufficient condition for the equality 
IP 1 =  H*V2 is that <px ~  cp2 and cp2 satisfies condition (d2).

Proof. If К 9,1 =  H*9’2, then we deduce from Theorem 3.2.2 that 
■<p2 -3 <Pi, i.e.

(*) <pz(u) ^  a<Pi(bu) for u ^  u0 (a, b >  0, u0 >  0),

and from Theorem 3.2.4,

■(**) рх{ти) <  dm<p2(u) for и >  um (dm >  0, um >  0)

for m = 1 , 2 , . . .  We may suppose that the constant b in (*) is a positive 
integer; in other case we could take the least positive integer greater 
then b in place of b. From (*) and (**) we get

<p2(2u) <  ачрх(Ь’2и) <  ad2b(p2(u) for и >  sup ^0
2 u.2b

Hence we obtain that cpx ~<p2 and <p2 satisfies condition {A2).
Conversely, let <p2 satisfy condition (A2), and let Then

IP 1 =  К 9,2, by Theorem 3.2.3. Moreover, since cp2 satisfies (zl2), we conclude 
from Theorem 1.2.3.6, that JP2 =  U¥<P2. Multiplying this equality by N' 
we obtain К ”2 =  H*9*2. Thus, =  Н*ъ.

3.3.2. T h e o r e m . The following four conditions are mutually equi­
valent :

1° (p satisfies condition (z)2),
2° W  =  H *>p,
3° Hv =  K v,
40 J£p _  л*ч>
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Proof. From the preceding Theorem the equivalency of 1° and 4° 
follows, immediately. Now, if 2° or 3° holds, then W  is a linear set and 
this implies 4°. Conversely, 4° implies 2° and 3°, because if 4° holds, then
F  c  F  c  H *ç .

3.3.3. Theorem. If cp does not satisfy condition (d2), then there exists 
Junctions Fx, F 2€H*<p such that

(a) f i y iFj)  <  oo and y^aFf) =  oo for a >  1 ,
(P) jUyiaFJ <  oo for 0 <  a <  1 and juq3(F2) =  oo.
Proof. Let 99n(u) =  <p((l +  l/n)u). If (a) does not hold, then

OO
Я* c  (J H 4>v.

V = 1

By Theorem 3.1.3, we have then for a positive integer and for some 
constants d >  0 and u0 >  0 the inequality

9?((1 + 1 /я)е) <  d-<p(u) for и >  u0.

By Lemma 1.1.3.3, cp satisfies condition (zJ2).
Let yn(u) =<p((l—ll{n +  l))u). If ((3) does not hold, then

OO ^
П  Я 97- c  W .
v — \

But then we conclude from Theorem 3.1.2 that for a positive integer 
m and for some d >  0 and u0 >  0 there holds the inequality

cp{u) <  d -su p f^ #), cp2{u),...,<pm(u)} =  # | |  1 — т  7, j 

for u ^  u0.
Replacing in this inequality и by (l-\-l/m)u, we get 

9>((1 +  1/m)u) <  dcp{u) for u ^ u 0.

Hence, q) satisfies condition (zJ2).

III. SPACES WITH NORM GENERATED BY <p. 
COMPARISON OF CONVERGENCE OF SEQUENCES

I. Spaces H*(p with norm generated by (p

1.1.1. The space H*43 is algebraically isomorphic with the subspace 
■of the space L*9, consisting of limit function F(ev) of functions FeH*4’ 
{see II.2.1 .2). According to this isomorphism we may define the norm
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in the space IL** as the norm generated by of the respective elements of 
the space L** (see I.2.3.1). Namely, we take for Fell*41

(*) ii*ii? =  11*4011:.
Then we get from Theorem 1.2.3.2 and from Theorem II.1.3.2r 

immediately :
1.1.2. T h e o r e m . ||- ||v possesses the following properties in H**:
1° К «Up is an F-norm,
2° if |* \(^ )| <  1- 2̂(O l for almost all t, then H*1̂  <  1И 1?,
3° pv(F) <  H*1̂  if \\FWy <  1; pv{F) <  1 implies ||*1|p <  1,
1° ||.FJ|V -> 0 if and only if yv{aFn) -> 0 for every a >  0.
1.1.3. Th e o r e m . If F e l l**, then

(*) 11*11? =  inf {k >  0 |pv{Fl/c) <  ft}.

Proof. According to the definition of the norm generated by cp in 
the space L** (see 1.2.3.1), we conclude from 1 .1.1 (*) for FeH*<p that

Ill’ll. =  inf jfc >  0 \J, ( * k l j  <  fcj.

Since H** <= A', according to Theorem 11.1/3.2 for every ft >  0 there 
holds J q>[F{ev)lk) =  /^(P/ft). Hence we conclude (*).

Obviously, formula (*) of 1.1.3 may serwe as a definition of the 
norm generated by cp in H**•, then equality (*) of 1 .1.1 becomes a theorem 
for FeH**.

1.2.1. T h e o r e m . Let F be an analytic function in the disc D. Then 
TrF eK cz H** for each 0 <  r <  1 , and \\TrF\\(p is a non-decreasing func­
tion for 0 <  r <  1. Hence

sup{||TJ.*,||,,|0 <  r <  1} =  lim \\ТГН%.
r->l —

Proof. Obviously, TrF eK  с  H** for each 0 <  r <  1. Now, by Theo­
rems 1.2.1 and II.1.4.2 we have for 0 <  rx <  r2 <  1 and every ft >  0, 

rxF /ft) и.4. ( TT2 Fjk). Hence we obtain

H op ’ll» = inf {k >  Oj 1*,(ТГ1Щк) «  £ }<  inf { i >  0\11г (ТГгХЧЦ <  к}

=  il*,2*1i?.
1.2.2. Th e o r e m . An analytic function F in the disc D belongs to H**’ 

if and only if sup{||Tr*1|ç,| 0 <  r <  1} <  00.
1.2.3. Th e o r e m . If FeH**, then

11*11? =  supdl^PigO <  r <  1} =  lim IITrF\\v .
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Proof of 1.2.2 and 1.2.3. Let FeH*9. We take an arbitrary number 
к >  ||.F||,,. By Theorem 1.1.3 we have F/к) <  к. Hence, by Theorems
1.2.1 and II.1.4.2, we get /u<p(TrF/k) ^  к for each 0 ^  r <  1 . According 
to Theorem 1.1.3, this implies \\ТГЩ\̂  <  к for each 0 <  r <  1. Hence, 
sup{||Tr^ ||J 0 <  r <  1} <  k. Thus, there holds the inequality:

{*) sup{||Tr.F||,,|0 <  r <  1 } <  И „ .

Now, let sup {\\TrF\\l}1\() < r <  1} <  oo. We take an arbitrary number 
к >  sup{||TrjP||J0 <  r <  1}. Hence, by Theorem 1.1.3, we have pi(p{TrFlk) 
<  к for each 0 <  r <  1 . According to Theorem II.1.4.2, we get hence

/ipiF/k) =  8u-p{pv{TrFlk)\Q <  r <  1} <  k.

Consequently, we obtain FeH*9. Moreover, by Theorem 1.1.3, 
Tc. Thus, there holds the ineĉ Ucility

<**) n  <  sup { | |З Д , | 0 <  r <  1}.

If FeH*41, then inequalities (*) and (**) and Theorem 1.2.1 yield 
the equality given in Theorem 1.2.3. Thus, we have finished the proof 
of Theorems 1 .2.2 and 1.2.3.

1.2.4. One may define a norm || • Ц,, in H*9 also by means of the formula 

ll-FII,, =  sup{||^(rÔlpO <  r <  1}.

This definition of the norm \\-\\v does not require the knowledge 
of the space H*9 itself. Namely, from Theorems 1.2.1, 1.2.2, 1.2.3 and 
1 .1.1 follows that HJ’II may be defined by means of this formula for every 
functions F analytic in the disc D. The space II*9 is obtained then as 
the set of functions F  analytic in the disc В  for which \\F\ly <  oo. This 
property is not possessed by the definition of this norm by means of 
formula 1.1.1 (*). By Remark II. 1.3.3, we obtain even that there exist 
functions F analytic in the disc B, possessing a limit function F(eu)eL*9, 
which do not belong to H*9. An example of such a function is given by 
F(z) =  exp ((1 + 2i)/(l-- z)).

1.3.1. Th e o r e m . If FeH*9, then

\F{z)\ <  4P- m\v
n ( l— |s|) ■\F\ for ZeB.

Proof. We take an arbitrary к >  Ц̂ Ц,,. By Theorem 1.1.3, F/k) <  k. 
According to Theorem II.1 .2.2, we have

к
F (0)! <  ер.

7Г(1— |«|)
for Z e B .
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Since <p_x is an increasing function, we get hence

\F{ss)\ <  (р_г .гг) & for zeD.
W (l — \z\)f

Passing with h -> \\FWy we obtain the inequality given in the theo­
rem, because is a continuous function.

1.3.2. Th e o r e m . The space H*9 is complete with respect to the norm
INI,-

Proof. Let (Fn) be an arbitrary sequence of functions from H*9 such 
that \]Fn—Fm\\v 0 as n, m -> oo. Then, by Teoiem 1.3.1, Fn —Fm 0 
almost uniformly in the disc D as n, m oo. Hence there exists 
a function F  analytic in the disc I) such that Fm —> F almost uniformly 
in the disc И as m-> oo. Now, we take an arbitrary number e >  0. Accord­
ing to the assumption, there exists a positive integer n0 such that 
\\Fn— FmWy <  e for all n, m ^ n 0. Applying Theorems 1.1.3 and II.1.2.1, 
we obtain hence for all 0 <  r <  1, and n, m >  n0

2n

f *(
Ш г е * ) - Т т(ге% ^ ( Fn- F m\ ^ { Fn- F m\ ^

-\dt  =  i x A r , ----- ------I---------------------e.

Keeping 0 <  r <  1 fixed and passing to the limit with m -> oo, we
get

2тг

/  *( IFn№ ) - F (reU)I \ at — ii<p\r,----------1 <  e

for all 0 <  v <  1 and n >  n0. Hence we obtain

/ Fn—F \---- ----- 1< £  tor n ^ n 0.

From this inequality we deduce FUq— F eH*9, and so FeH*9. More­
over, by Theorem 1.1.3 we obtain from this inequality ||Fn—F||v < £  for 
n ^ n 0. But this proves \\Fn— F\\v 0 as n  oo.

In the sequel we shall use sometimes the symbol [H*9, ||- ||v] to 
denote the Fréchet space H*9 with the norm |j - |fv.

1.4.1. Theorem. If FeH*9, then pF ||p/& is a non-increasing function 
for Tc >  0.

Proof. Applying Theorem 1.1.3 we get for Jc >  0

i  WTcFWç, =  - iin f  | e >  0\pv <  ej =  inf jrç >  0 |^  <  *j/J.
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Now, we take 0 <  kx <  k2. Since the inequality /^(F/rj) <  кxy implies 
v<p(Fh)  ^  k2rj for every у >  0, we have

r~ Pi-^llv =  infj^ >  0|^  j <  >  inf j ?7 >  0|^  <  k2y

=  -r  ИМ1 II,•A/g

1.4.2. Th e o r e m . Let F e H **. If  0 <  \\F\\V ^  Ô, then 

Proof. Since dl\\F\\v ^  ly the last theoreni ^ives

\m 9

"2
ÔF

11-*%
<  <5.

ÔF

l№
<\\F\L,

and we conclude the theorem. 
1.5.1. We define for FeH*43

[F]v =  i n f { & > 0 | ^ ( F / f c ) <  ex.}.

1.5.2. Th e o r e m . The functional [•],, possesses the following properties 
in H*4:

1 °  [F]g, =  0  i f  and only i f  F e K 4 ,

2° [aF],, =  \a \lF \ for an arbitrary complex number a,
3°
4 ° O T , < i m u
5° [ F \  =  LmWTcFWJJc.

Jb—>00
Proof. 1° If F e K 4, then p ^ F j k )  <  o o  for every Tc >  0, and so 

[ F ] , ,  =  0. Conversely, if [ F ] , ,  =  0, then p ^ F J k )  <  o o  for every k  >  0y 
whence F e K 4 .

2°  If a  =  0, then 2 °  is obvious. In other case, Theorem II.1.5 2a 
gives

[o F \  =  inf ч7c >  0\pv <  oot =  |a|inf |£  >  0| ^ ( —j  <  oot \a\ L-̂  J<p*

3° We take arbitrary numbers k x > [ F x] (p and k 2 >  [ F 2\ .  Then 
PviFJkf) <  o o  and p,p(F2lkz) <  o o . By Theorem II.1.5 3° we get

Л  +  iM  =  / Тсг
kx-\-k2 J l̂<P\k 1-\-k2

F\
kx

h  , F 2\ IL\
hi+h,

<  O O .

This means that [Fj +  Fg],, ^  Zq -1- Z/2 • Hence we obtOiin the 
gle inequality 3°.
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4° We take an arbitrary number к >  By Theorem 1.1.3 we
have then ^{Fjk)  <  к. Hence [F]  ̂<  k, and inequality 4° follows.

5° WTe deduce from properties 2° and 4° of functional [ • that 
<  \\kF\lJk for every к >  0. Hence, taking into account Theorem 

1.4.1 we get the inequality

k-+oо

How, we take an arbitrary number e >  [F]v. Then pv{Fje) <  oo. 
Thus, there exists a number к >  0 such that ^(Fje) <  ke. Since

у  \\kF\\v =  inf (e > 0\iav{F{s) <  ks},
К

we obtain fkFW^k <  s. Hence we conclude from Theorem 1.4.1 that 
HmWkFWJk e* Thus, we havG the inequality
k-+oo

l i r n y P ^ < m „
к—юо Л'

and the proof of 5° is finished.
In the following, the functional [-J  ̂ will be called the pseudonorm 

generated by cp.
1.5.3. T h e o r e m . К 9 is a closed subspace of the space [H*9, ||* ||y. 
Proof. Let (Fn) be a sequence of functions from K v convergent 

in norm to the function F e l l*4’. By the preceding theorem, we have 
[Fn2v =  0 for each n, and lim [Fn—F]<p =  0. Hence, the triangle ine-

n ->oo

quality 0 <  [F]^ <  [Fn— F]v+  [Fn]v gives [ F \  =  0. Thus, F eK <p.
In the sequel we shall use sometimes the symbol [K9, j|- |y  to denote 

the Fréchet space K 4 with the norm ||• \\rf.

2. Structural properties of the space Н*^

2.1.1. Lem m a . Let (fn) be a sequence of real-valued, non-negative 
functions integrable in {0 , 2тг) and convergent in measure to a function f  
integrable in <0,2u). If

2n 2tt

lim j  fn{t)dt =  j  f{t)dt,
n~>oo Q о

then for every measurable set E cz <(0, 2n) we have also

lim  ( m a t  =  f f (t) dt .
«-*■ 00 f; E
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Proof. Let us suppose the thesis of lemma does not hold for a meas­
urable set U cz <0, 2-7t). Then one may extract from the sequence (fn) 
a subsequence (fn>) convergent to almost everywhere in <0, 2тг) and 
such that the limits

lim f f n'(t)dt and lim j  fn>(t)dt
Я/-МЗО E  n '-^ c o  < о ,2 т г ) \£

exist and
lim

n'-*co E  E

Then we have, by Fatou’s lemma

lim f f n’(t)d t>  j f  (t) dt
n'->CO E E

and
lim f  f n’(t)dt >  j  f(t)dt.

<0,2tt) \ J S  <0,2tt) \ S

Adding these inequalities we obtain
2 n 2tt

lim f  >  J  f(t)dt,
n'->oo 0 0

a contradiction to (*).
2.1.2. Th e o r e m . Let Fn (n — 1 ,2 , . . . )  and F be functions of the class 

Hv. I fF n(ex') -> F(F') in measure on the interval <0, 2 тс) and /^(FJ -> ^ (F ), 
then ^ ($ (F n—F)) -> 0.

Proof. First, we prove the theorem under additional assumption 
that Fn{e%') ~^F{ex‘) almost everywhere. Since (<р(^п(бг,)|)) is a sequence 
of non-negative and integrable functions on <0, 2tt) convergent to the 
integrable function cp(\F(eu)\) almost everywhere in <0, 2tz), and since 
according to Theorem II. 1.3.2

2тт 2тг

Uni f <p(\Fn{ea)\)dt =  /  v (|.F(ea)|)<«,
П—>0О Q Q

the above lemma gives for every measurable set F  <= <0,2тс) 

lim / y(\Fn{e«)\)at =  / <p(\F(e“)\)dt.
n->CO E . E

Since
/ — ^(е<г)1)й* <  J  v {h\Fn(eu)\ +  i\F(ea)\)dt

E E

<  / 9p(sup{|J’„(ea)l, \F(ea)\})dt =  / sup ^(|-Р(«а)|)|<й
E E

«  j  <p{\Fn(eu)\)di +  j  f (\F(ea)\)dt,
E E

Roczniki PTM — P race M atem atyczne XV 3
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we get hence

ïïm /9>(il-P»(ea) - J ( e e)|)«B<2 jV(|-F(ea)l)dt.
n -* 0O JÇ jgi

4
2tc

Let s >  0 be arbitrary. Since t*v{F) =   ̂(p[\F{exi)\)dt <  oo, there 
exist ô >  0 such that 0

/?>(|*Чв«)|)<В<£/2.
E

for an arbitrary set E <= <0,2тс) of measure mes E <  ô. But Еп{ег') -> F{e1’) 
almost everywhere. Hence, by Egorov’s theorem, there exists a set 
E0 c  < 0 ,27г) of measure mesE0 <  ô such that Еп{ег‘) -> F(e1') uniformly 
on {0, 2tz) \ E 0. Thus,

2тг

ita  /  9 (^\Fn(e“) - F ( e a)l)dt
71—MX) q

<ïtaT (i[_F„(e«) — _P(e<()I)dt
n -^°° E 0 n ~^°° <0,2n ) \ E Q

< 2  f  (р(\Е (еи)\)т <  S.
Щ

Hence we conclude
2тг

lim f <?(HFn(ea) - F ( e a)l)<lt = 0.
71—MX) q

By Theorem II.1.3.2 we deduce /^(-KFn—E)) -> 0.
]STow, let Fn(e1') -^F(e1’) in measure on <0,27t).
Let us suppose the thesis of the theorem does not hold. Then a subse­

quence (Fn>) may be extracted from the sequence (Fn) such that there 
exists the limit
(*) l i m ^ f i ^ - E ) )  > 0

п'-МЭО

and Fn,(e1’) -> F(eu) almost everywhere. Since Fn,(eu) -> F(el‘) almost 
everywhere and [A9(Fn>) -> ^(F),  we obtain from the above proved part 
of the theorem that ii9(\{Fn— F)) -> 0, a contradiction to (*).

2.1.3. Th e o r e m . If  FeH41, then ^v(£(Tr.F— F)) -> 0 as r -» 1 —. 
Proof. Obviously, the functions TrF belong to H9 for 0 <  r <  1. 

But according to Theorem 1.3.1.3, TrF(e1') =  F (гег' ) F(é1') almost 
everywhere, and according to Theorems 1.2.1 and II.1.1.2,

pv{TrF) =  pv(r, F) -> p9(F) as r -> 1 —.
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Hence, by the previous theorem we obtain

rF -F ) )  -> 0 as r —> 1 —.

2.1.4. Th e o r e m . If F e l l41, then y (p(^{ShF — F)) -> 0 as h -> 0. 
Proof. Applying Theorem II.1.4.3 we find that /iv{8hF) =  /av{F)

for any real h. Hence S ^ e H 41 for each h, and pv(8hF) -> pç{F) as h -> 0. 
Now, we may conclude Theorem 2.1.4 from Theorem 2.1.2 if we prove 
that 8hF{e1’) ->F{e1') as h -» 0 in measure on <0,2n).

We take numbers e, rj > 0  arbitrarily. Since F {re1') -> F(eu) almost 
everywhere as r -> 1 —, we have

mes{£e<0, 2 tz) \ \F{reu)— F{eu)\ ^  ф }  <  e/2

for some r, 0 <  r <  1 . Since the function F {re1') — F{%') is 2-7i:-periodic, 
we have also

mes{te<0,2tt)| \F{rei(t+h)) -  F {ei(i+h))\ ^  y/3} <  e/2

for every h. Next, the function F {re1') is 2-n:-periodic and continuous, 
and thus it is uniformly continuous. Hence there exists a <5 >  0 such that

\F{rei{t+h)) -F {re u)\ <  y/3 for \h\ <  <5 
for all t. Thus we get for \h\ <  ô

mes{$6<0,2тг)| \F {ei{t+h]) -  F {eü)\ >  y}
<  mes{4e<0, 2тт)| \F{ei(t+h)) -F {re i{t+h))\ >  y/3} +

+  mes{fe<0,2tu)| \F{rel(l+h)) — F{relt)\ >  î?/3} +
+  m e s { £ e < ( 0 , 2 tc) ] | J , (r e ^ )  —  N ( e ^ ) |  >  ^ / 3 }  <  e /2  +  e /2  =  e .  

This proves ShF{e'1') -> 1̂ (ег’) as & 0 in measure on < 0 ,2тс).
2.1.5. Th e o r e m . If F eK 41, then \\TrF —F^9 -> 0 as r -> 1 —.
Proof. If F eK 41, then aFеШ for each a >  0. Hence, by Theorem

2.1.3, y (p[\a{TrF — F)j -> 0 as r -> 1— for each a >  0. Applying Theorem 
1.1.2 (4°) we thus obtain ||TrF —F\\q) -> 0 as r -> 1—.

2.1.6. Th e o r e m . If F eK 41, then \\ShF — F\\v -> 0 us /г, -► 0.
This theorem is deduced from Theorem 2.1.4 in a similar manner 

as Theorem 2.1.5 from Theorem 2.1.3.
2.2.1. T h e o r e m . [К v, Ц-Ц,,] is a separable space, and set of polyno­

mials with complex rational coefficients is dense in [K41, j| -||f/)].
Proof. Let F be an arbitrary function from K rp. We take an arbitrary 

number e >  0. Taking into account Theorem 2.1.5 we choose r such that 
II2VJP— 0 <  r <  1. Now, let us develop F in a power series

F {z) =  Qq-}~ a^zA • •• ~\~ ••• for zeD.
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Then the function TrF may be developed in the power series

TrF(z) — F(rz) =  u0 +  at rz-\- ... -\-anrnzn-\~ ...

convergent in the disc {z| |s| <  1/r}, whence uniformly convergent in the 
closed disc D =  {z\ \z\ <  1}. We take n so large that the polynomial

F(z) — «0+ » ! ^ +  -.. +  anrnzn

satisfies the inequality \TrF{z)—F(z)\ <  £ £9?_1(е/4тс) for all zeD. Now, 
we choose complex rational numbers bk such that

for  ̂ =  0, 1 , n.

The polynomial Q(z) — b0Jrb1z Jr . . Jr bnzn has complex rational 
coefficients and

\TrF {z ) -Q (z ) \^ \T rF (z)-P (z)\ +  \P(z)~Q{z)\

«  \TrF (a ) -P (z ) \+  £  \акг* -Ь к{
k~0

for all 0eZ>. Hence we get, by Theorem II.1.3.2,
2тг

Thus, according to Theorem 1.1.3 we have \\TrF — Q\\v <  Conse­
quently,

WF-QW^ ÏÏF-T'.FÏÏy+WTrF-Ql <  e/2 +  e/2 =  e.

This proves the set of polynomials with complex rational coefficients 
is dense in [К*, |HU-

2.2.2. Th e o r e m . The space Ц • Ц̂,] is separable if and only if cp
satisfies condition (zl2).

Proof. If cp satisfies condition (Zl2), then according to Theorem 
II.3.3.2 we have H*41 =  K v and we conclude from the preceding theorem 
that [H**, IJ* 11̂] is separable.

How, let us suppose cp does not satisfy condition (zl2). By Lemma 
1.1.3.3 the function cp does not satisfy condition (Aa) for any a >  1 . Hence 
there exists a sequence of numbers un >  (w +  1)2 such that

<P 1
1

n-\-1
wn > 2 > ( 0 , cp{un) >  1 .
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Since
un

Un—1
we have also

w +  2 / 1 \ n +  2 / 1 \ 1
w +  1 \ un~  1 / <  w +  1 \ w2 +  2wj ’

J / i + i W - i ) )  > 2 > ю -

We take a sequence of pairwise disjoint sets Mn in <0, 2тс) such that

mes 7?

and we define real functions

2tc

/»(<) =

2> M

Wn — 1 for
v0 for te (0 , 2iz)\En.

Next, we define a family of real functions

frt(t) — 1 + W l(^ )+??2/ 2(^)+-*-+»/w/n('0+**->

where 77 =  (jjn) is an arbitrary sequence of terms 0 and 1 . We have for 
functions of this family

q̂>{fri) ^  ~ ^ p (l+ /l+ /2+  * ' ‘ + /n +  * * ')
OO

< 2tcç9(1 )+  У̂ (р (un)me&Fn <  2тсу(1 )-|-2тс.
П— 1

Hence and from fact that/,, (2) >  1 for all te (0, 2тс) we get, by Lemma
II.3.1.1, log/^(-)eZ1. Applying Theorem 1.3.2.5 we obtain function 
FvcN' such that \Fv(eu)\ — fn{t) for almost all Ze<0, 2tc). By Theorem 
II.1.3.2 we have /uv(Fv) < 2tcç9(1 ) +  2tc and this means that F^eH9 <=. H*9 
for every 77. Now, we take two different sequences rj' =  (rj'n) and rj' — (77”), 
and let r\m Ф 77” . Then we get, taking into account Theorem II.1.3.2

2n

> ^ ( ( 1 + i ) i F - F ^ )  = h ( ( 1 +  i ) |JV{eil) -  F( e<, )  ' )dt
2n 2n

>  9>M 1 +  ^4 (um—1 )J- m e s >  2tc >  2 .
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This proves that \\Fn— Fn» Thus, there is a set of power of 
continuum of functions in H ¥<p whose distances are >  . Hence the space
[B*v, ll'lly] is not separable.

2.3. T h e o r e m . If Fell**, then

IF]V <  mî{\\F—G\\(p\G€K4>} ^îha\\TrF - F]], <  2[J?V
r -> l  —

Proof. We deduce from Theorem 1.4.1 that inî{\\k{F—G)\\9>lk\GeK,p} 
is a non-increasing function for Tc >  0. Now, we take an arbitrary number 
£ >  inf {%\\k(F— 6r)||,p |6r€jK'9’}. There exist a number 1c0 >  0 and a function 
G0€K,p such that £ >  p 0(.P—# 0)||*Д0- Hence we get, by Theorems 1.4.1 
and 1.5.2 (5°)

P o ( ^ - ^ o ) l l ,> l im ip ( ^ - ^ 0)||, =  [ F - G ^ .
0 &->-oo Л'

But [jP— (г,,],, =  [.£%, because G0eKv. Thus e >  [.F],,. Hence, there 
holds the inequality

(*) m *  <  liminf j l  p ( ^ - e ) i y e . £ ”} <  inf ( i | j ' - e i y e e £ ”}.
*->oo t  ' C )

Now, we take an arbitrary number e >  2 [F]^. Then (2>F{e) <  oo, 
and this means that 2Fle€Hfp. By Theorem 2.1.3 we get y tp[{TrF —F)je) -> 
—> 0 as r -> 1 —, Hence we conclude, applying Theorem 1.1.2 (4°) that 
timWTrF-Fll ^  e. Thus there holds the inequality
T—>1 — ___
(**) lim||Tr.F—FWy <  2[F\V.

r—>l —

Since Tj.FeK4’ for every 0 <  r <  1 , inequahties (*) and (**) imply 
the inequality given in the theorem.

3. Comparison of convergence of sequences

3.1.1. Th e o r e m . Let (Fn) be a sequence of functions from ВУ. If  
y 9(Fn) -> 0, then Fn -> 0 almost uniformly in the disc D.

This follows from Theorem II.1.2.2 immediately
3.1.2. Th e o r e m . Let (Fn) be a sequence of functions from W . Then 

V<p{Fn) -* 0 if and anly if J^(.Fn(^)) -> 0.
This follows from Theorem II.1.3.2.
3.2.1. Th e o r e m . Let the inequality

<p2(u) <  dcpx(u) for u ^  u0
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be satisfied for some constants d >  0 and u0 >  0. Then (Fn) 0 implies 
Ну (Fn) -> 0 for an arbitrary sequence (Fn) of the class HVl.

This theorem is obtained from the previous one applying Theorems 
1 .2.1.6 and 1 .2.2.1 .

3.2.2. In order to abbreviate the formulation of some theorems we 
introduce the following notion:

We denote by (Я°°)о the set of sequences (Fn) such that FneH°° and 
T<p(Fn) -*-<>•

3.2.3. Th e o r e m . The inclusion
0°  00

<*) П  (# ° X c :  U
V = 1  V =  1

holds if and only if for some positive integers m and n and for some constants 
d >  0 and u0 >  0 there is satisfied the inequality

(**) V n iF X d 'sup{<px{u), <p2{u) , . . . ,  <pm(ад)} for и >  щ .

Proof. We write pm(u) — sup (ад), <p2(u) , .. . ,  <pm(u)}. Inequahtv 
(**) may be written in the form

<***) <Pn(U) ^  9̂°mi.u ) for u  ^

If inequality (**) holds, then of course (***) holds, too, and so by 
Theorem 3.2.1 <= ( .  Since

9?Дад)< ^те(ад)< 991(ад)+9?2(ад) +  ... +  99т(^) for v = l , 2, . . . ,m,
we have

oo m  A  ̂ oo ^
П  c= n  (# ° X  =  (H°°)t-  с  (д~)5* <= у

v = l  v = l  t>=X

If (**) does not hold, then of course (***) does not hold, too. Then 
for each m and n there exists um>n >  0 such that

Уп{ит,п)>Ът+пЧ)т{ит,п) and <Pi{um>n) >  m .

We take pairwise disjoint sets Fmn in the interval <0, 2rz) of measures

mes^m>w
2nm

2 m+nVm(um~)

and we define real functions

um>n for teEmtn, n = 1 , 2 , . . . ,  w,
(ç>m)_i(l/m) elsewhere in <0, 2tc).fm(t) =
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We have for each v <C m
2n m

î m
2 7i — 2 tu -f-

m
and

= /  ^ ( ^ m,,) 'm eS-0m>v > 2 т г т .
0

Now, let us note that every function / w is bounded on the interval 
< 0,27 i), and logfmi-'jeL1. By Theorem 1.3.2.5 there exist functions 
Fm€N' such that \Fm{elt)\ =  fm(t) for almost all te(f),2iz). We show 
that every function Fm is bounded in the disc B. Namely, applying Theorem 
П.1.3.2 to the function <p(u) =  #*, p > 0 ,  we get

Hence we deduce that every function Fm is bounded in the disc JD. 
Applying Theorem II.1.3.2 once more for r <  m we get now

Hence we conclude that the sequence (Fn) belongs to for
each v, and does not belong to for any v.

3.2.4. Th e o r e m . I f  juv (Fn) -> 0 implies (Fn) -> 0 for every sequence 
(Fn) of functions from H°°, then there are constants d >  0 and u0 >  0 such 
that

This follows from the previous theorem, immediately. It is a con­
verse to Theorem 3.2.1.

3.2.5. Th e o r e m . The following theorems of Chapter II  remain valid, 
if  we replace class W  by class of sequences (H°°)£, respectively: 3.1.2, 3.1.3,
3.1.5, 3.1.6, 3.1.7, 3.1.8 and 3.1.9.

Pv(Fm) =  S v(fm) <  27u(sup{/m(«)|0 <  t <  2n})p
and so, by Theorem II.1.2.2

sup{ / m ( £ ) | 0  <  t <  2tx} for zeD.

Passing to the limit as p ->  oo we obtain

\Fm{z)\ <  sup{/w(i)|0 <  t <  2n} for zeB.

(p2(u) <  d<p1(u) for и >  u0
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Indeed, let us remark that Theorems IL3.1.2 and 11.3.1.3 formulated 
for classes of sequences follow from Theorem 3.2.3, immediately*
Moreover, Theorem II.3.1.4 also in case of classes of sequences (H°°)I is 
contained in the above quoted Theorem 3.2.1 and 3.2.1. Next theorems 
of Chapter II mentioned above are obtained for classes of sequences 
(H°°)l analogously us for classes of functions Л 9.

3.3.1. Convergence of sequences in the space H*9 meant in the sense 
t*<p(Fn—F) -> 0 is not in general of linear character. Therefore we intro­
duce also in H*9 the following notion of convergence:

A sequence (Fn) of functions from H*9 is called -̂convergent or mo­
dular convergent to a function F еН*9, in writing Fn Д- F, if / (̂A (Fn— F)) -> (> 
for a constant A >  0 (depending in general on the sequence (Fn)).

This convergence is of a linear character. Obviously, the norm 
convergence in H*9 is also of a linear character. Let us recall that a se­
quence (Fn) of functions from H*43 is norm convergent to a function 
F e l l*9, i.e. \\Fn— 0 if and only if /^ ( Z 1̂ — F)) -> 0 for every A > 0
(see Theorem 1 .1 .2.4°).

It is obvious that \\FJ\y -> 0 implies ^ ( F n) ^ 0  and yv{Fn) 0 
implies Fn Л- 0 for an arbitrary sequence ( Fn) of functions from H*9.

<p1 <p2
3.3.2. Th e o r e m , (a) If <p2 -3  <plt then Fn -> 0 implies Fn -> 0 for an 

arbitrary sequence {Fn) of functions from H*91.
<p\ ?2((3) If Fn —> 0 implies Fn -> 0 for an arbitrary sequence (Fn) of func­

tions from H°°, then q>2 -3 çv
3.3.3. Th e o r e m , (a) If cp2 -3 <?q, then |^ я||?1->■ 0 implies WFJ]  ̂ -> 0 

for an arbitrary sequence (Fn) of functions from II*9i .
(P) If  IIZ’JI,, -> 0 implies WFJ]  ̂ -> 0 for an arbitrary sequence (.Fn) 

of functions from ZP°, then cp2 -3 <px.
Proof of Theorems 3.3.2 and 3.3.3. Let cp2 -3 cpx- By Theorem II.3.2.1 

we have then H*91 с= H*92, and so a sequence (Fn) of functions from H*9i 
is simultaneously a sequence of functions from H*92. Since the inequality

cp2 (u) <  a • cpx (bu) for и >  щ

is satisfied for some constants a, b >  0 and u0 >  0, we deduce from Theorem 

3.2.1 that for a given A >  0, (AZ7,J -> 0 imphes Z^j ->0. Hence
n  <p2

Fn -> 0 implies Fn 0, and IIZJÎ  -> 0 implies WFJ]  ̂ -> 0. Thus, part 
(a) of Theorems 3.3.2 and 3.3.3 is proved. Part ((3) of these Theorems 
follows from part (p) of the following theorem,, immediately:

q>2
3.3.4. T h e o r e m , (a) If cp2 -3 <px, then HZ’JI^ —> 0 implies Fn -> 0 

for an arbitrary sequence (Fn) of functions from H*91.

4Ï
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<p2
(P) If \\Fn\\(Pi 0 implies Fn -> 0 for every sequence (Fn) of functions

from H°°, then <p2 -3 q>x.
Proof. Part (a) of this theorem follows from part (a) of Theorems 

3.3.2 and 3.3.3.
To prove part ((3), we write <pm{u) =  <f>x(mu) and pm(u) =  (p2(u/m). 

Let us remark that the assumption of part ((3) of our theorem may be 
written in the form

OO л 00 ^
n  (Я“К- = U  (S~)î*.V = 1 V = 1

Hence it follows, by Theorem 3.2.3 that there are positive integers 
m, n and constants d >  0 and u0 >  0 such that

p2(u/n) =  <jpn{u) <  dsup{y1('W), cp2(u), . . . ,  <pm{u)} =  dcp^mu) for u ^  uQ.

Hence we conclude that <p2 -3 <px, thus finishing the proof of part 
(P) of Theorem 3.3.4.

3.3.5. Th e o r e m , (a) If for each positive integer m there exist constants 
dm >  0 and um >  0 such that
(*) (p2(mu) ^  dm(p1(u) for и >  um, m =  1 , 2 , . . . ,

4>\
then Fn —> 0 implies \\Fn\\rp2 -> 0 for an arbitrary sequence (Fn) of functions 
from H*9L

<p\
(P) If  Fn -> 0 implies ||JPJ| 0 for every sequence (Fn) of functions 

from H°°, then for each positive integer m there exist constants dm >  0 and 
um >  0 such that (*) holds.

Proof. If (*) is satisfied, then according to Theorem II.3.2.4 we 
have the inclusion H**1 <= К 9?2. Hence the sequence (Fn) of functions 
from H*Vl is simultaneously a sequence of functions from Ж9’2. By Theorem 
3.2.1 we deduce from (*) that for a given A >  0, (i9 {XFn) ^ 0  implies 
p v (mAFn) 0 for each positive integer m. Hence Fn -> 0 implies 
\\Fn\\ -> 0, and part (a) of the theorem is proved.

2 „ <P\
Let <pm(u) — cpx{ujm) and <pm(u) =  cp2{mu). If Fn -> 0 implies 

11-̂ »I lv2 0 for every sequence ( Fn) of functions from H°°, then
Л 00 Л 00 « ~

<= и  (Я” )5’ с  п  (Я”»- <= (Я“х -
V=l Г=1

for т =  1 , 2 ,  ... Hence we get, applying Theorem 3.2.4 that for each 
positive integer m there exist constants dm >  0 and um >  0 such that 
(*) holds.

3.4.1. T h e o r e m , (a) If  cpx and Уг satisfies condition (A2), theng>2for an arbitrary sequence (Fn) of functions from TI 9,3, Fn —̂ 0 if and only
if  \\Fn\\n  -> 0.
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<p2
((3) If for every sequence (Fn) of functions from H°°, Fn -> 0 if and 

only if ||JFJ| -> 0, then çq ~  cp2 and <p2 satisfies condition {Л2).
Proof. If gq ~  çf?2 and (p2 satisfies condition (zJ2), then applying 

Theorem II.3.3.1 we have К 9,1 =  H*4>2. Hence the sequence (Fn) of func­
tions from H*4*2 is a sequence of functions from 7P1, simultaneously. Since 
(p2 satisfies condition (Zl2), we deduce by Lemma I.1.3.3 that for each 
positive integer m there are constants dm >  0 and um >  0 such that

<p2 (mu) <  dmcp2 (u) for u ^  um (m = 1 , 2 , . . . ) .

Hence we obtain, according to part (a) of the previous theorem,4> 9 Ф 2
that Fn -> 0 implies \\Fn\\Vs -> 0. Thus Fn -> 0 if and only if Ц-FJI  ̂ -> 0. 
Next, by Theorem 3.3.3 (a), from the assumption gq ^  y2 we deduceФ 2
that 11̂ 11̂2 -> 0 if and only if \\Fn\ -> 0. So we obtain that Fn -> 0 if 
and only if ||FJL -> 0, thus finishing the proof of part (a) of the theorem.

1 <p2
Now, let us suppose that Fn -^ 0 if and only if -> 0 for every

sequence (Fn) of functions from II°°. Then, by Theorem 3.3.4 ((à), 
<p2 -3 cpx, i.e.
{*) fp2(u) <  acpx(bu) for и >  u0 (a,,b >  0, u0 >  0),

and by Theorem 3.3.5 ((3),

(**) cpx(mu) <  dm(p2(u) for u ^  um (dm >  0, um >  0)

for m = 1 , 2 , . . .  We may suppose the constant b in (*) to be a positive 
integer, for in other case we could take the smallest positive integer 
greater than b in place of b. From (*) and (**) we get

q2(Zu) <  a-q)x(b-2u) <  ad2bcp2(u) for и >  sup{|w0, -w2b}.
Hence <px ^  <p2 and gq satisfies condition (zJ2).
3.4.2. Th e o r e m . The following four conditions are mutually equiva­

lent :
1° <p satisfies condition (zf2),
2° Fn Л  0 if and only if ^ ( F J  -*0,
3° fiv(Fn) ->0 if and only if \\FJy -> 0,
4° Fn Л- 0 if and only if \\Fn\\v -> 0.
Here we take in 2°, 3° and 4° sequences (Fn) of functions from, H*<p. 
Proof. The equivalency of conditions 1° and 4° follows from the 

previous theorem, immediately. If condition 4° holds, then of course 
conditions 2° and 3° hold, too. Now, if 2° holds, then pv(\Fn) -» 0 implies 
pv(Fn) 0 for every sequence (Fn) of functions from H°°. Hence, by 
Theorem 3.2.4 the inequality

tp(u) ^  d<p(\u) for и ^  щ



44 R. L e s n i e w i c z

>
is satisfied for some constants d >  0 and ад0 ^  0. We conclude that <p 
satisfies condition ( d 2). Similarly, if 3° holds, then /г9,(^1и)-> 0  implies 
ju(p{2Fn) -> 0 for every sequence (Fn) of functions from H°°. Hence, by 
Theorem 3.2.4, (p satisfies condition (/J2)- Consequently 2° as well as 3a 
implies 1°.

3.4.3. T h e o r e m . If cp does not satisfy condition ( d 2), then there exist 
sequences (Fn) and (Gn) of functions from H°° such that 

(a) pv{Fn) -> 0 and fAv(№ n) -> oo for Я >  1,
(P) f*v{№n) ^  0 for 0 <  Я <  1 and ptv(Gn) -> oo.
Proof. Let (py{u) =  <p((l-\-lJv)u) and <pv{u) =  99 (ад). By Lemma 

1.1.3.3 inequality (**) from Theorem 3.2.3 is equivalent to the fact that 
<p satisfies condition (d2). Thus, if <p does not satisfy condition (J 2), then 
the proof of Theorem 3.2.3 follows existence of a sequence (Fn) of func­
tions from iZ°° such that

1 m
V<p(F m )  =  f*<pv (F m )  <  ^TT —  + 27Г ^ гГ

Til jj
and

+  w) =  2izm '

for each r <  m. Hence we get (a). Now, let

<pv(u) =  99
1

v +  1
ад and <pv(u) =  <p(u).

It is easily verified that inequality (**) of Theorem 3.2.3 is equivalent 
to the fact that 99 satisfies condition (zJ2). Hence, if 99 does not satisfy con­
dition (Zl 2), then there exists a sequence (Gn) of functions from H°° such 
that

N  (I1 -  7 ^ - f ) =  PvSGm) < 2n~  F 2 n ^ i
and

Уд)(̂ т) №q>v{T*r>Ù 2тСШ 
for each v <  m. Hence we get (P).

IV. SPACES H*v WITH AN ^-HOMOGENEOUS NORM (0 <  * <  1)

1. Spaces with an s-homogeneous norm (0 <  s <  1)

1.1.1. In case when 99(ад) =  y{us), where 0 <  s <  1 and ip is convex 
99-function, we may define an «-homogeneous norm on the space E*v by 
means of that defined in L*v (see 1.2.4.1) in a similar manner as in III .l.l .l . 
Namely, we take for Fell**
(*) m \S(P =
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Since the norms ||-||* and ||- are then equivalent in L**, we deduce 
that also the norms || • and || • ||S(p are equivalent in E*<p.

1.1.2. Th eo r em . Let <p(u) =  ^(ws), where 0 <  s <  1 and xp is a con­
vex cp-funetion. If F еЕ*43, then

•(*) l№ * =  inf |jfc > 01^ 1 ^ 1  <  l | .

Proof. According to the definition of the «-homogeneous norm 
| | - 1  in L*v (see 1.2.4.1) and to 1.1.1 (*) for FeH*<p we have

P l u  =  Ц * > о 1 л ( ^ £ 1 ) < 1 } -

Since H*<p a N', we deduce from Theorem II.1.3.2 that for every 
Jc >  0 there holds ^^F^e^/Jc118). =  ^(-F/fc1/s) Hence we obtain formula 
(*) of the theorem.

It is obtain that in case of <p(u) =  xp(u8), where 0 <  s <  1 and xp is 
a convex 99-function, formula (*) of 1 .1.2 may be applied as the definition 
of the s-homogeneous norm ||- ||s?, in Я*95; then formula (*) of 1 .1.1 becomes 
a theorem for FeH*<p.

1.1.3. T h eo r em . Let cp{u) =  xp(u8), where 0 <  s <  1 and xp is a con­
vex (p-function, and let F be an analytic function in the disc D. Then \\TrF\[4(p 
is a non-decreasing function of the variable r, 0 ^  r <  1 . Hence

sup{||Tr^ |U 0  <  r <  1} =  lim \\TrF\\s<p.
r->  1—

Proof. By Theorems II. 1.2.1 and II.1.4.2 we have 0 <  rx <  r2 <  1 
and for every Jc >  0, ^(T^FIJc118) <  ^(T^F/Jc118). Hence we obtain, 
according to the last theorem

Ill’s ’ll»», =  inf{fc >  0| fi^TriFllclls) <  1}
<  inf {* >  0|vr(Tr2F ie !a) <  1} =  ||rr2-P||w.

1.1.4. Th e o r e m . Let cp{u) =  y>(ws), where 0 <  s <  1  and xp is a convex 
<p-function. A function F analytic in the disc E belongs to E*<p if and only 
if sup{||Tr^||^ i 0 <  r  <  1} <  0 0 .  If, moerover, FeH*9, then

im u  =  sup{||TrP|U|0 <  r <  1} =  lim \\TrFs<p\\.
r—>1 —

-Proof. Let FeH**. We take an arbitrary number Jc >  ||Я||39,. By 
Theorem 1.1.2 we have then F/Jc1/s) <  1. Hence, applying Theorems 
II.1 .2.1 and II.1.4.2 we get ^(TrF/Jc118) ^  1 for every 0 ^ r <  1 . According 
to Theorem 1 .1.2 we obtain \\TrF\\S(p <  Jc for every 0 <  r <  1. Thus, 
sup{||TrP [U 0 <  r <  1} <  Jc. Hence there holds the inequality

<*) sup{||T,J|U |0 <  r <  1} <  m „ .
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Now, let sup{||T).-F7||Sç, |0 <  r <  1} <  oo hold for a function F  analytic 
in the disc B. We take an arbitrary number к satisfying the inequality 
к >  sup{||Tr.F|U>|0 <  r <  1}. Hence jLtv(TrF/klls) <  1 for 0 <  r <  1. Then, 
by Theorem, II. 1.4.2 we get ^ (F /k118) <  1 . Hence we obtain Fell*4>. 
Moreover, by Theorem 1.1.2, \\F\\sip <  k. Thus the following inequality 
holds:
(**) II^IU <  SUP (IIV IU , 10 <  r <  1}.

If F e l l*<p, then inequalities (*) and (**) yield the equality given 
in the theorem.

1.1.5. If cp(u) =  у(и8), where 0 <  s <  1 and ip is a convex 99-func- 
tion, then the norm ||-||SÇ) in B*41 may be defined also by means of the 
formula

P4U = s u p {| | l^ (rÔ lt| 0 < r< l } .

If we define the norm in by means of this formula, then
equality (*) of 1.1.1 for FeH*<p will follow from Theorem 1.1.4.

The definition of the norm \\-\\S(p be means of this formula has the 
property, that it does not require the knowledge of the space H itself. 
Namely, it follows from Theorems 1.1.3 and 1.1.4 that for every function F 
analytic in the disc B,  ||_F||SÇ) may be defined by the above formula, and 
that the space H*v is obtained then as the set of functions F  analytic 
in the disc В  for which P 7||S9, <  сю. The definition of this norm by means of 
formula (*) of 1 .1.1 does not possess this property; for example, the

function F(z) =  e x p ( i t ^ )  has a limit function F(e1') belonging to L*9, 
\ 1  — 0 /

but it does not belong to H*<p.
1.1.6. Theorem. Let <p{u) = ip(u8), where 0 <  $ <  1 and ip is a con­

vex (p-function. If FeBr*(p, then

Proof. We take an arbitrary number к >  ||_F||SÇ). By Theorem 1.1.2 
we have /a9,(F/к1/s) <  1. From Theorem II. 1.2.2 we get

klls
F(z)\ <  <р_г

7l(l— |*|).
for Z e B .

Since is increasing, we obtain hence

\F{z)\ <  ( . 1 . klls for zeB.

Passing with к to the limit, к -> ||F||SÇ), we get the required inequality.
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1.2.1. If  ̂ is a convex 99-function satisfying conditions (Oj) and 
(oo1), then a homogeneous norm may be defined in H*v also by means 
of the formula

ll l̂lw = PV-)ll(v,),
where ||- ||*v) is the homogeneous norm in L*'p defined in 1.2.5.1. This norm 
is equivalent to any of the norms || • ||v and ||-||lv, and the equivalency of 
II • ll(V) and II • ||lv is given by means of the inequality ||P|!lv <  ||P||W <  2 \\F\\ly), 
where FeH*y’ (see 1.2.5.1).

1.2.2. Th e o r e m . If Fell*41, where ip is a convex ep-function satisfying 
conditions ( 0 ! )  and ( oof),  then

1И М = i m |l ( i + ^ ( № ) ) |  * > o| .

This follows from Theorem 1.2.5.2 and II.1.3.2 immediately.
1.2.3. Th e o r e m . Let ip be a convex function satisfying conditions 

((h) and ( oox), and let F be an analytic function in the disc D. Then \\TrF\\^ 
is a non-decreasing function for 0 <  r <  1 .

This follows from Theorem 1 .2.1 and from the previous theorem, 
immediately.

1.2.4. Th e o r e m . Let ip be a convex (p-function satisfying conditions 
(0X) and (oo1). A function F analytic in the disc L) belongs to H*v if and 
only if sup{||Tr J?4|(v) |0 <  r <  1} <  00. If, moreover, FeH*v, then

imiqo =  sup{||TrP||(v) |0 <  r <  1} =  lim \\TrF\\{y)).
r-> 1 —

Proof. Let FeH*v. By Theorem II.1.2.1 and II.1.4.2 we have 
y^(kTrF) ^  jXyfkF) for every 0 r <  1 and every к >  0. Hence we obtain, 
by Theorem 1 .2.2

sup{||TrP||w |0 <  r <  1} <  ||P||(V)).

Now, let us suppose that sup{||TrP||(v)) |0 <  r <  1} < 00 for a function 
F analytic in the disc D .

Since \\G\\lyj <  ||(t||(v)) for all GeH*v, we have then sup{||TrP||1V)| 0 <  r 
<  1} <  00. Applying Theorem 1.1.4 we get hence FeH*4’. Now, we take 
an arbitrary number к >  sup{||Tr^,||(v)|0 <  r <  1}. According to the 
definition of the norm ||-||*v) in L*v (see 1.2.5.1) we have then

sup jsupj J  \F(re%t)g(t)\dt\J w'(g) <  1, geLv j} 0 <  r <  l |  <  к.

Thus
2 tz

J  \F(reü)g(t)\ dt <  к 
0
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for ail 0 <  r <  1 and all functions geLv' such that J v\g) <  1. Keeping 
the function g fixed and passing to the limit as r 1 —we get, by Fatou’s
lemma,

2ТГ
/  \F(eu)g{ t)\dt^k  
0

for all functions gelF' such that J v\ g ) ^  1. Hence we obtain \\F\\M =  
=  ||.F(e'i,)||*̂  <  k, and for FeH*4’ we conclude the inequality

m \ M <  sup{||TrF||(v)) |0 <  r <  1},

thus finishing the proof.

1.3. In Hardy spaces Hp, 0 < p ^ l ,  a ^-homogeneous norm is 
defined by the formula

2rr

m ] v = i b f  ]F{-e>,̂ dt’ FeHv

{[17], Chapter VII). Spaces Hp,0  <  p <  1 , are a special case of spaces 
Л *<p, obtained by taking <p{u) =  up, where 0 <  p <  1. Let us find in this 
case the connection between norms Ц • ||v and |H|P9,, and the norm ||-||p:

2тг ^ 2л
j|F||̂  =  inf J к >  0| J  Pdt <  =  inf {& >  0| J  \F(eü)\pdt <  kl+p J

=  inf {fc >  0\%tz\\F\\v <  k1+p} =  (2K)ll(1+p)\\Fff1+p)
and

Ill'll\p<p

2я ^  2я
ini h  >  0| J  Vdt <  l j  =  inf {fc >  0| J  F (e“)\"dt <  ij

inf {* >  012741( 1̂1  ̂ <  Ц  =

In Hardy spaces Hp, p >  1, a homogeneous norm is defined by 
the formula

\ m P

2яJ \F(ea)\pdt\
ilp

F e H p

([17], Chapter VII; 2). Spaces Hp,p  > 1 , are just spaces H*v for гр{и) 
=  up, where p >  1. Let us compare norms Ц-Ц̂ and ||-||lv, with the norm 
jl'llp also in this case:

2л

=  inf >  0| J
F{eu)

dt <  k\ ==  inf jfc > 0| J  1 Fie1
'  A

il)\pdt <  k1+pj

inf {k >  0\2tz\\F\\1 <  &1+p} =  {2n)ll(l+p)\\F\\ll(1+p)
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and

m\i*
2ti

inf j& >  0| J F{eu)
d t < l \  =l j  =  inf I* >  0| j  I F(eu)\pdt <  f }

inf{fc >  Ъ\2ъ\\Щ <  F} =  { ^ P\\F\\P.

Since ip (и) =  up, p  >  1, is a convex 99-function satisfying conditions 
(Oj) and (ooj), in Hp is defined yet homogeneous norm ||-||(y). We find 
the connection between this norm and the norm Ц-Ц̂ . First, we have

ll̂ llw = m f| i(l+  / |№(еа)Гй*)№ > 0! = in i!~ (l + F27T||JP|g)|fc >0

Since the real function (l+ ftp2Tt||F|g)/fc for к >  0, where F eHp 
and F Ф 0, assumes its least value if — l/Jc2-\-(p—1 )F +22tc||F||p =  0, 
i.e. for к =  {(p—l)1,p(27i)l!p\\F\\p)~1, we have

imiw =  =  - F ^ r ( 2 ^ m P,

where 1/p+ l/p ' =  1.

2. Problems of existence of an ^-homogeneous norm (0 <  s <  1) in H*4>

2.1.1. Th e o r e m . If an F-norrn |j * [|0 is defined in H*<p such that
1° II*v is complete with respect to this norm,
2° FneH*4>, \\Fn\\0 -> 0 imply Fn ^  0 almost uniformly in the disc D, 

then this norm is equivalent to the norm generated by 99.
Proof. Let !(•)  be the identity map of H*4* onto, itself. If \\Fn — F ||0 

0 and \\I{Fn) — G\\rf -» 0, then Fn -» F almost uniformly in the disc D, 
and also I  (Fn) -> G almost uniformly in the disc D, whence I  (F) — G. 
From the closed graph theorem ([1 ], p. 41, Theorem 7) follows that 
IIFJo -> 0 implies \\Fn\\fp -> 0 for every sequence (Fn) of functions from 
B*9. The fact that ||Fn||v -> 0 'implies j|FJ|0->0 is proved, analogously.

2.1.2. Th e o r e m . An s-homogeneous norm ||*||0 (0 <  s <  1) satisfying 
the conditions

1° II* 41 is complete with respect to this norm,
2° FneH*q!’, ||_FJ|0 0 imply Fn 0 almost uniformly in the disc D,

exist in H*<p if and only if cp(u) ^  y(us), where ip is a convex cp-f unction.
Proof. Let us suppose, there exists an s-homogeneous norm ||*|j0 

in H*<p (0 <  s <  1 ) satisfying conditions 1° and 2°. By the previous theorem, 
this norm is equivalent to the norm generated by 90. Hence there exists 
a constant ô, 0 <  <5 <  1 , such that ||F||0 <  2ô implies ||F||̂  <  1, and
Roczniki PTM — P race M atem atyczne XV 4
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11*41, ^  2(5 implies ||_F||0 ^  1. We shall show that then the following ine­
quality holds for 0 <  as <  ô and ascp(ud~1) >  1:

(*) <p{au) <  2ô~2as<p(uô~1) .

Let ns suppose this inequality is not satisfied. Then there exist 
numbers a and й such that 0 < â s <<3, ^^(йд^1) >  1 and у (ай) 
>  2ô~2às<p(üô~1). Let us denote by n a positive integer for which <5/2
<  nas <  <5. We define, in <0,2тг), n closed and disjoint intervals (t'v,t'v'y 
of length — =  §00>(й<3-1)-1. Let t' =   ̂+  and r'' = t"  —
— \ôcp(ud~l )~l . Next, we define n real functions continuous on the in­
terval <0, 2tc):

0 for 0 <t'v and t” <  £ <  2rt,

/,(<) =

t - j
r v - t ' v

1

for iv <  t <  t' , 

for t' <  <  r" ,
U — t for t' <t'„

Since the functions /„ are continuous on <0, 2-к), we may choose 
for every e >  0 trigonometric polynomials

m„

T . m  =  У
k = —m v

such that \fv(t) — Tv(t)\ <  e/n for all t€(0,2n), v —1 , 2 , . . . , w.  Let 
w =  supfm!, m2, ши}. The complex polynomials

m v

P M  =  У
k — —m v

possess a limit function P v(eü) =  eimfTv(t). Hence

I m -  i^ H i l  =  I m - \тлщ <  <  «/*
and

71 П  71 П

У / . « ) - | У - р .(«“) I =  y / , < * ) - j y 4 № i
J>=1 V—1 V=1 V=1

n  n  n

« [ У 7 , № - у т , « | < У  |/ .« )-т д < ) | <  *
V—1 v—1 V—1

for all ie<(0, 2 тс). Since the function 99 is continuous for u ^ O  and the 
functions f v are uniformly bounded, we may suppose that e is chosen 
so small that the following inequalities hold:
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and
/(. i t

( p [ a u  £ f v ( t ) )  ~ ( р [ а й \ ^ Р г ( е и )\ < бтс

for all tfe<0, 2u). Hence we get for v =  1 , 2 , . . . , n  

luPv 4 271
1P̂  = / 99 (й<5

< /  <p(ûô lfv{t))dt +  \ô ^(p(ùô x){t" — 0  +  |<5

<  f <5 +  f <5 — 2ô,

and this means that ||wP„||(p <  2<5. Thus we have ||wPv||0 <  1 for 
v =  1 , 2 , n and

lâwJVpJI =  ds £ ÛP,||o <  5* JT  \\»P,\\, <  à’n <  â.

Hence \\àû ^  Pv||v <  1 , and so ^ { ш  £  P„) <  1 . But, on the other 
hand, ”=1 ' =1

n  2n n  2n n

f * v ( ™ ^ P v) =  j  < p \à û \£ p 9{ea)\)dt >  j  <p(àu£fv[t)}dt—\
v= l v = l

n

>  —  t') —|  =  n < p { à ù ) - \ ô ( p { u ô  *) г —1
Г—1

3 Ô2 3 3 (5 2 3

Thus we have a contradiction. Consequently, inequality (*) is satis­
fied. Let us remark that inequality (*) holds also for ô <  as <  1 and 
и >  0, since then we have

<p{au) <  ô2 ô~2<p(uô~1) <  2ô~2as(p{uô~l).

Now, substituting us =  into (*) we get 99((p(uô~1)~llsu) <  2ô~2
for и >  à<p_i (1). From this inequality follows the existence of a constant 
v0 >  0 such that (p(uô~l)~1,s и <  <h?à/sfor # >  ôv\!s. Hence, taking u =  ô v1,s, 
we obtain the inequality (p{vl,s)v~l >  -y^for v >  v0. We take >  vx >  v,,. 
Then 0 <  <  1 and ®i«rV(®2/e) ^  «î̂ îT1 >  1* Now, substituting
as =  v ^ 1 and и =  into (*) we get tlle inequality

±ô2v ï 1(p(ôvlls) <  v ï'y iv i18) for v2 >  «j >  ®0.

Hence, by Lemma 1.1.2.3, <p(vlls) is equivalent to a convex ^-func­
tion y(v), i.e. 9o(u) ~  ip(us).
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Conversely, let <p(u) ^  (рг{и) =  ip(us), where 0 < s < l  and yj is 
a convex ^-function. By Theorem II.3.2.1 we then H*v =  H*Vl. Applying 
1 .1.1 we conclude that \\'\\s<Pl is an s-homogeneous norm in H** such that 
the space H** is complete with respect to this norm. Moreover, from The 
orem 1.1.6 we deduce that Fn^H^ and \\Fn\\8V -+0 implies Fn 0- 
almost uniformly in the disc D.

Now, some corollaries will be deduced from Theorem 2.1.2.

2.1.3. Th e o r e m . If  linm~s q>(u) =  0 for a given 0 <  s <  1, then no
u —>oo

s-homogeneous norm may be defined in H*<p such that H*9 is complete with 
respect to this norm and convergence to 0 with respect to this norm implies 
almost uniform convergence to 0 in the disc D.

Proof. Let ns suppose that conversely, an s-homogeneous norm 
possessing the above mentioned properties may be defined in H*<p. From 
the proof of Theorem 2.1.2 follows that there exists a constant v0 >  0 such 
that <p(vlls)v~1 >  Vq1 for v ^  v0. Hence we get 1шш 8р{и) ^  v01 >  0, a con­
tradiction with our assumption. M_>0°

2.1.4. T h e o r e m . In Hardy spaces Hp, 0 <  p <  1, no s-homogeneous 
norm may be defined, p <  s <  1 , such that Hp is complete with respect to 
this norm and convergence to 0 with respect to this norm implies almost 
uniform convergence to 0 in the disc D.

This theorem follows from Theorem 2.1.3 immediately, since 
lim u~sup =  0 for 0 <  p <  s <  1 .
U—>Oo

In the special case s =  1, Theorem 2.1.4 gives the known result of 
Livingstone [5] (compare also [4]).

2.1.5. Bem ark. There exist spaces H*ç such that for no s, 0 <  s <  1, 
an s-homogeneous norm may be defined in H*v such that H*v is complete 
with respect to this norm and. convergence to 0 with respect to this norm 
implies almost uniform convergence to 0 in the disc D.

We show this by the example of the space H*v, where cp(u) =  
=  logp(l +  ^), p >  1 .

First of all let us note that function cp(u) =  logp(l +  ît), p >  1 , is a 
log-convex ^-function. This follows from Theorem 1.1.6.2 immediately, 
because the function

p(t) = t~ ~ ( t )  = p l o g - 4 l  +  ^  du 1 +  £
is positive and non-decreasing for t > 0  and p(t) -> oo as t -> oo. But

/ . log(l +  u) \plmm logp(l -\-u) — llim ------—----1 = 0
It—OO \u-*0O I

for every 0 < s < l ;  hence, we conclude from Theorem 2.1.3 that for
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no s, 0 <  s <  1, an «-homogeneous norm satisfying the above formulated 
conditions may defined in the space H*<p, where cp(u) =  log^l +  R), p >  1.

# 2.2.1. A set X  a H*9 is called bounded in the space [!?*’’, ||* ||v], if for
every sequence ( F n) of elements F n e X  and every sequence of numbers 
(an) convergent to 0, |K».FJ|<p -> 0.

If X  is a bounded set in [H*<p, || Ц,,], then there exists a positive 
integer n such that WF/n]̂  <  1 for all F e X ,  whence applying the tri­
angle inequality to the norm we get ЦРЦ,, <  n. This means that a set X  
bounded in the space [H*<p, Ц-Ц,,] is in this space bounded in the norm.

We prove now that
2.2.2. T h e o r e m . If cp satisfies condition ( Vf), then every set X e H * rp 

bounded in the norm of the space [H*9>, || • Ц̂,] is bounded in this space.
Proof. If cp satisfies condition {Vf), then the inequality 2p{u) <  cp{du) 

for и F u0 is satisfied for some constants d >  1 and u0 >  0. Hence we get 
for an arbitrary positive integer n

2‘lcp{u) <  2n~1(p(du) <  ... <  cp(dnu) for и >  uQ.
Substituting и =  dTnv to this inequality we obtain

<p{d nv) <  2 n<p{v) for v >  dnu0.
Now, let <5 be a fixed number suéh that \\F\\rp <  ô for all F e X .  We 

take an arbitrary number s >  0 and we choose n so large that there hold 
the inequalities

We set

V ~  ~{2d)nu0 ^~l ) *
We denote F(F) =  {£e<0,27r)| \F(elt)\ >  ddnu0} for FeX. Now, 

applying Theorem II.1.3.2 we get for an arbitrary complex number 
a such that \a\ <  у and for an arbitrary F eX

y<p aF\ =  j  yW '- 'la
I F{ei dt

-  / - +  /E(F) <0,2л) \E ( F )

f
E(F)

1 I F{e*
dr>

dt +  2ткр {у (2 d)n uf)

ô
2n~1'
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But this proves that \\aF\\v <  ô/2n~l <  e for all complex numbers 
a with moduli \a\ <  y and for all FeX. Hence it follows that X  is a bounded 
set in the space [Я |MW-

2.2.3. Th e o r e m . If  у does not satisfy condition ( F a), then none of 
the balls {ЯеЯ*9’| ||jP||v <  <5}, (3 >  0, is a bounded set in the space
[H**, II--y.

Proof. If у does not satisfy condition (Fa), then there exists a se­
quence of numbers (un) such that

2y(2~nun) > y (u n) >2(5.

We define sets En in the interval <0 ,2iz) of measures mes Fn 
=  \ày(un)~x, and real functions

' un for UBn,

^n^  ( 4~) for t e ( 0 , 2 n ) \ E n .

Obviously, logfni^eJj1 for n =  1 , 2 ,  ... Hence, by Theorem 1.3.2.5 
there exist functions FneN' such that \Fn(eu)\ =  fn(t) for almost all t 
from <0,2n). Applying Theorem II.1.3.2 to there functions we get

and

Pq> ^  <p{un V m e s F n +  —  -2тг — —  + —  — à

=  n (Z!h\ = j J J ^ ) > < p(2-nun)-mesEn > - .  
Ô2 n+2J ™ \2nôJ v \2nôf 4

Hence

\\Fn\L <  <5 and 2>i+2 F >

for all n. But this proves that the ball {F ell*411 ||.F||y ^  is not a bounded 
set in the space [Я*95, ||- Ц̂ ].

2.2.4. Theorem. An s-homogeneous norm ||-1|0, 0 <  s <  1, such that 
Hr*4> is complete with respect to this norm and convergence to 0 with respect 
to this norm implies almost uniform convergence to 0 in the disc D exists 
in Я *v if and only if у satisfies condition (Fa).

Proof. If an s-homogeneous norm ||'||0, 0 < s < l ,  possessing the 
above properties exists in H*v, then this norm is equivalent to the norm 
generated by y, according to Theorem 2.1.1. Hence there exists a ô >  0 
such that H-Flly ^  ô implies ||Я||0 ^  1 . Since the norm Ц-1|0 is s-homogeneous, 
the set {FeH*91 ||Я||0 <  1} is bounded in the space [H*(p, ||*||0]. But both 
norms ||- ||o and ||*||v are equivalent; hence the set {FeR*91 ||Я||0 <  1} is
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bounded also in the space [R * 9 , | |- |y .  Thus the set { F c R *91 ||jP||v <  <5} 
is bounded in this space. Hence it follows, by Theorem 2 .2 .3  th a t <p sa t­
isfies condition (F 2).

Conversely, if <p satisfies condition (F 2), then we may conclude from 
Lemma 1.1.4.3 th a t there exist a number s '  >  0 and a convex 99-function ip 

such th a t cp r*j cpxi where (рг { и )  =  x p{u s ) . Let s  =  inf {s', 1). Since 0 <  s  <  1 
and <Pi(w1/s) =  y ) ( u s l s ) is a convex 99-function, according to 1.1.1 one 
may define an s-homogeneous norm || • || in H * 9 i . Obviously, the space 
I I *91 is complete with respect to  the norm ||-||? . Moreover, it follows 
from Theorem 1.1.6 th a t if F n e I I * 9 ' and 0, then
F n - >  0 almost uniformly in the disc D .  But 99 ^  <p1 . From Theorem 11.3.2.1 
we get H *9 =  H *91 and this concludes the proof.

Taking into accound Lemma 1.1 .4.3 it is easily seen th a t Theorem 
2 .2.4 is weaker than  Theorem 2 .1 .2 . Nevertheless, we proved it indepen­
dently of Theorem 2 .1 .2 .

2.3. Th e o r e m . A l l  t h e o r e m s  o f  t h i s  S e c t i o n  r e m a i n  v a l i d  i f  w e  r e p l a c e  

R *9 b y  K ,p i n  t h e  f o r m u l a t i o n s  o f  t h e s e  t h e o r e m s .

Theorem 2 .1.1 for K 9 is proved analogously as for R * 9 . Theorem 
2.1.2 for К *  holds, since the polynomials used in the proof of this theorem 
are obviously elements of К 9 , and on the other hand, К 9 is a subspace 
of the space H * 9 . Theorem 2 .1.3 for F A  is a corollary to Theorem 2.1.2 
formulated for K 9 . Remark 2 .1.5 remains valid for K rp, because the  func­
tion 9o { u )  =  logp(l - \ - u ) , p  > 1 ,  satisfies condition ( A 2) and so H *9 =  К 9 , 

by Theorem I I .3 .3 .2 . Next, Theorem 2 .2.2 remains valid for К 9, since K 9 
is a subspace of the space R * (p. Theorem 2 .2.3 in the formulation for K 9 
holds, because the functions f n used in the proof of this theorem are 
bounded in <0 ,-27t), and thus the analytic functions F n obtained applying 
Theorem 1.3 .2.5 belong to  H ° °  c= K 9 (compare the proof of Theorem
II I .3 .2 .2 ). Finally, Theorem 2 .2.4 for K 9 is proved analogously as for H * 9 .
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