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Compactness and upper semicontinuity of solution set
of functional-differential equations of hyperbolic type

1. introduction. Let R" denote n-dimensional Euclidean space with the
norm |-|. Denote by Conv(R") the family of all non-empty compact and
convex subsets of R". Conv(R") is a metric space with the Hausdorff metric h
defined in the following way, h(A4, B) = max{h(4, B), h(B, 4)}, for A4,
Be Conv(R") where h(A, B) = max {d(z, B): ze A} and d(z, B) = min {{z— b
beB}. Let a >0 and b > 0 be given, P = [0, a] x [0, b] and let us denote by
C(P) the Banach space of all continuous functions of P into R" with the
usual norm ||-]|. Furthermore, we use the space C,(P) of all functions
u: P— R" such that u(-, y): [0, a] » R" is measurable for fixed ye[O0, b],
u(x, *): [0, b} > R* is continuous for fixed xe[0, a] and such that

a
ul, = | max |u(x, y)ldx < co.
0 yel0.b]

Similarly we can define a space C,(P).with the norm |-|;. It was proved ([2])
that (C.(P), ||,) and (C,(P),|‘],) are Banach spaces.

Let F: PxC(P)x C,(P)xC,(P)— Conv(R") be a multivalued mapping
satisfying the following Carathéodory type conditions:

() F(-, -, z, u, v) is measurable for fixed (z, u, v)e C(P) x C, (P} x C,(P),

(i) F(x,y,-,-, ) is continuous for fixed (x, y)e P,

(iii) there exists a square Lebesgue integrable function m: P — R such
that h(F(x, y, z, u, v), {0}) < m(x, y) for (z, u, v)e C(P) x C,(P) x C,(P) and
almost all (x, y)e P.

Furthermore, it will be assumed that F(x,y, z, -, ) satisfies the
following strong Lipschitz condition:

(iv) there exists k > 0 such that
h(F(X, y’ Z, U, l)), F(X, ) z, l—l_, 17))

< k(l({ [u(s, y)—u(s, y)l ds]+|z [v(x, )—v(x, D)] dt[

for ze C(P); u, #e C,(P); v, ve C,(P) and aa. (x, y)e P.
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Now, we will consider a generalized functional-differential equation of

the form
(1) Zy(x, y)eF(x, y, z, 2, z;)  for almost all (x, y)e P

with the initial Darboux conditions:

2 z(x, 0 =o0(x), z(0, y) = t(y), where o: [0, a] > R", 7: [0, b] > R" are
given absolutely continuous functions such that ¢’eL(0, a) and
v = L(0, b).

We will say that F: P xC(P)xC,(P)xC,(P)— Conv(R") has the Volterra’s
property if F(x,y, z,u, v) = F(x, y, Z, i, D) for every (x, y)e P and (z, u, v),
(27 u, E)GC(P) ch(P) X Cy (P) such that ZI[O,x] x[0,y] = El[O,x] x[0,y}> uI[O,x] x[0,y]
= Wo,x x10,5>  Ulto,x x10,57 = Vlio,xx[0,57» Where for given w: P— R" and
(x, Y)€ P, Wlio,xxi0, denotes the restriction of w to the rectangle [0, x]
x [0, y] = P. Let us denote by C(0, a) and C(0, b) spaces of all continuous
functions of [0, a] and [0, b] respectively into R" with the usual norms,
denoted by |i‘||, and ||-||,, respectively. By 4 we will denote the subset of
space C (0, a) x C(0, b) containipg all pairs of absolutely continuous functions
(o, 1) such that ¢(0) = t(0).

2. Compactness and upper semicontinuity. Suppose F: P x C(P) x C,(P) x
xC,(P)— Conv(R") satisfies the Carathéodory conditions (i)(iii), the
Lipschitz condition (iv) and let F have Volterra’s property. Denote by X (o, 1)
the solution set of problem (1)—(2), that is the set of all solutions of (1)-(2). In
virtue of remark given in ([3]) X(o, ) is non-empty for every (o, t)e A.
Now we can prove the following theorem.

Tueorem 1. If M is a compact subset of A, then X(M)
=U{ X(o, 1): (5, 1)e M} is a compact subset of C(P).

Proof. Let M’ and M" be projections of M into C(0, a) and C(0, b)
respectively. Then there exist d,, d, e R such that ||g||, < d,; and ||7||, < d, for
every (o, t)e M.

If ze X(M), then there exists a point (g, t)e M such that

z(x, y) = a(x)+t(y)—a(0)+} }z;,(s, t)dsdr.
00

Hence,
llzll < 2llolla+lizlly + | | m(x, y)dxdy.
P

Thus X(M) is bounded. Let (x;, y;), (X5, y2)e P. Then

llz(x2, y2)—z(xq, yy)l
x{ ¥y2 X252
Slo(x)—o(x)l+lt ()=t + [ [ m(s, Ddsde+ | | m(s, )dsdt.
0o xp O

1
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Therefore X(M) is equicontinuous. Thus by Ascoli’s Theorem X(M) is
compact in C(P). )

Now, we shall show that X(M) = X(M). Let (z,) be a sequence of X(M)
convergent to ze C(P). In virtue of Lemmas 1.2 and 1.3 in ([4]) and
Theorem 2.8 given in ([1]), z is absolutely continuous and

2y (x, e 1 0 U (2 (x, )
c

1
ﬂ Y kU F(X, Vs 2k, (zk);a (zk);) < F(X, ¥y, Z, Z;cs Z;)
1 =i

for almost. all (x, y)e P.

Furthermore, for every z;e X(M) there exists (o, 1,)e M such that ¢,(x)
=z,(x, 0), 7,(y) = z(0, y). Since M is compact subset of 4 there exists a
subsequence, also denoted by (g,, 1,) convergent to a point (g, t)e M. Thus,

z(x, 0)— o (x)| <|z(x, 0) =z, (x, O)f + |z, (X, 0)— 0y (x)| + o4 (X) — 0 (x)|
for every k=1,2,3,...,

then we obtain z(x, 0) = a(x) for xe[0, a] and similarly, z(0, y) = 7(y) for
ye[0, b]. The above shows that ze X(M) and the proof is complete.
Now we can prove that a mapping X: M 3(g, 1) > X(0, t)e Comp(C(P))
IS upper semicontinuous.
THEOREM 2. The mapping X is upper semicontinuous.

Proof. Assume that X is not upper semicontinuous at (cq, 7o)€ M, that
is there exists ¢, > 0 such that for all 6 >0, X[B;(0q, 70)] € X (0, 7o)
where B;(o,, 7,) denotes a neighbourhood of (o, 7o) at the radius § > 0.
Choose z, such that z,e X[M N By,(0,, To)] and z,¢ X (0o, 7o). Now
zze X[M N B,(0,, 10)] Which is compact by Theorem 1. There exists a
subsequence, also denoted by (z) covering to ze X [M n B, (0,, 75))- Let
¢ > 0 and (0;, 7)€ By (00, 7o) be given. Choose k, and k; such that k > k,
implies ||z—z,| <3¢ and k > k, implies |lo,—oll, < }e.

Then for xe[0, a] and k > max(kq, k{), we have

z(x, 0)— 0o (¥ < |z(x, 0)— 2z, (x, O) +
+1zi(x, )= 0, (X + 0 (X)— 0o (X)] < 3e+0+36 =e.

Since ¢ is any positive number, we have z(x, 0) = 64(x) and similarly z(0, y)
= 14(y). Thus, ze X(6, To). But z, ¢ X°(00, T¢). Therefore z ¢ X(0,, 10). From
this contradiction we conclude that X is upper semicontinuous. The proof is
complete.
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