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Boundaries, Martin’s Axiom, and (P)-properties

in dual Banach spaces

Antonio S. Granero and Juan M. Hernández

Summary. Let X be a Banach space and Seq(X∗∗) (resp., Xℵ0
) the subset

of elements ψ ∈ X∗∗ such that there exists a sequence (xn)n⩾1 ⊂ X such

that xn → ψ in the w∗-topology of X∗∗ (resp., there exists a separable

subspace Y ⊂ X such that ψ ∈ Y
w∗
). Fen: (i) if Dens(X) ⩾ ℵ1, the

property X∗∗ = Xℵ0
(resp., X∗∗ = Seq(X∗∗)) is ℵ1-determined, i.e.,

X has this property i× Y has, for every subspace Y ⊂ X with Dens(Y) =

ℵ1; (ii) if X
∗∗

= Xℵ0
, (B(X∗∗),w∗) has countable tightness; (iii) under

the Martin’s axiomMA(ω1) we have X
∗∗

= Seq(X∗∗) i× (B(X∗),w∗)

has countable tightness and co(B) = cow
∗

(K) for every subspace Y ⊂ X,

every w∗-compact subset K of Y∗, and every boundary B ⊂ K.
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1. Introduction and notation

If (X , ∥ ⋅ ∥) is a Banach space, let B(X) and S(X) be the closed unit ball and unit sphere

of X, respectively, and X∗ its topological dual. By w we will denote the weak-topology of

X and by w∗ the weak
∗
-topology of X∗. Let Seq(X∗∗) be the subset of elements ψ ∈ X∗∗

such that there exists a sequence (xn)n⩾1 ⊂ X such that xn → ψ in thew∗-topology of X∗∗.
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Fe subspace Seq(X∗∗) depends upon X but this will cause no confusion because the

space X will always be fixed previously and clearly. Seq(X∗∗) is a closed subspace of X∗∗

(see [10]). Let Xℵ0
be the subspace of X∗∗ defined by Xℵ0

∶= ∪{Dw∗∶ D ⊂ X countable}.
Xℵ0

is norm-closed. We study the properties “X∗∗ = Xℵ0
” and “X∗∗ = Seq(X∗∗)” in

Section 3.We prove that both properties areℵ1-determined, i.e., a Banach space X satisfies

X∗∗ = Xℵ0
(resp., X∗∗ = Seq(X∗∗)) i× Y∗∗ = Yℵ0

(resp., Y∗∗ = Seq(Y∗∗) for every
subspace Y ⊂ X with Dens(Y) = ℵ1.

Fe countable tightness of the unit ball (B(X∗),w∗) is related to the property “X∗∗ =
Xℵ0

”. Actually, in Section 4 we prove that the property “X∗∗ = Xℵ0
” implies that the unit

ball (B(X∗),w∗) has countable tightness.

If K is a w∗-compact subset of a dual Banach space X∗, a subset B ⊂ K is said to

be a (James) boundary of K if every x ∈ X attains on B its maximum on K. For instance,

K itself and the set of extreme points Ext(K) of K are boundaries of K. If B is a boundary

of K, then cow
∗(B) = cow∗(K) and also co(B) = cow∗(K) in some cases. But, in general,

co(B) ≠ cow∗(K). When X is separable the following facts are equivalent (see [4, 5] and

Proposition 2.3 below):

(i) X∗∗ = Seq(X∗∗).
(ii) co(B) = cow

∗

(K) for every w∗-compact subset K of the dual Banach space X∗ and

every boundary B of K.

So, it is natural to ask for the relation between the previous conditions (i) and (ii) in

the non-separable case. In Section 5 we examine this relation under the Martin’s axiom

MA(ω1) in the non-separable case.

Let us introduce some definitions. A closed convex subset M of X is said to have

property (C) of Corson if for every family A of closed convex subsets of M with empty

intersection there is a countable subfamily B ofA with empty intersection.

A w∗-compact subset K ⊂ X∗ is said to be angelic if for every subset S of K and for

every point s in the w∗-closure of S there exists a sequence in S that w∗-converges to s.

Denote by ω0 and ω1 the first infinite ordinal and the first uncountable ordinal, re-

spectively. If A is a set, ∣A∣ will denote the cardinality of A and c = ∣R∣.
If θ is an ordinal, a basic sequence {xα ∶ α < θ} ⊂ X is of type ℓ+

1
if there exist u ∈ X∗

and є0 > 0 such that ⟨u, xα⟩ > є0 > 0 for every α < θ.

We define the (P)-properties of the dual X∗ as follows:

(i) X∗ has the (P)-property i× every w∗-compact subset H ⊂ X∗ satisfies co
w∗(H) =

co(H). Actually, by a result of Haydon [8], X∗ has the (P)-property i× X fails to have

a copy of ℓ1.

(ii) X∗ has the super-(P) property i× every w∗-compact subset H ⊂ X∗ and every boun-
dary B of H satisfy co

w∗(B) = co(H).
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(iii) X∗ has the ultra-(P) property i× Y∗ is super-(P) for every subspace Y ⊂ X. X∗ has

the ℵ1-super-(P) property i× Y
∗
is super-(P) for every subspace Y ⊂ X such that

Dens(Y) = ℵ1.

We shall consider only Banach spaces (X , ∥ ⋅ ∥) over the real field R. If x0 ∈ X and
r ⩾ 0, let B(x0; r) ∶= {x ∈ X ∶ ∥x − x0∥ ⩽ r}. If A ⊂ X , x ∈ X, then [A] and [A] denote the

linear hull and the closed linear hull ofA, respectively, and dist(x ,A) = inf{∥x−a∥ ∶ a ∈ A}
the distance from x to A. co(A) denotes the convex hull of A, co(A) is the ∥ ⋅ ∥-closure
of co(A) and, if A ⊂ X∗, cow∗(A) the w∗-closure of co(A). If A ⊂ X and B ⊂ X∗ are
subspaces, we say that A and B 1-norm each other if

∀a ∈ A ∥a∥ = sup{⟨x∗, a⟩ ∶ x∗ ∈ B(B)}

and

∀b ∈ B ∥b∥ = sup{⟨b, x⟩ ∶ x ∈ B(A)}.

2. Preliminaries

Let us state and prove the following lemma that will be used in the sequel.

2.1. Lemma. Let X be a Banach space withDens(X) ⩾ ℵ1 and X
∗∗ ≠ Xℵ0

. Let u ∈ S(X∗∗)∖
Xℵ0

. Fen dist(u, Xℵ0
) > є0 > 0 for some є0 > 0 and there exist

(A) two sequences of separable subspaces {Aα ∶ α < ω1} and {Bα ∶ α < ω1} of X and

X∗, resp., such that: (i) Aα and Bα 1-norm each other; (ii) Aα ⊂ Aβ and Bα ⊂ Bβ
for 1 ⩽ α < β < ω1;

(B) a monotone basic sequence {x∗α ∶ α < ω1} ⊂ S(X∗) such that ⟨u, x∗α⟩ > є0 > 0 (so it is

of type ℓ+
1
), x∗α�Aα (i.e. ⟨x∗α , x⟩ = 0 ∀x ∈ A) and x∗α ∈ Bα+1 for every 1 ⩽ α < ω1.

Moreover, if Dens(X) = ℵ1, the construction can be carried out so that

X = ⋃
α<ω1

Aα , Xℵ0
= ⋃
α<ω1

Aα
w∗

and x∗α
w∗→ 0 for α → ω1 .

Proof. As Dens(X) ⩾ ℵ1 then there exists a family {xα ∶ α < ω1} in B(X) such that:

(i) Dens([{xα ∶ α < ω1}]) = ℵ1; (ii) if Dens(X) = ℵ1, then {xα ∶ α < ω1} is ∥ ⋅ ∥-dense
in B(X). Since Xℵ0

is ∥ ⋅ ∥-closed and u ∉ Xℵ0
clearly, dist(u, Xℵ0

) > є0 > 0 for some

1 > є0 > 0. We proceed by transfinite induction.

Step 1.Make A1 = {0} = B1. Choose x∗1 ∈ S(X∗) such that ⟨u, x∗
1
⟩ > є0, and two separable

subspaces A2 ⊂ X and B2 ⊂ X∗ such that they 1-norm each other and x1 ∈ A2 , x
∗
1
∈ B2.

Fis is done as follows. Consider B21 = [x∗
1
] and choose a separable subspace A21 ⊂ X

such that A21 1-norms B21 and x1 ∈ A21. Next let B22 ⊂ X∗ be a separable subspace that
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1-norms A21 and B21 ⊂ B22. In the next step, we choose a separable subspace A22 ⊂ X
that 1-norms B22 and A21 ⊂ A22. And so on. We put A2 ∶= ∪n⩾1A2n and B2 ∶= ∪n⩾1B2n .

Obviously x∗
1
�A1. Step 1 ends here. Note that we have built A i , B i for i ⩽ 2, and x∗j for

j ⩽ 1 fulfilling the above requirements (A) and (B).

Step 2.As dist(u,A2

w∗) > є0 (because A2

w∗ ⊂ Xℵ0
), there exist x∗

2
∈ S(X∗), x∗

2
�A2, such

that ⟨u, x∗
2
⟩ > є0. Now we have

∥λ1x∗1 ∥ ⩽ ∥λ1x∗1 + λ2x
∗
2
∥ ∀ λ1 , λ2 ∈ R

because A2 1-norms the subspace [x∗
1
] and x∗

2
⊥ A2.

Let A2 ⊂ A3 ⊂ X and B2 ⊂ B3 ⊂ X∗ be separable subspaces such that x2 ∈ A3 , x
∗
2
∈ B3

and A3 , B3 1-norm each other.Fis ends Step 2. Note that we have built A i and B i for i ⩽ 3,

and x∗j for j ⩽ 2 fulfilling the above requirements (A) and (B).

Step α < ω1.Assume steps β for all β < α constructed.We have subspacesAβ+1 and Bβ+1 of

X and X∗, resp., such that xβ ∈ Aβ+1 and x∗β ∈ S(Bβ+1), β < α, verifying the requirements

(A) and (B). We put

Aα ∶= ⋃
β<α

Aβ+1 and Bα ∶= ⋃
β<α

Bβ+1 .

Clearly, Aα and Bα are separable subspaces of X and X∗, resp., that 1-norm each other and

xβ ∈ Aα for every β < α.
As Aα

w∗ ⊂ Xℵ0
we have dist(u,Aα

w∗) > є0 and so there exist x∗α ∈ S(X∗) ∩ A�α such

that ⟨u, x∗α⟩ > є0. Note that for x∗ ∈ [{x∗β ∶ β < α}] and λ ∈ R, we have ∥x∗∥ ⩽ ∥x∗ + λx∗α∥
because Aα 1-norms the subspace [{x∗β ∶ β < α}] ⊂ Bα and x∗α ⊥ Aα .

Let Aα ⊂ Aα+1 ⊂ X and Bα ⊂ Bα+1 ⊂ X∗ be separable subspaces such that xα ∈ Aα+1,
x∗α ∈ Bα+1, and Aα+1 , Bα+1 1-norm each other.

Transfinite induction ensures that all steps can be constructed for α < ω1 .

Finally, if Dens(X) = ℵ1, as {xα ∶ α < ω1} is ∥ ⋅ ∥-dense in B(X), clearly

X = ⋃
α<ω1

Aα , Xℵ0
= ⋃
α<ω1

Aα
w∗

and x∗α
w∗→ 0 for α → ω1 .

2.2. Proposition. Let X be a Banach space and consider the following statements:

(i) (B(X∗∗),w∗) is angelic.
(ii) X∗ has the property (C) of Corson.
(iii) X∗ fails to have an uncountable basic sequence of type ℓ+

1
.

(iv) X∗∗ = Seq(X∗∗).
(v) X∗ is super-(P).
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(vi) X has the property (C) and fails to have a copy of ℓ1.

Fen always (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v)⇒ (vi).

Proof. (i) ⇒ (ii) follows from the Pol characterization of property (C) (see [12, Fe-

orem 3.4])

(ii)⇒ (iii). Suppose that in X∗ there exists an uncountable basic sequence B ∶= {uα ∶ α <
ω1} of type ℓ+1 . We define Cβ ∶= co({uα ∶ β ⩽ α < ω1}) ∀β < ω1.

Claim 1. Fe family of convex closed sets {Cβ ∶ β < ω1} has the countable intersection

property.

Indeed, given a countable subsetF ⊂ [1,ω1), if α = supF , then α < ω1 and∅ ≠ Cα ⊂
∩β∈FCβ .

Claim 2. ∩β<ω1
Cβ = ∅.

Indeed, since {uα ∶ α < ω1} is a basic sequence, then

∩β<ω1
[{uα ∶ β ⩽ α < ω1}] = {0}.

As Cβ ⊂ [{uα ∶ β ⩽ α < ω1}], we have ∩β<ω1
Cβ ⊂ {0}. On the other hand, since {uα ∶ α <

ω1} is of type ℓ+
1
, there exist z ∈ X∗∗ and є0 > 0 such that ⟨z, uβ⟩ ⩾ є0 ∀β < ω1. Fus

⟨z,w⟩ ⩾ є0 ∀w ∈ Cβ , and so 0 ∉ Cβ ∀β < ω1. Ferefore ∩β<ω1
Cβ = ∅.

Taking into account (ii), Claim 1, and Claim 2 we get a contradiction that proves the

implication (ii)⇒ (iii).

(iii)⇒ (iv). Let z ∈ X∗∗. By Lemma 2.1 there exist a closed separable subspace Y ⊂ X such

that z ∈ Yw∗
. On the other hand, X fails to have a copy of ℓ1 (otherwisewewould find in X

∗

a copy of ℓ1(c), which contradicts (iii)). SoY fails to have a copy of ℓ1. IdentifyingY
∗∗

with

Y
w∗
, by Odell–RosenthalFeorem [11] we obtain that there is a sequence {yn ∶ n ⩾ 1} ⊂ Y

such that yn → z in (X∗∗,w∗). Hence z ∈ Seq(X∗∗).

(iv)⇒ (v). See, for instance, Cor. 2.10 of [6].

(v)⇒ (vi). First, “X∗ is super-(P)” implies “X∗ is (P)” and this fact implies, by a result

of Haydon [8], that X fails to have a copy of ℓ1. Let’s see that X ∈ (C). Assume that X does

not have the property (C). By the characterization of property (C) (see [12]) there exist

a convex subset A ⊂ B(X∗) such that 0 ∈ Aw∗
, but 0 ∉ cow∗(D), for all countable subsets

D ⊂ A. Let
B0 ∶= ⋃{cow∗(D) ∶ D ⊂ A countable}.

Obviously, 0 ∉ B0. Moreover, it is clear that B0 is a convex ∥ ⋅ ∥-closed boundary of A
w∗
.

Fus X∗ is not super-(P), a contradiction which proves that X is (C).
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Recall (see [3]) that a Hausdor× compact space K is said to be a Rosenthal compact

when K is homeomorphic to a compact subset of the space (B1(S), τp) where (i) S is

a Polish space and B1(S) is the space of 1-Baire functions f ∶ S → R; (ii) τp is the poin-

twise convergence topology on S. Godefroy proved in [3, Feorem 13] that C(K) ∈ (C)
whenever K is a Rosenthal compact.

2.3. Proposition. For every separable Banach space X the following are equivalent:

(i) (B(X∗∗),w∗) is angelic.
(i’) (B(X∗∗),w∗) is a Rosenthal compact.

(ii) X∗ has the property (C) of Corson.
(ii’) C(B(X∗∗),w∗) has the property (C) of Corson.
(iii) X∗ fails to have an uncountable basic sequence of type ℓ+

1
.

(iv) X∗∗ = Seq(X∗∗).
(v) X∗ is super-(P).
(vi) X fails to have a copy of ℓ1.

(vii) X∗ fails to have a copy of ℓ1(c).

Proof. (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v)⇒ (vi) follow from Proposition 2.2.

(i’)⇒ (i) follows from a result of Bourgain, Fremlin and Talagrand [1, 3F. Feorem].

(i’)⇒ (ii’) follows from [3, Feoreme 13].

(ii’)⇒ (ii) is obvious.

(vi)⇒ (i’). X being separable, (B(X∗),w∗) is a metrizable compact topological space, i.e.,

a Polish space. Since X∗∗ = Seq(X∗∗) (by Odell–Rosenthal results [11]), all elements of
B(X∗∗) are 1-Baire on (B(X∗),w∗). So (B(X∗∗),w∗) is a Rosenthal compact since it is

a compact subspace of the space of 1-Baire functions B1(B(X∗),w∗) endowed with the

pointwise convergence topology.

(iii)⇒ (vii) is obvious.

(vii) ⇒ (vi). Assume that there exists an isomorphic embedding T ∶ ℓ1 → X. Fen the

conjugate operator T∗∶ ℓ∞ → X∗ is a quotient mapping. It is well known that ℓ1(c) ⊂ ℓ∞.

Let (e i)i<c be the canonical basis of ℓ1(c) and (u i)i<c ⊂ X∗ a bounded sequence such that

T∗(u i) = e i . Fen (u i)i<c is a basic sequence equivalent to (e i)i<c and so X∗ has a copy

of ℓ1(c), but this fact contradicts (vii).
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3. Fe properties “X∗∗ = Xℵ0
” and “X∗∗ = Seq(X∗∗)” are ℵ1-determined

First, two auxiliary lemmas.

3.1. Lemma (Odell–Rosenthal [11]). Let X be a Banach space.Fe following are equivalent:

(i) X does not have a copy of ℓ1;

(ii) Seq(X∗∗) = Xℵ0
.

Proof. (i)⇒ (ii). First, always Seq(X∗∗) ⊂ Xℵ0
. Let z ∈ Xℵ0

. Fen there exists a separable

closed subspace Y ⊂ X such that z ∈ Yw∗
. As Y is separable and fails to have a copy of

ℓ1, by a result of Odell–Rosenthal [11] there exists a sequence {yn ∶ n ⩾ 1} ⊂ Y such that

yn
w∗→ z. Fus z ∈ Seq(X∗∗) and so Xℵ0

= Seq(X∗∗).

(ii)⇒ (i). First observe that (ℓ1)ℵ0
= ℓ∗∗

1
= ℓ∗∞ (trivial) and also Seq(ℓ∗∗

1
) = ℓ1 because ℓ1

is weakly sequentially complete. Suppose that X contains a subspace Y isomorphic to ℓ1.

So there exists u ∈ Yℵ0
∖ Seq(Y∗∗) = Y∗∗ ∖ Seq(Y∗∗). If we consider Y∗∗ as a subspace

of X∗∗ (in fact, Y∗∗ = Yw∗ ⊂ X∗∗), then u ∈ Xℵ0
(since u ∈ Yℵ0

⊂ Xℵ0
) but u ∉ Seq(X∗∗)

because, ifu ∈ Seq(X∗∗), by [11, SubLemma, p. 378], we getu ∈ Seq(Y∗∗), a contradiction.
Fus X fails to have a copy of ℓ1.

3.2. Lemma. Let X be a Banach space, A ⊂ X a countable subset, C ⊂ X a closed subspace,

and u ∈ X∗∗ such that u ∈ Aw∗ ∩ Cw∗
. Fen there exists a separable subspace D ⊂ C such

that u ∈ Dw∗
.

Proof. Let coQ(A) denote the family of finite convex combinations of elements of Awith

rational coeÚcients. Clearly, ∣coQ(A)∣ ⩽ ℵ0. For each a ∈ coQ(A) we choose ca ∈ C such

that ∥ca − a∥ ⩽ 2dist(a,C). It is enough to prove the following

Claim. u ∈ {ca ∶ a ∈ coQ(A)}
w∗
.

Indeed, if є > 0 and x∗
1
, . . . , x∗p ∈ S(X∗), we consider the following convex w∗-neigh-

borhood of u

W(u; x∗
1
, . . . , x∗p ; є) ∶= {z ∈ X∗∗ ∶ ∣⟨z − u, x∗i ⟩∣ ⩽ є ∶ i = 1, . . . , p}.

Let A0 ∶= A∩W(u; x∗
1
, . . . , x∗p ; є/2). Clearly, co(A0) ⊂W(u; x∗

1
, . . . , x∗p ; є/2).

SubClaim. inf{∥c − d∥ ∶ c ∈ C , d ∈ co(A0)} = inf{∥c − d∥ ∶ c ∈ C , d ∈ coQ(A0)} = 0.

First, clearly inf{∥c − d∥ ∶ c ∈ C , d ∈ co(A0)} = inf{∥c − d∥ ∶ c ∈ C , d ∈ coQ(A0)}
because co(A0) = coQ(A0). Suppose that inf{∥c − d∥ ∶ c ∈ C , d ∈ co(A0)} > 0. Fen by

the Hahn–Banach separation theorem there exists x∗ ∈ X∗ fulfilling

inf⟨x∗,C⟩ > sup⟨x∗, co(A0)⟩. (1)
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Fus ⟨u, x∗⟩ ⩾ inf⟨x∗,C⟩ (because u ∈ Cw∗
) and also sup⟨x∗, co(A0)⟩ ⩾ ⟨u, x∗⟩ since

u ∈ A0

w∗ ⊂ cow∗(A0). By (1), we get ⟨u, x∗⟩ > ⟨u, x∗⟩, a contradiction which proves the

SubClaim.

Ferefore, there exists a ∈ coQ(A0) such that ∥ca − a∥ ⩽ є/2. Hence for i = 1, . . . , p

we have

∣⟨ca − u, x∗i ⟩∣ ⩽ ∣⟨ca − a, x∗i ⟩∣ + ∣⟨a − u, x∗i ⟩∣ ⩽
1

2

є + 1

2

є = є.

In consequence, ca ∈ W(u; x∗
1
, . . . , x∗p ; є). SinceW(u; x∗

1
, . . . , x∗p ; є) is arbitrary, this fact

proves Claim and Lemma.

3.3. Proposition. Let X be a Banach space. Fen:

(i) Fe property X∗∗ = Xℵ0
is ℵ1-determined, that is, X∗∗ = Xℵ0

i× every subspace Y ⊂ X
with Dens(Y) = ℵ1 satisfies Y∗∗ = Yℵ0

.

(ii) If Dens(X) ⩾ ℵ1, the following are equivalent:

(ii.1) X∗∗ = Seq(X∗∗);
(ii.2) every subspace Y ⊂ X satisfies Y∗∗ = Seq(Y∗∗);
(ii.3) every subspace Y ⊂ X with Dens(Y) = ℵ1 satisfies Y∗∗ = Seq(Y∗∗).

Proof. (i). Assume that X∗∗ = Xℵ0
and let Y ⊂ X be a closed subspace of X. Identifying

Y∗∗ with Y
w∗ ⊂ X∗∗ and applying Lemma 3.2, we get Y∗∗ = Yℵ0

.

Now suppose that X∗∗ ≠ Xℵ0
. In the sequel we construct a closed subspace Y ⊂ X

with Dens(Y) = ℵ1 such that Y∗∗ ≠ Yℵ0
. We repeat the construction of Lemma 2.1 and,

with the notation of this Lemma, we put Y = ∪α<ω1
Aα , which is a closed subspace of X

such that Dens(Y) = ℵ1 andYℵ0
= ∪α<ω1

Aα
w∗
. Nowwe construct a sequence {wα ∶ 1 ⩽ α <

ω1} ⊂ B(X∗∗) such that wα ∈ B(Aα
w∗) and ⟨wα , x∗β ⟩ = ⟨u, x∗β ⟩ > є0 > 0 for β < α < ω1.

Put w1 = 0, and for 2 ⩽ α < ω1 consider the operators

Aα
i↪ X

A∗α
i∗↢ X∗ j↩ Bα

A∗∗α = Aα
w∗ i∗∗↪ X∗∗ j∗↣ B∗α ,

where “↪” means isometric inclusion and “↢” canonical 1-quotient. Fe operator i∗ ○
j =∶ ψ∶Bα ↪ A∗α is an isometric inclusion because Aα 1-norms Bα . Whence j∗ ○ i∗∗ =
ψ∗∶Aα

w∗ ↣ B∗α is a w
∗ −w∗-continuous canonical 1-quotient. Fus

ψ∗(B(Aα
w∗)) = B(B∗α).
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Since j∗(u) ∈ B(B∗α), there exists wα ∈ B(Aα
w∗) such that ψ∗(wα) = j∗(u). Hence for all

β < α we have

⟨wα , x∗β ⟩ = ⟨i∗∗(wα), j(x∗β)⟩ = ⟨ j∗ ○ i∗∗(wα), x∗β ⟩ = ⟨ψ∗(wα), x∗β ⟩
= ⟨ j∗(u), x∗β ⟩ = ⟨u, x∗β ⟩ > є0 .

Choose w0 ∈ ⋂β<ω1
{wγ ∶ β ⩽ γ < ω1}

w∗
arbitrarily. Fen

(i) w0 ∈ B(Y)
w∗

= B(Y∗∗);

(ii) w0 ∉ Yℵ0
, because w0 ∉ Aα

w∗ ∀α < ω1, since ⟨w0 , x
∗
α⟩ ⩾ є0 but x∗α�Aα ∀α < ω1.

Ferefore Y∗∗ ≠ Yℵ0
.

(ii). (ii.1)⇒ (ii.2) follows from [11, SubLemma, p. 378]. (ii.2)⇒ (ii.3) is obvious.

(ii.3)⇒ (ii.1). First, X does not have a copy of ℓ1. Indeed, otherwise there exists a subspace

Y ⊂ X with Dens(Y) = ℵ1 containing a copy of ℓ1. So, by Lemma 3.1, Seq(Y∗∗) ≠ Yℵ0
⊂

Y∗∗, which contradicts (ii.3). Fus, every subspace Y ⊂ X fulfills Yℵ0
= Seq(Y∗∗) by

Lemma 3.1. Moreover by (B3) every subspace Y ⊂ X with Dens(Y) = ℵ1 satisfies Y∗∗ =
Yℵ0

. By (i) we get X∗∗ = Xℵ0
and finally X∗∗ = Seq(X∗∗), since Xℵ0

= Seq(X∗∗) by
Lemma 3.1.

4. Fe property “X∗∗ = Xℵ0
” implies “(B(X∗),w∗) ∈ (CT)”

A topological space (X , τ) has countable tightness (in short, X ∈ (CT)) i× for every subset

A ⊂ X and every u ∈ A there exists a countable subset A0 ⊂ A such that u ∈ A0. If (X , τ)
is a topological vector space and C ⊂ X is a convex subset of X, we say that C has convex

countable tightness (in short, C ∈ (CCT)) if for every subset A ⊂ C and every u ∈ A there

exists a countable subset D ⊂ A such that u ∈ co(D). Our aim in this Section is to prove

that if X is a Banach space the fact “X∗∗ = Xℵ0
" implies “(B(X∗),w∗) is (CT)”.

4.1. Lemma. Let X be a Banach space and A ⊂ B(X∗) such that 0 ∈ Aw∗
but 0 ∉ Dw∗

for

every countable subset D ⊂ A. Fen

(i) 0 ∉ Aw
, where w is the weak topology of X∗.

(ii) If F(A) = ⋃{D
w∗ ∶D ⊂ A, ∣D∣ ⩽ ℵ0}, F(A) is w-closed and 0 ∉ F(A).

(iii) Fere exist η > 0 and v ∈ X∗∗ such that ∣{a ∈ A ∶ ⟨v , a⟩ > η}∣ ⩾ ℵ1.

Proof. (i). First, 0 ∉ Aw
, because every Banach space has countable tightness for the weak

topology (see [14, p. 229] for instance) and so the fact 0 ∈ Aw
would imply that there exists
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a countable subset D ⊂ Awith 0 ∈ Dw
. Since D

w ⊂ Dw∗
, we would get that 0 ∈ Dw∗

, which

is not true.

(ii). Let u ∈ F(A)
w
. Since every Banach space has countable tightness for the weak topolo-

gy, there exists D ⊂ Awith ∣D∣ ⩽ ℵ0 such that u ∈ Dw ⊂ Dw∗
, that is, u ∈ F(A). Obviously,

0 ∉ F(A), by hypothesis.

(iii). Since 0 ∉ Aw
, there exist η > 0 and vectors v1 , . . . , vn in X

∗∗
such that A ⊂ ⋃n

i=1{x∗ ∈
X∗ ∶ ⟨v i , x∗⟩ > η}. A is uncountable by hypothesis, and so for some j ∈ {1, . . . , n} we have
necessarily that ∣{a ∈ A ∶ ⟨v j , a⟩ > η}∣ ⩾ ℵ1. Now pick v ∶= v j .

4.2. Lemma. Let X be a Banach space, Y ⊂ X a separable subspace, A ⊂ B(X∗)with 0 ∈ Aw∗

and 0 ∉ F(A) ∶= ⋃{D
w∗ ∶ D ⊂ A, ∣D∣ ⩽ ℵ0}, and A0 ⊂ A such that ∣A0∣ ⩽ ℵ0. Fen there

exist D ⊂ A∖ A0 with ∣D∣ ⩽ ℵ0 and z ∈ D
w∗

such that z ↾ Y = 0.

Proof. Let {yn ∶ n ⩾ 1} be a dense family in B(Y) and denote

F(A∖ A0) ∶= ⋃{Dw∗ ∶ D ⊂ A∖ A0 , ∣D∣ ⩽ ℵ0}.

Consider the w∗-open neighborhoods of 0

Vn ∶= {x∗ ∈ X∗ ∶ ∣⟨x∗, y i⟩∣ < 1

n , i = 1, . . . , n} ∀ n ⩾ 1.

As 0 ∈ A∖ A0

w∗ ⊂ F(A∖ A0)
w∗
, then Vn ∩ F(A∖ A0) ≠ ∅ ∀n ⩾ 1. Choose zn ∈ Vn ∩

F(A∖ A0) ∀n ⩾ 1. Clearly ⟨zn , y i⟩ →
n→∞

0 for i ⩾ 1, whence we get ⟨zn , y⟩ →
n→∞

0 for

every y ∈ Y . Let Dn be a countable subset of A ∖ A0 such that zn ∈ Dn
w∗ ∀n ⩾ 1, and

D ∶= ⋃n⩾1 Dn . It is clear that ∣D∣ ⩽ ℵ0 and zn ∈ D
w∗ ∀n ⩾ 1. Let z be a w∗-limit point of

{zn ∶ n ⩾ 1}. Obviously, z ∈ Dw∗
and z ↾ Y = 0.

4.3. Lemma. Let X be a Banach space with Dens(X) = ℵ1. Fe following are equivalent:

(i) (B(X∗),w∗) ∉ (CT).
(ii) Fere exists in B(X∗) a sequence {y∗α ∶ α < ω1} such that

(ii.1) y∗α → 0 in the w∗-topology of X∗ when α → ω1;

(ii.2) for every β < ω1 we have 0 ∉ {y∗α ∶ α < β}
w∗

;

(ii.3) there exist η > 0 and v ∈ X∗∗ such that ∣{α < ω1 ∶ ⟨v , y∗α⟩ > η}∣ = ℵ1.

Proof. (ii)⇒ (i) is immediate by (ii.1) and (ii.2).

(i) ⇒ (ii). As (B(X∗),w∗) is not (CT), there exists A ⊂ B(X∗) such that 0 ∈ Aw∗
but

0 ∉ F(A) ∶= ⋃{D
w∗ ∶ D ⊂ A, ∣D∣ ⩽ ℵ0}. Let {xα ∶ α < ω1} ⊂ B(X) be a ∥ ⋅ ∥-dense

family in B(X). In the sequel we construct sequences {Yα ∶ α < ω1}, {Dα ∶ α < ω1} and
{y∗α ∶ α < ω1} ⊂ B(X∗) such that
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(1) Yα is a separable closed subspace of X and xα ∈ Yα ⊂ Yβ for α ⩽ β < ω1;

(2) {Dα ∶ α < ω1} is a family of countable pairwise disjoint subsets of A;

(3) y∗α ∈ Dα
w∗
and y∗α ⊥ Yα for α < ω1.

We use transfinite induction.

Step 1. Let Y1 = [x1]. By Lemma 4.2, there exist D1 ⊂ Awith ∣D1∣ ⩽ ℵ0 and y
∗
1
∈ D1

w∗
such

that y∗
1
⊥ Y1.

Step 2. Let Y2 = [Y1 ∪ {x2}], which is separable. By Lemma 4.2 there exist D2 ⊂ A ∖ D1

with ∣D2∣ ⩽ ℵ0 and y
∗
2
∈ D2

w∗
such that y∗

2
⊥ Y2.

Step α < ω1. Assume that we have constructed the elements Yβ , Dβ and y
∗
β for β < α

fulfilling (1), (2) and (3). Let Yα = [{xα} ∪ (⋃β<α Yβ)], which is a separable subspace of X.

By Lemma 4.2 there exist Dα ⊂ A ∖ ⋃β<α Dβ with ∣Dα ∣ ⩽ ℵ0 and y
∗
α ∈ Dα

w∗
such that

y∗α ⊥ Yα .
We can carry out the construction for every α < ω1.

By construction, it is clear that X = ⋃α<ω1
Yα , y

∗
α → 0 in the w∗-topology of X∗ as

α → ω1 and

0 ∉ ⋃
β<ω1

{y∗α ∶ α < β}
w∗
.

Finally, by Lemma 4.1, there exist η > 0 and v ∈ B(X∗∗) such that ∣{α < ω1 ∶ ⟨v , y∗α⟩ >
η}∣ = ℵ1.

We say that a Banach space X is ℵ1-(CT) if every Y ⊂ X with Dens(Y) ⩽ ℵ1 satisfies

(B(Y∗),w∗) ∈ (CT).

4.4. Proposition. Let X be a Banach space. Fe following are equivalent:

(i) (B(X∗),w∗) ∈ (CT).
(ii) X is ℵ1-(CT).
Hence the property (B(X∗),w∗) ∈ (CT) is ℵ1-determined.

Proof. (i) ⇒ (ii) is obvious because the property (CT) passes over to compact quotient

spaces.

(ii)⇒ (i). Suppose that (B(X∗),w∗) is not (CT). Fen Dens(X) > ℵ1 and without

loss of generality we may assume that there exists A ⊂ B(X∗) such that 0 ∈ Aw∗
but

0 ∉ F(A) ∶= ⋃{D
w∗ ∶ D ⊂ A, ∣D∣ ⩽ ℵ0}. From this fact we deduce a contradiction. Since

F(A) is a w-closed subset of X∗ (see Lemma 4.1) and 0 ∉ F(A), dist(0, F(A)) > є for

some є > 0. Let {xα ∶ α < ω1} ⊂ B(X) be such that Dens([{xα ∶ α < ω1}]) = ℵ1. Now we

construct sequences {Yα ∶ α < ω1}, {Dα ∶ α < ω1} and {x∗α ∶ α < ω1} ⊂ B(X∗) such that
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(1) Yα is a separable closed subspace of X and xα ∈ Yα ⊂ Yβ for α ⩽ β < ω1;

(2) {Dα ∶ α < ω1} is a family of countable pairwise disjoint subsets of A;

(3) x∗α ∈ Dα
w∗
and x∗α ⊥ Yα for α < ω1;

(4) if iα ∶Yα → X is the canonical inclusion, then

0 ∉ i∗α(∪β<αDβ)
w∗

= i∗α(∪β<αDβ
w∗) ∀ α < ω1 .

We use transfinite induction as in Lemma 4.3.

Step 1. Let Y1 = [x1]. By Lemma 4.2, there exist D1 ⊂ Awith ∣D1∣ ⩽ ℵ0 and x
∗
1
∈ D1

w∗
such

that x∗
1
⊥ Y1.

Step 2. Since dist(0,D1

w∗) > є, there exists a finite family F2 ⊂ B(X) such that

D1

w∗ ⊂ {x∗ ∈ X∗ ∶ sup⟨x∗, F2⟩ > є}.

Let Y2 = [Y1 ∪ {x2} ∪ F2], which is separable. Clearly, 0 ∉ D1

w∗
and also 0 ∉ i∗

2
(D1

w∗)
because F2 ⊂ Y2. By Lemma 4.2 there exist D2 ⊂ A ∖ D1 with ∣D2∣ ⩽ ℵ0 and x

∗
2
∈ D2

w∗

such that x∗
2
⊥ Y2.

Step α < ω1. Assume that we have constructed the elements Yβ ,Dβ and x
∗
β for β < α

fulfilling (1), (2), (3) and (4). Since dist(0,∪β<αDβ
w∗) > є, there exists a finite family

Fα ⊂ B(X) such that

∪β<αDβ
w∗ ⊂ {x∗ ∈ X∗ ∶ sup⟨x∗, Fα⟩ > є}.

Let Yα = [{xα} ∪ (⋃β<α Yβ) ∪ Fα], which is a separable subspace of X. Note that 0 ∉
i∗α(∪β<αDβ)

w∗
because Fα ⊂ Yα . By Lemma 4.2, there exist Dα ⊂ A∖⋃β<α Dβ with ∣Dα ∣ ⩽

ℵ0 and x
∗
α ∈ Dα

w∗
such that x∗α ⊥ Yα .

We can carry out the induction for every α < ω1.

Let Y ∶= ∪α<ω1
Yα (which is a closed subspace of X with Dens(Y) = ℵ1), i∶Y → X the

canonical inclusion and y∗α = i∗(x∗α), α < ω1. We have

(ii.1) y∗α
w∗→ 0 as α → ω1 in (B(Y∗),w∗) because y∗α ⊥ Yα , Y ∶= ∪α<ω1

Yα , and Yβ ⊂ Yα for
β < α < ω1;

(ii.2) 0 ∉ {y∗β ∶ β < α}
w∗
for every α < ω1 because 0 ∉ i∗α(∪β<αDβ)

w∗
;

(ii.3) by Lemma 4.1, (ii.1) and (ii.2), there exist η > 0 and v ∈ Y∗∗ such that ∣{α < ω1 ∶
⟨v , y∗α⟩ > η}∣ = ℵ1.

By Lemma 4.3 we get (B(Y∗),w∗) ∉ (CT), which is the contradiction we are looking for.
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4.5. Proposition. Let X be a Banach space such that X∗∗ = Xℵ0
.Fen (B(X∗),w∗) is (CT).

Proof. Suppose that (B(X∗),w∗) is not (CT). We will deduce a contradiction. By Propo-
sition 4.4 we may assume that Dens(X) = ℵ1. By Lemma 4.3, passing to a subsequence if

necessary, there exist a sequence {x∗α ∶ α < ω1} in B(X∗), u ∈ B(X∗∗) and є0 > 0 such that

(i.1) x∗α → 0 in the w∗-topology of X∗ as α → ω1;

(i.2) ⟨u, x∗α⟩ > є0 ∀α < ω1.

Let D ∶= {xn ∶ n ⩾ 1} ⊂ X be a sequence such that u ∈ Dw∗
. Fen

[1,ω1) = ⋃
n⩾1

{α < ω1 ∶ ⟨x∗α , xn⟩ > є0}.

In consequence, there exists m ∈ N such that ∣{α < ω1 ∶ ⟨x∗α , xm⟩ > є0}∣ = ℵ1, which

contradicts (i.1). Fus (B(X∗),w∗) is (CT).

5. Fe equality X∗∗ = Seq(X∗∗) and Martin’s axiomMA(ω1)

In this Sectionwe see that underMartin’s axiomMA(ω1), for a Banach space X the proper-

ty “X∗∗ = Seq(X∗∗)” is equivalent to the property (B(X∗),w∗) ∈ (CT) and the property

“X∗ is super-(P)” (or similar properties). We begin by introducing some notions (see [2]).

Let (P , ⩽) be a partially ordered set (a “poset”). Two elements p, q ∈ P are said to be

compatible if there exists r ∈ P such that p ⩽ r and q ⩽ r. Otherwise, we say that p, q are

incompatible. We say that P satisfies the CCC (countable chain condition) property if for

every uncountable subset P1 of P there exist at least two compatible elements p, q ∈ P1.

A subset Q ⊂ P is said cofinal in P if for every p ∈ P there exists q ∈ Q such that p ⩽ q.

A subset R ⊂ P is said ↑-directed (or up-directed) if for every pair of elements p, q ∈ R
there exists r ∈ R such that p ⩽ r and q ⩽ r.

For each cardinal κ let MA(κ) be the following statement:

“If (P , ⩽) is a CCC poset and F a family of cofinal subsets of P with ∣F∣ ⩽ κ, there

exists a ↑-directed subsetR ⊂ P such thatR intersects every element of F .”

It is well known that MA(ω0) is true but MA(c) is false (see [2]).

5.1. Definition.m is the minimum cardinal such that MA(m) is false.

Of course ω1 ⩽ m ⩽ c.

5.2. Definition.Martin’s axiomMA is the statement thatm = c. In other words, if (P , ⩽) is
a CCC poset and F a family of cofinal subsets in P with ∣F∣ < c, there exists a ↑-directed
subsetR ⊂ P such thatR intersects every element of F .
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Clearly, (CH) ⇒ MA ((CH) = continuum hypothesis, that is, ω1 = c) and MA +
¬(CH) ⇔ ω1 < m = c.

5.3. Definition. Martin’s axiom MA(ω1) is the statement that ω1 < m. In other words,

MA(ω1) is the following statement: If (P , ⩽) is a poset fulfilling CCC and {Dα ∶ α <
ω1} is a family of cofinal subsets in P , there exists a ↑-directed subset J in P such that

J ∩Dα ≠ ∅ ∀α < ω1.

Fe following Definition is a topological version of Martin’s axiom MA(ω1) (see [9,
3.4.Feorem]). Recall that a topological space X isCCC if every family of pairwise disjoint

open subsets of X is countable.

5.4. Definition. Martin’s axiom MA(ω1) is the following statement: If K is a compact

Hausdor× CCC space and {Dα ∶ α < ω1} is a family of dense open subsets of K, then

∩{Dα ∶ α < ω1} is dense in K.

5.5. Proposition (MA(ω1)). Let X be a Banach space such that Dens(X) = ℵ1. Fe follo-

wing are equivalent:

(i) X∗∗ = Seq(X∗∗).
(ii) X∗ is super-(P) and (B(X∗),w∗) ∈ (CT).

Proof. Fe implication (i)⇒ (ii) always holds, by Proposition 2.2 and Proposition 4.5.

(ii)⇒ (i). We suppose that

X∗ is super-(P) and (B(X∗),w∗) ∈ (CT), but X∗∗ ≠ Seq(X∗∗) (∗)

and deduce a contradiction. Since X∗ is super-(P), X fails to have a copy ℓ1 (see Proposi-

tion 2.2). In consequence, Seq(X∗∗) = Xℵ0
by Lemma 3.1 and Xℵ0

≠ X∗∗ by (∗). Fus,

we can apply Lemma 2.1. So there exist є0 > 0, u ∈ S(X∗∗), a monotone basic sequence

{x∗α ∶ α < ω1} ⊂ S(X∗) and separable closed subspaces {Aα ∶ α < ω1} of X such that

(a) Aα ⊂ Aβ if α < β < ω1, and X = ⋃α<ω1
Aα ;

(b) x∗α ⊥ Aα ∀α < ω1 , whence x
∗
α

w∗→ 0 as α → ω1;

(c) ⟨u, x∗α⟩ ⩾ є0 ∀α < ω1.

Let T̃ ∶X → ℓ∞(ω1) be a continuous operator defined by T̃(x) ∶= (⟨x∗α , x⟩)α<ω1
. By (b),

T̃(X) ⊂ ℓc∞(ω1)(=elements of ℓ∞(ω1) with countable support). Moreover,

supp(T̃(X)) ∶= {α ∈ ω1 ∶ ∃x ∈ X⟨x∗α , x⟩ ≠ 0} = ω1 .

Indeed, since ∥x∗α∥ = 1 ∀α < ω1 , there exists x ∈ X such that ⟨x∗α , x⟩ ≠ 0. By the proof

of [7, F. 4.46] (here the axiomMA(ω1) is necessary), there exists an uncountable subset
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Γ ⊂ ω1 such that if we define T(x) ∶= (⟨x∗γ , x⟩)γ∈Γ ∀x ∈ X, then T(X) is a non-separable
subspace of c0(Γ). Note that ⟨u, x∗γ ⟩ ⩾ є0 > 0 ∀γ ∈ Γ.

Claim. X∗ is not super-(P).
Indeed, consider the operator T ∶X → c0(Γ) such that T(x) = (⟨x∗γ , x⟩)γ∈Γ . Let B ∶=

{eγ ∶ γ ∈ Γ} be the canonical basis of ℓ1(Γ) = c∗0 (Γ) and K ∶= Bw
∗

. Observe that K is the

w∗-compact subset K = {eγ ∶ γ ∈ Γ} ∪ {0} of (ℓ1(Γ),w∗) such that 0 ∉ co(B). Moreover,

B is a boundary of K. Let H ∶= T∗(K) and B0 ∶= T∗(B). Clearly, B0 is a boundary of

the w∗-compact subset H and B0 = {x∗γ ∶ γ ∈ Γ}. Since ⟨u, x∗γ ⟩ ⩾ є0 ∀γ ∈ Γ, we have

⟨u, x∗⟩ ⩾ є0 ∀x∗ ∈ co(B0). Fus 0 ∉ co(B0) but 0 ∈ H, and this implies that X∗ is not

super-(P).
Ferefore we get a contradiction, which proves the implication (ii)⇒ (i).

5.6. Proposition (MA(ω1)). For every Banach space X the following statements are equiva-

lent:

(i) X∗∗ = Seq(X∗∗).
(ii) X∗ is ultra-(P) and (B(X∗),w∗) ∈ (CT).
(iii) X∗ is ℵ1-super-(P) and (B(X∗),w∗) ∈ (CT).

Proof. (i)⇒ (ii) follows from Proposition 3.3, Proposition 2.2 and Proposition 4.5. (ii)⇒
(iii) is obvious. Finally (iii) ⇒ (i) follows from Proposition 5.5 and the fact that the

property X∗∗ = Seq(X∗∗) is ℵ1-determined, by Proposition 3.3.
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