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Boundaries, Martin’s Axiom, and (P)-properties
in dual Banach spaces

Antonio S. Granero and Juan M. Hernandez

Summary. Let X be a Banach space and Seq(X*™) (resp., Xx,) the subset  Keywords

of elements y € X** such that there exists a sequence (x4 )31 € X such  Boundaries;

that x, — y in the w”-topology of X** (resp., there exists a separable =~ Martin’s axiom;

subspace Y ¢ X such that v € YW*). Then: (i) if Dens(X) > Ry, the  equality Seq(X™™) = X**;
property X** = Xy, (resp., X** = Seq(X*")) is R;-determined, i.e.,  super-(P) property

X has this property iff Y has, for every subspace Y ¢ X with Dens(Y) =
Ry; (i) if X** = Xng» (B(X™*), w") has countable tightness; (iii) under ~ MSC 2010

the Martin’s axiom MA (w;) we have X** = Seq(X**) iff (B(X™*),w")  46B20; 46B26
has countable tightness and co(B) = " (K) for every subspace Y c X,

every w”-compact subset K of Y*, and every boundary B c K.
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1. Introduction and notation

If (X, ] - |) is a Banach space, let B(X) and S(X) be the closed unit ball and unit sphere
of X, respectively, and X~ its topological dual. By w we will denote the weak-topology of
X and by w* the weak*-topology of X*. Let Seq(X**) be the subset of elements y € X**
such that there exists a sequence (x,),>1 ¢ X such that x,, — y in the w*-topology of X**
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The subspace Seq(X**) depends upon X but this will cause no confusion because the
space X will always be fixed previously and clearly. Seq(X**) isa closed subspace of X**
(see [10]). Let Xx, be the subspace of X** defined by Xy, = U{BW :DcX countable}.
Xy, is norm-closed. We study the properties “X** = X,,” and “X** = Seq(X**)” in
Section 3. We prove that both properties are ®;-determined, i.e., a Banach space X satisfies
X** = Xy, (resp., X** = Seq(X**)) iff Y** = Yy, (resp., Y** = Seq(Y**) for every
subspace Y ¢ X with Dens(Y) = R.

The countable tightness of the unit ball (B(X*), w*) is related to the property “X** =
X, » Actually, in Section 4 we prove that the property “X** = X~ implies that the unit
ball (B(X*),w™) has countable tightness.

If K is a w*-compact subset of a dual Banach space X*, a subset B c K is said to
be a (James) boundary of K if every x € X attains on B its maximum on K. For instance,
K itself and the set of extreme points Ext(K) of K are boundaries of K. If B is a boundary
of K, then 0" (B) = 0" (K) and also co(B) = ¢6” (K) in some cases. But, in general,
c0(B) # c0" (K). When X is separable the following facts are equivalent (see [4,5] and
Proposition 2.3 below):

(i) X** =Seq(X*).
(i) (B) = " (K) for every w*-compact subset K of the dual Banach space X* and
every boundary B of K.

So, it is natural to ask for the relation between the previous conditions (i) and (ii) in
the non-separable case. In Section 5 we examine this relation under the Martin’s axiom
MA(w,) in the non-separable case.

Let us introduce some definitions. A closed convex subset M of X is said to have
property (C) of Corson if for every family A of closed convex subsets of M with empty
intersection there is a countable subfamily 3 of A with empty intersection.

A w*-compact subset K ¢ X* is said to be angelic if for every subset S of K and for
every point s in the w*-closure of S there exists a sequence in S that w*-converges to s.

Denote by wq and w; the first infinite ordinal and the first uncountable ordinal, re-
Al will denote the cardinality of A and ¢ = |R|.

If 6 is an ordinal, a basic sequence {x,:a < 6} c X is of type #; if there exist u € X*
and g > 0 such that (1, x,) > €9 > 0 for every a < 0.

We define the (P)-properties of the dual X* as follows:

spectively. If A is a set,

(i) X* has the (P)-property iff every w*-compact subset H ¢ X* satisfies c0” (H) =
co(H). Actually, by a result of Haydon [8], X* has the (P)-property iff X fails to have
a copy of &;.

(if) X has the super-(P) property iff every w*-compact subset H c X* and every boun-
dary B of H satisfy ©6" (B) = co(H).
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(iii) X* has the ultra-(P) property iff Y* is super-(P) for every subspace Y c X. X* has
the R;-super-(P) property iff Y is super-(P) for every subspace Y c X such that
Dens(Y) = &y.

We shall consider only Banach spaces (X, || - |) over the real field R. If xy € X and
r>0,let B(xo;r) i= {x € X:|x —xo < r}.IfAc X, x € X, then [A] and [A] denote the

linear hull and the closed linear hull of A, respectively, and dist(x, A) = inf{|x—a:a € A}

the distance from x to A. co(A) denotes the convex hull of A, €0(A) is the | - |-closure
of co(A) and, if A ¢ X*, 6" (A) the w*-closure of co(A). If A ¢ X and B ¢ X* are
subspaces, we say that A and B 1-norm each other if

YacA ||a| = sup{(x*,a) txt e B(B)}

and
VbeB |b] =sup{(b,x) : x e B(A)}.

2. Preliminaries
Let us state and prove the following lemma that will be used in the sequel.

2.1. Lemma. Let X be a Banach space with Dens(X) > Ry and X** # Xy,. Let u € S(X**)\
X, Then dist(u, Xx,) > €9 > 0 for some €9 > 0 and there exist

(A) two sequences of separable subspaces {Ay : o < w;} and {By * & < w1} of X and
X, resp., such that: (i) Ay and B, 1-norm each other; (ii) A, ¢ Ag and B, c Bg
forl<a<f<wy;

(B) a monotone basic sequence {x};: a < w1} ¢ S(X*) such that (u,x}) > €y > 0 (so it is
of type €7), x; LA, (ie. (x},x) =0 Vx € A) and x, € Byyy forevery1 < a < wy.

Moreover, if Dens(X) = Ry, the construction can be carried out so that

w*

X=J Aa XR(,:UA_DCW* and x), —> for & > w;.
a<wi a<w,
Proof. As Dens(X) > ®; then there exists a family {x, : @« < w;} in B(X) such that:
(i) Dens([{x4 : @ < w1}]) = Ry; (ii) if Dens(X) = Ry, then {x, : & < w;} is | - |-dense
in B(X). Since Xy, is | - ||-closed and u ¢ Xy, clearly, dist(u, Xx,) > €o > 0 for some
1> ¢ > 0. We proceed by transfinite induction.

Step 1. Make A; = {0} = B;. Choose x; € S(X™) such that (u, x;') > €¢, and two separable
subspaces A, ¢ X and B, ¢ X* such that they 1-norm each other and x; € A;,x; € B,.
This is done as follows. Consider By, = [x;] and choose a separable subspace Ay ¢ X
such that A, I-norms B,; and x; € Ay;. Next let By, ¢ X* be a separable subspace that
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I-norms Aj and B,; ¢ Bj,. In the next step, we choose a separable subspace A;; ¢ X
that I-norms B, and A,; ¢ A,,. And so on. We put A, := m and B, := m
Obviously x; LA;. Step 1 ends here. Note that we have built A;, B; for i < 2, and x; for
j < 1fulfilling the above requirements (A) and (B).

Step 2. As dist(u,A_zw*) > ¢g (because A_zwe c Xx,) there exist x; € S(X™), x5 LA,, such
that (u, x5 ) > €9. Now we have

Ay | < Ay + A5 | VAL A eR

because A, 1-norms the subspace [x;' ] and x5 1 A,.

Let A, c A3 c X and B, c B3 c X* be separable subspaces such that x;, € A3, x; € B;
and A3, B3 1-norm each other. This ends Step 2. Note that we have built A; and B; for i < 3,
and xj’.' for j < 2 fulfilling the above requirements (A) and (B).

Step a < w;. Assume steps 3 for all B < a constructed. We have subspaces Ag,; and By, of
X and X, resp., such that xp € Apgi and xl}* € S(Bl;+1), B < a, verifying the requirements
(A) and (B). We put

Ay=JApn and Bg:=J Bg.
B<a B<a

Clearly, A, and B,, are separable subspaces of X and X, resp., that 1-norm each other and
xpg € Aq for every f < a. .

AsA, «c Xx, we have dist(u, A, ) > €o and so there exist x; € S(X*)n A} such
that (u, x) > €. Note that for x* € [{x;: f < a}] and A € R, we have x| < [|x™ + Ax; |
because A, 1-norms the subspace [{x; :B<a}]cByand x} L A,.

Let Ay ¢ Ay41 € X and B, € B,y € X™ be separable subspaces such that x, € Ayy1,
Xy € By1, and Ay4, Boog 1-norm each other.

Transfinite induction ensures that all steps can be constructed for & < w; .

Finally, if Dens(X) = Ry, as {x4:a < w;} is | - |-dense in B(X), clearly

X=J Ap Xy, = UA_aW* and x;”ﬁo for o - w;.

a<w; a<wy

2.2. Proposition. Let X be a Banach space and consider the following statements:
(i) (B(X**),w") is angelic.

(i) X* has the property (C) of Corson.

(ili) X* fails to have an uncountable basic sequence of type 7.

(iv) X** = Seq(X*™).

(v) X* is super-(P).
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(vi) X has the property (C) and fails to have a copy of &;.
Then always (i) = (ii) = (iii) = (iv) = (v) = (vi).

Proof. (i) = (ii) follows from the Pol characterization of property (C) (see [12, The-
orem 3.4])

(ii) = (iii). Suppose that in X* there exists an uncountable basic sequence B := {u,: a <
w; } of type €. We define Cg := co({us:f<a < wi}) VB < wy.

Claim 1. The family of convex closed sets {Cg : f < w;} has the countable intersection
property.

Indeed, given a countable subset F c [1, @), if « = sup F, then a < w; and @ # C, ©
mﬁe]-‘cﬁ-
Claim 2. Ng.o,,Cp = @.

Indeed, since {u, : @ < w;} is a basic sequence, then

g (e * B<a<wi}] = {0},

As Cg c [{uq:p < a < w}], we have gy, Cg c {0}. On the other hand, since {u, : o <
w;} is of type &, there exist z € X** and €y > 0 such that (z,ug) > € Vf < w;. Thus
(z,w) > €y Vw e Cg,and s0 0 ¢ Cg V3 < w;. Therefore Ng.,,, Cp = @.

Taking into account (ii), Claim 1, and Claim 2 we get a contradiction that proves the
implication (ii) = (iii).
(iii) = (iv). Let z € X**. By Lemma 2.1 there exist a closed separable subspace Y c X such
thatzeY" .On the other hand, X fails to have a copy of ¢; (otherwise we would find in X*
acopy of ¢;(¢), which contradicts (iii)). So Y fails to have a copy of ¢;. Identifying Y ** with
Y" , by Odell-Rosenthal Theorem [11] we obtain that there is a sequence {y,:n > 1} c Y
such that y, — zin (X**, w*). Hence z € Seq(X**).

(iv) = (v). See, for instance, Cor. 2.10 of [6].

(v) = (vi). First, “X™* is super-(P)” implies “X* is (P)” and this fact implies, by a result
of Haydon [8], that X fails to have a copy of ¢;. Let’s see that X € (C). Assume that X does
not have the property (C). By the characterlzatlon of property (C) (see [12]) there exist
a convex subset A ¢ B(X*) such that 0 € A" ,but0¢ 0" (D), for all countable subsets
Dc A Let

By :=|J{c0"" (D) : D c A countable}.

Obviously, 0 ¢ By. Moreover, it is clear that By is a convex | - ||-closed boundary of A
Thus X* is not super-(P), a contradiction which proves that X is (C). O
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Recall (see [3]) that a Hausdorff compact space K is said to be a Rosenthal compact
when K is homeomorphic to a compact subset of the space (B,(S), 7,) where (i) S is
a Polish space and B, (S) is the space of 1-Baire functions f:S — R; (ii) 7, is the poin-
twise convergence topology on S. Godefroy proved in [3, Theorem 13] that C(K) € (C)
whenever K is a Rosenthal compact.

2.3. Proposition. For every separable Banach space X the following are equivalent:
(i) (B(X**),w") is angelic.
() (B(X**),w") is a Rosenthal compact.
(ii) X* has the property (C) of Corson.
(i) C(B(X**),w™) has the property (C) of Corson.
(ili) X* fails to have an uncountable basic sequence of type 1.
(iv) X** =Seq(X**).
(v) X* is super-(P).
(vi) X fails to have a copy of €.
(vii) X* fails to have a copy of €(c).

Proof. (i) = (ii) = (iii) = (iv) = (v) = (vi) follow from Proposition 2.2.

(') = (i) follows from a result of Bourgain, Fremlin and Talagrand [1, 3F. Theorem].
(1) = (it") follows from [3, Theoreme 13].

(ii’) = (ii) is obvious.

(vi) = (i'). X being separable, (B(X™), w*) is a metrizable compact topological space, i.e.,
a Polish space. Since X** = Seq(X**) (by Odell-Rosenthal results [11]), all elements of
B(X**) are 1-Baire on (B(X™),w™). So (B(X**),w*) is a Rosenthal compact since it is
a compact subspace of the space of 1-Baire functions B;(B(X*), w*) endowed with the
pointwise convergence topology.

(iii) = (vii) is obvious.

(vii) = (vi). Assume that there exists an isomorphic embedding T:¢; — X. Then the
conjugate operator T*: £, - X* is a quotient mapping. It is well known that ¢;(¢) ¢ £.
Let (e;)i<c be the canonical basis of ¢;(¢) and (u;) ;<. ¢ X* abounded sequence such that
T*(u;) = e;. Then (u;) ;<. is a basic sequence equivalent to (e;);<. and so X* has a copy
of ¢;(¢), but this fact contradicts (vii). O
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3. The properties “X** = X,,” and “X** = Seq(X**)” are R;-determined
First, two auxiliary lemmas.

3.1. Lemma (Odell-Rosenthal [11]). Let X be a Banach space. The following are equivalent:
(i) X does not have a copy of ;;
(i) Seq(X**) = X,-

Proof. (i) = (ii). First, always Seq(X**) C Xy, Let z € X, Then there exists a separable
closed subspace Y c X such that z € Y . AsYis separable and fails to have a copy of
¢y, by a result of Odell-Rosenthal [11] there exists a sequence {y, : n > 1} c Y such that

Yn %z Thusze Seq(X**) and so Xy, = Seq(X**).

(ii) = (i). First observe that (¢;)x, = &;* = €%, (trivial) and also Seq(¢;*) = ¢, because ¢,
is weakly sequentially complete. Suppose that X contains a subspace Y isomorphic to ¢;.
So there exists u € Yy, N Seq(Y**) = Y** N\ Seq(Y**). If we consider Y** as a subspace
of X** (in fact, Y** = Y e X**), then u € Xy, (since u € Yy, C Xy,) but u ¢ Seq(X**)
because, ifu € Seq(X**), by [11, SubLemma, p. 378], we getu € Seq(Y**), a contradiction.
Thus X fails to have a copy of ¢;. O

3.2. Lemma. Let X be a Banach space, A ¢ X a countable subset, C c X a closed subspace,
and u € X** suchthatu € A" nC . Then there exists a separable subspace D c C such
thatueD" .

Proof. Let cog(A) denote the family of finite convex combinations of elements of A with
rational coefficients. Clearly, |cog(A)| < R. For each a € cog(A) we choose ¢, € C such
that | ¢, — a| < 2dist(a, C). It is enough to prove the following

Claim. u € {c,:a € cog(A)} .

Indeed, ife > 0 and x7', ..., x; € S(X™), we consider the following convex w*-neigh-
borhood of u

W(wsx),...,xy5€) = {zeX™ : (z-u,x})|<e:i=1...,p}
Let Ag:= AN W(u;x7,...,x,3€/2). Clearly, co(Ag) ¢ W(usx7,...,x,3€/2).
SubClaim. inf{||c —d|:ce C,d eco(Ag)} = inf{|c - d|:c e C,d € cog(Ag)} = 0.

First, clearly inf{|c —d|:c € C,d e c0(A¢)} = inf{|c —d|:c e C,d € cog(Ay)}
because c0(A) = cog(Ay). Suppose that inf{|c —d| : c € C,d € c0(Ag)} > 0. Then by
the Hahn-Banach separation theorem there exists x* € X* fulfilling

inf(x*,C) > sup(x*,co(AO)). (1)
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Thus (u,x*) > inf(x*, C) (because u € EW*) and also sup(x*,co(Ag)) = (u,x*) since

uedy cc” (Ag). By (1), weget (u,x*) > (u,x*), a contradiction which proves the
SubClaim.
Therefore, there exists a € cog(Ay) such that ¢, — a| < €/2. Hencefori =1,...,p

we have
1 1
[(ca =t x])| < [(ca—a,x})| + [(a—u,x})| < JETSE=e
In consequence, ¢, € W(u;x;,.. .,x;;e). Since W (u;x;, ... ,x;;e) is arbitrary, this fact
proves Claim and Lemma. O

3.3. Proposition. Let X be a Banach space. Then:

(i) The property X** = Xy, is Ry-determined, that is, X = Xy, iff every subspace Y c X
with Dens(Y') = &, satisfies Y** = Yy,.
(ii) If Dens(X) > ¥y, the following are equivalent:
(iil) X** = Seq(X*);
(ii.2) every subspace Y c X satisfies Y** = Seq(Y**);
(ii.3) every subspace Y c X with Dens(Y') = R, satisfies Y** = Seq(Y**).

Proof. (i). Assume that X** = Xy, and let Y c X be a closed subspace of X. Identifying
Y** withY" c X** and applying Lemma 3.2, we get Y** = Yy,.

Now suppose that X** # Xy,. In the sequel we construct a closed subspace Y ¢ X
with Dens(Y) = ®; such that Y** # Yy,. We repeat the construction of Lemma 2.1 and,
with the notation of this Lemma, we put Y = Utx<w1A_¢x’ which is a closed subspace of X
such that Dens(Y') = ®; and Yy, = UMwlA_,xw*. Now we construct a sequence {w,:1< a <
w1} ¢ B(X**) such that w, € B(A_aw*) and (e, xg) = (u,x5) > €0 > 0 for f < a < w;.
Put w; = 0, and for 2 < « < w; consider the operators

A, > X

w* i
s X*)(‘ [ B*

>

A=A,

>

where “—” means isometric inclusion and “«” canonical 1-quotient. The operator i* o

j =t y:B, = A} is an isometric inclusion because A, 1-norms B,. Whence j* o i** =
.

—-w . . . .
y*:A, > B isaw” —w”-continuous canonical 1-quotient. Thus

y*(B(A.")) = B(BY).
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Since j*(u) € B(B}), there exists w, € B(A_aw*) such that y*(w, ) = j*(u). Hence for all
B < a we have

(War x5) = (i (wa), j(x3)) = (77 0 7 (W), x5) = (¥ (wa), x5)
= (j*(u),xg) = (u,xg) > €.

Choose wo € MNgew, {Wy:f<y<wi} arbitrarily. Then

(i) wo € BY)" = B(Y*™);

e —_—Ww .
(i) wo ¢ Yx,, because wo ¢ Ay Va < wy, since (wp, x}) > € but x; 1A, Va < w;.

Therefore Y** # Yy, .
(ii). (ii.1) = (ii.2) follows from [11, SubLemma, p. 378]. (ii.2) = (ii.3) is obvious.

(ii.3) = (ii.1). First, X does not have a copy of ¢;. Indeed, otherwise there exists a subspace
Y c X with Dens(Y) = ®; containing a copy of ¢;. So, by Lemma 3.1, Seq(Y**) # Yy,
Y**, which contradicts (ii.3). Thus, every subspace Y c X fulfills Y, = Seq(Y**) by
Lemma 3.1. Moreover by (Bs) every subspace Y c X with Dens(Y) = R, satisfies Y** =
Yx,- By (i) we get X** = Xy, and finally X** = Seq(X**), since Xx, = Seq(X**) by
Lemma 3.1. O

4. The property “X** = X,,” implies “(B(X*),w*) € (CT)”

A topological space (X, 7) has countable tightness (in short, X € (CT)) iff for every subset
A c X and every u € A there exists a countable subset Ay c A such that u € Ag. If (X, 7)
is a topological vector space and C c X is a convex subset of X, we say that C has convex
countable tightness (in short, C € (CCT)) if for every subset A c C and every u € A there
exists a countable subset D c A such that u € co(D). Our aim in this Section is to prove
that if X is a Banach space the fact “X** = Xy, " implies “(B(X*),w*) is (CT)".

4.1. Lemma. Let X be a Banach space and A c B(X™) such that 0 € A" buto¢ D" for
every countable subset D c A. Then

(i) 0¢ A", where w is the weak topology of X*.
(ii) If F(A) = U{Ew* :Dc A,|D|<Rg}, F(A) is w-closed and 0 ¢ F(A).
(ili) There exist n >0 andv € X** such that |[{a € A:(v,a) > n}| > Ry

Proof. (i). First, 0 ¢ A", because every Banach space has countable tightness for the weak
topology (see [14, p. 229] for instance) and so the fact 0 € A" would imply that there exists
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a countable subset D c Awith0 e D".Since D" c D", wewould getthat0 e D", which
is not true.

(ii). Letu € mw. Since every Banach space has countable tightness for the weak topolo-
gy, there exists D c A with |D| < ®g such that u € D" c BW*, that is, u € F(A). Obviously,
0 ¢ F(A), by hypothesis.

(iii). Since 0 ¢ A", there exist n > 0 and vectors vy, ..., v, in X** such that A c U {x* €
X*:(vi,x*) > n}. A is uncountable by hypothesis, and so for some j € {1,...,n} we have
necessarily that [{a € A: (v, a) > n}| > ®;. Now pick v = v;. O

4.2.Lemma. Let X be a Banach space, Y c X a separable subspace, A ¢ B(X™) with0 € A"
and 0 ¢ F(A) := U{D" :D c A |D| < Ry}, and Aq c A such that |Ao| < Ro. Then there
exist D c AN Ag with |D| <RgandzeD" suchthatz Y = 0.

Proof. Let {y,:n >1} be a dense family in B(Y) and denote
F(AN Ag)==U{D" : Dc A Ag,|D| <R}
Consider the w*-open neighborhoods of 0

V. ::{x*eX* : |(x*,y,->|<%, i=1,...,n} Vnzl

AsO e A\AOW* c F(ANAg) ,then V, nF(ANAg) # @ Vn > 1. Choose z,, € V, n
F(AN Ag) Vn > 1. Clearly (z,,y;) — 0fori > 1, whence we get (z,,y) — 0 for
n—o00o n—oo

every y € Y. Let D, be a countable subset of A \ A, such that z,, € D," Vn>1,and
D := U5 D,. It is clear that |D| < &g and z,, € D" Vn > 1 Let zbeaw*limit point of
{zn:n >1}. Obviously,ze D" andz | Y =0. O

4.3. Lemma. Let X be a Banach space with Dens(X) = R,. The following are equivalent:
(i) (B(X*),w") ¢ (CT).
(ii) There exists in B(X™) a sequence { y%:a < w;} such that
(ii1) y, — 0in the w*-topology of X* when a - wy;
(ii.2) forevery B < w; wehave 0 ¢ {y*:a < ﬁ}w ;
(ii.3) there exist > 0 and v € X** such that |{a < wy: (v, y5) > n}| = Ry
Proof. (ii) = (i) is immediate by (ii.1) and (ii.2).

(i) = (ii). As (B(X™),w"*) is not (CT), there exists A ¢ B(X*) such that 0 € A" but
0¢ F(A) := U{EW* :D c A, |D| < Ro}.Let {xy: a < w} ¢ B(X) bea|-|-dense
family in B(X). In the sequel we construct sequences {Y, : & < w;}, {Dy & < w;} and
{ys:a < w} c B(X") such that
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(1) Y, is a separable closed subspace of X and x, € Y, c Yg for a < f < wy;
(2) {Dy:a < w;} is a family of countable pairwise disjoint subsets of A;
(3) y € D_aw* and y) L Y, for a < w;.

We use transfinite induction.

Step 1. Let Y} = [x;]. By Lemma 4.2, there exist D; ¢ A with |D;| < R and y; € EW* such
that y; L Y.

Step 2. Let Y, = [Y; U {x,}], which is separable. By Lemma 4.2 there exist D, ¢ A\ D,
with |D,| <R and y% € D, such that y% L Y.

Step a < w;. Assume that we have constructed the elements Y3, Dy and y; for f < a
fulfilling (1), (2) and (3). Let Y, = [{x4} U (Up<q Yp)], which is a separable subspace of X.
By Lemma 4.2 there exist Dy ¢ A N\ Up<y Dp with [D,| < Rg and y; € D, such that
Vo L Yo

We can carry out the construction for every a < w;.

By construction, it is clear that X = U,<y, Ya> ¥y

4

— 0 in the w*-topology of X* as

o — w; and
0¢ |J {y; : 0c<ﬁ} .
ﬁ<a)1
Finally, by Lemma 4.1, there exist # > 0 and v € B(X**) such that [{a < w;: (v, y}) >
i =R O

We say that a Banach space X is ®;-(CT) ifevery Y c X with Dens(Y) < R, satisfies
(B(Y*),w*) € (CT).
4.4. Proposition. Let X be a Banach space. The following are equivalent:
(i) (B(X*),w*) e (CT).
(i) X is ®;-(CT).
Hence the property (B(X™),w*) € (CT) is ®;-determined.

Proof. (i) = (ii) is obvious because the property (CT) passes over to compact quotient
spaces.

(i) = (i). Suppose that (B(X*),w*) is not (CT). Then Dens(X) > X; and without
loss of generality we may assume that there exists A ¢ B(X™) such that 0 € 2" but
0¢F(A):= U{EW+ :D c A, |D| < Rg}. From this fact we deduce a contradiction. Since
F(A) is a w-closed subset of X* (see Lemma 4.1) and 0 ¢ F(A), dist(0, F(A)) > ¢ for
some € > 0. Let {x, : @ < w1} ¢ B(X) be such that Dens([{x,:a < w;}]) = R;. Now we
construct sequences { Y, o < w1}, {Dy 0 < w1} and {x : & < w;} ¢ B(X*) such that
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(1) Y, is a separable closed subspace of X and x, € Y, c Yg for a < f < wy;
(2) {Dy:a < w;} is a family of countable pairwise disjoint subsets of A;
(3) x; € D_aw* and x); 1 Y, for o < wy;

(4) if i,: Y, — X is the canonical inclusion, then

0¢i%(UpaDp) =ii(UpaDp ) Va<owr.
We use transfinite induction as in Lemma 4.3.

Step 1. Let Y} = [x;]. By Lemma 4.2, there exist D; ¢ A with |D| < Rg and x;* € EW* such
that x;" L V).

Step 2. Since dist(0, D;" ) > €, there exists a finite family F, ¢ B(X) such that

D" «c {x* e X* : sup(x*, Fy) > ¢}.

Let Y, = [Y; U {x,} UF,], which is separable. Clearly, 0 ¢ EW* and also 0 ¢ i} (EW*)
because F, c Y,. By Lemma 4.2 there exist D, ¢ A \ D; with |D,| < Ry and x5 € D,"
such that x3 1 Y5.

Step & < w;. Assume that we have constructed the elements Yg, Dy and x; for f < «

fulfilling (1), (2), (3) and (4). Since dist(0, UﬁmDﬁw*) > ¢, there exists a finite family
F, c B(X) such that

*

U/kaDﬂW c {x* € X* : sup{(x”*, Fy) > e}.

Let Yo = [{xa} U (Up<a Yp) U Fy], which is a separable subspace of X. Note that 0 ¢
i (U/;mD/;)W because F, c Y,. By Lemma 4.2, there exist Dy ¢ A\ Up<y Dp with [D, <
Rg and x; € D_,xw* such that x; L Y,.

We can carry out the induction for every « < w;.

Let Y := Ugcy, Yo (which is a closed subspace of X with Dens(Y) = &), i: Y — X the
canonical inclusion and y} = i*(x}), « < w;. We have

(ii.1) y; " Oasa > wy in (B(Y™),w") because y; L Y,, Y := Ugcy, Yo, and Y3 € Y, for
B<a<ws
(ii.2) 0¢ {yz B < oc}w* for every a < w; because 0 ¢ i;(u/kaDﬁ)W*;
(ii.3) by Lemma 4.1, (ii.1) and (ii.2), there exist # > 0 and v € Y** such that [{a < w; :
AR HERE
By Lemma 4.3 we get (B(Y™*),w*) ¢ (CT), which is the contradiction we are looking for.
O
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4.5. Proposition. Let X be a Banach space such that X** = Xy,. Then (B(X*),w*) is (CT).

Proof. Suppose that (B(X*),w*) is not (CT). We will deduce a contradiction. By Propo-
sition 4.4 we may assume that Dens(X) = ®;. By Lemma 4.3, passing to a subsequence if
necessary, there exist a sequence {x}:a < w; } in B(X*), u € B(X**) and ¢, > 0 such that

(i.1) x, — 0in the w*-topology of X* as & — wy;
(i.2) (u,x3) > €0 Vo < wy.

Let D := {x,:n > 1} c X be a sequence such that u € D" .Then

[Lw) = U{a<w : (x5, x4) > €0}
nz1
In consequence, there exists m € N such that [{a < w; : (x},x,) > €}| = R, which
contradicts (i.1). Thus (B(X*),w*) is (CT). O

5. The equality X** = Seq(X**) and Martin’s axiom MA (w,)

In this Section we see that under Martin’s axiom MA (w; ), for a Banach space X the proper-
ty “X** = Seq(X**)” is equivalent to the property (B(X*),w*) € (CT) and the property
“X* is super-(P)” (or similar properties). We begin by introducing some notions (see [2]).

Let (P, <) be a partially ordered set (a “poset”). Two elements p, g € P are said to be
compatible if there exists r € P such that p < r and g < r. Otherwise, we say that p, g are
incompatible. We say that P satisfies the CCC (countable chain condition) property if for
every uncountable subset P} of P there exist at least two compatible elements p, g € P;.
A subset Q c P is said cofinal in P if for every p € P there exists g € Q such that p < g.
A subset R c P is said 1-directed (or up-directed) if for every pair of elements p,q € R
there exists r €¢ R such that p < rand g <r.

For each cardinal « let MA(«x) be the following statement:

“If (P, <) is a CCC poset and F a family of cofinal subsets of P with |F| < «, there
exists a f-directed subset R c P such that R intersects every element of F.

It is well known that MA(wy) is true but MA(c¢) is false (see [2]).
5.1. Definition. m is the minimum cardinal such that MA(m) is false.
Of course w; <m < c.

5.2. Definition. Martin’s axiom MA is the statement that m = ¢. In other words, if (P, <) is
a CCC poset and F a family of cofinal subsets in P with | F| < ¢, there exists a 1-directed
subset R c P such that R intersects every element of F.
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Clearly, (CH) = MA ((CH) = continuum hypothesis, that is, w; = ¢) and MA +
-(CH) < wj<m-=c.

5.3. Definition. Martin’s axiom MA(w;) is the statement that w; < m. In other words,
MA(w,) is the following statement: If (P,<) is a poset fulfilling CCC and {D, : « <
w; } is a family of cofinal subsets in P, there exists a 1-directed subset 7 in P such that
JINDy +FVa< w.

The following Definition is a topological version of Martin’s axiom MA(w;) (see [9,
3.4 Theorem]). Recall that a topological space X is CCC if every family of pairwise disjoint
open subsets of X is countable.

5.4. Definition. Martin’s axiom MA(w;) is the following statement: If K is a compact
Hausdorff CCC space and {D, : a < w;} is a family of dense open subsets of K, then
"Dy < w;} is dense in K.

5.5. Proposition (MA(w,)). Let X be a Banach space such that Dens(X) = ®;. The follo-
wing are equivalent:

(i) X** =Seq(X*™).
(i) X* is super-(P) and (B(X*),w*) € (CT).

Proof. The implication (i) = (ii) always holds, by Proposition 2.2 and Proposition 4.5.

(ii) = (i). We suppose that
X* is super-(P) and (B(X™),w") € (CT), but X** # Seq(X*") (*)

and deduce a contradiction. Since X* is super-(P), X fails to have a copy ¢, (see Proposi-
tion 2.2). In consequence, Seq(X**) = Xy, by Lemma 3.1 and Xy, # X** by (). Thus,
we can apply Lemma 2.1. So there exist ¢ > 0, u € S(X**), a monotone basic sequence
{x}1a < w} cS(X*)and separable closed subspaces {Ay: a < w; } of X such that

(@) AgcAgifa<B<w,and X =Ugcp, Ads

(b) x} L Ay Va < wy, whence x % 0asa— w1;

(c) (u,x})>e€0 Va < w.

Let T: X — £o(w;) be a continuous operator defined by T(x) = ((x,x))a<w,. By (b),
T(X) c €5, (w)(=elements of £, (w;) with countable support). Moreover,

supp(T(X)) :={a e w, : Ix e X(x}, x) #0} = w,.

Indeed, since |x}| = 1 Va < w;, there exists x € X such that (x,x) # 0. By the proof
of [7, Th. 4.46] (here the axiom MA (w,) is necessary), there exists an uncountable subset
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I' ¢ w; such that if we define T(x) := ({x},x))yer Vx € X, then T(X) is a non-separable
subspace of ¢(I'). Note that (u,x;) > €9 >0 Vy € T.

Claim. X* is not super-(P).

Indeed, consider the operator T: X — ¢o(T) such that T(x) = ({x, x))yer. Let B :=
{ey 1y € T'} be the canonical basis of £,(T') = ¢;(T') and K := B"". Observe that K is the
w*-compact subset K = {e, :y € I'} U {0} of (£;(T), w") such that 0 ¢ co(B). Moreover,
B is a boundary of K. Let H := T*(K) and B, := T*(B). Clearly, B is a boundary of
the w”-compact subset H and By = {x; : y € I'}. Since (u,x;) > € Vy € I, we have

y
(u,x*) > €9 Vx* € co(By). Thus 0 ¢ co(By) but 0 € H, and this implies that X* is not
super-(P).
Therefore we get a contradiction, which proves the implication (ii) = (i). O

5.6. Proposition (MA(w;)). For every Banach space X the following statements are equiva-
lent:

(i) X** =Seq(X*™).
(ii) X* is ultra-(P) and (B(X™*),w™*) € (CT).
(iil) X* is Ry-super-(P) and (B(X*),w*) € (CT).

Proof. (i) = (ii) follows from Proposition 3.3, Proposition 2.2 and Proposition 4.5. (ii) =
(iii) is obvious. Finally (iii) = (i) follows from Proposition 5.5 and the fact that the
property X** = Seq(X**) is ®;-determined, by Proposition 3.3. O
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