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Summing multinorms defined by Orlicz spaces
and symmetric sequence spaces

Oscar Blasco

Summary. We develop the notion of the (Xi, X;)-summing power-norm  Keywords

based on a Banach space E, where X; and X, are symmetric sequence spa-  multinorms;

ces. We study the particular case when X) and X; are Orlicz spaces £p and ~ (p,q)-summing norm;

2y respectively and analyze under which conditions the (@, ¥)-summing  Orlicz space;

power-norm becomes a multinorm. In the case when E isalso a symmetric ~ symmetric sequence space
sequence space L, we compute the precise value of || (1, -+, 8, )| {***2)
where (0 ) stands for the canonical basis of L, extending known results ~ MSC 2010

for the (p, q)-summing power-norm based on the space €, which corre-  46B45; 46E30; 46B20;
sponds to X; = €y, X = €y, and E = ¢,. 46B42
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1. Introduction

In the recent decade the use of multinormed spaces and their variations has been shown
to be very fruitful for several purposes. The theory of multinorms was introduced by
H. G. Dales and M. E. Polyakov in [7], and it is strongly connected to the theory of ab-
solutely summing operators and tensor norms, among other things (see [3-5, 18]). Re-
cently a new link to the theory of Banach lattices has also been found via the notion of
p-multinormed spaces (see [6]), extending the results previously considered by G. Pisier
and his student (see [7, Theorem 4.56] or [16]) in the case of multinorms. The concepts
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146 Oscar Blasco
such as “multinorm”, “dual multinorm” and “p-multinorm” are particular cases of a more
general notion called either a “special norm” (see [7,18]) or a “power-norm” (see [2,6]). We
shall use the latter terminology, and recall here the definition. A sequence (| - |, :n € N)
of norms defined on E", where (E, | - ||) is a normed space over the complex field C, is
called a power-norm based on E if | x|; = | x| for each x € E, and the axioms:

P [[(xeq1ys---sXo(m))n = [%]ns
(Pz) H(xl)~ s X O)Hn+l = ”x

(P3) |lax|, < (maxigicalati|) | x|

ns

are satisfied for each permutation o of the set {1,...,n},n e N,x = (x1,...,x,) € E",
and & = (ay,...,a,) € C", where ax = (a1x1, ..., apxp).
A power-norm based on E is said to be a multinorm whenever the extra axiom:

(M) “(xb e Xn—1>Xn> xn) Hn+1 = Han
is satisfied for all n e Nand x = (xq,...,x,) € E".

In the category of multinormed spaces, the maximum and the minimum multinorm
based on a normed space E, denoted by (|| - [™**:n € N) and (| - |™": n € N), respectively,
and defined by the property

el < el < x5 x€E" neN
for any multinorm (| - |, :# € N) based on E, were considered and studied in [4,7]. It is
easy to see that
min _ .
7" = max |
forany n € Nand x = (xy,...,x,) € E", and a description of |x|)** was found in [7,

Theorem 3.33]).
We recall that for each multinorm ((E”,

quence measuring the “rate of growth” of the multinorm (see [7, Definition 3.1]), defined

by

- |n):n € N) based on E, there exists a se-

@ (E) =sup{[x[, = |1 =+ = |xa] =1}

in other words, ‘/’H~Hn(E) is the norm of the identity operator from (E", | - |™") into
(E™ |- [ln)-

The two fundamental questions in the theory of multinormed spaces based on a con-
crete normed space E is the determination under which conditions | x|, ~ |x|™" for all
x € E" and n € N, and the calculation, or at least an estimation of ¢, (E) for particular
multinorms based on E.

In this paper we address these questions for the sequence Orlicz space E = € and
multinorms defined with (1, )-summing operators, which are motivated by the corre-
sponding results already known for £,-spaces and (1, p)-summing multinorms.
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We recall two basic power-norms to be considered and generalized in the sequel: the
so-called weak p-summing power-norm, denoted by u, ,(-) in [5,7,12], and the (p, q)-
-summing power-norm, first introduced in [7] for p < q and used later in [2] for 1< p, g <
o0, and denoted by ||- ff”q).

Let E be a normed space and let 1 < p,g < co. Foreachn € Nand x = (x,...,x,) €
E", we define the weak p-summing power-norm by

n 1/p
() =sop{ (S ) <2 a1 1) 0
in1

and the (p, q)-summing power-norm by

n 1/q
[« = Sup{(Zlmlj)Iq) t A e (E)" ppn(d) < 1}- #)
j=1

It is easy to see that for the dual space E* one has

n 1/p
o (A) = sup{(zlux,w) xeE|

x| :1}
for A= (A..., ) € (E¥)™.

An equivalent formulation of the weak p-summing power-norm is given by

n n , 1/p'
g (%) = | T (€ ) — E] = sup{Hszka : (Z Jexl? ) = 1}
k=1 k=1

(with the obvious modification for p = 1), where T stands for the operator Ty(z) =
Y k=1 ZkXk. Actually, the map x + Ty is an isometric linear isomorphism from (E", up )
onto B((C™ | - ), E).

Concerning the (p, g)-summing power-norm let us mention that in the case p < g
it is actually a multinorm and has been studied deeply (see [3, 5]). It was shown to be
connected to the theory of (g, p)-summing operators (see [8,10,12]) via the following key
result (see [5, Theorem 2.6]) which establishes that

2P = 70y (To E* = ¢o)

forn e Nandx = (x1,...,x,) € E", where T, stands for the adjoint of T.

Computing the precise value of ||x\|,(1p ) is rather difficult in general. For instance,

inthe case E = ¢, for1 <r < oo and 1< p, g < oo it is known that

1815 8,) |20 = nG= G0 )
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where (Jy ) stands for the canonical basis of ¢, and a* = max{a, 0}. This result was first
proved for p < g (see [5, Example 2.16]) and later extended with a different proof for all
values 1 < p, g < oo (see [2, Proposition 2.13]).

With the help of (p, g)-summing multinorms Dales and Polyakov (see [7, Theorem
3.33]) found that ||x|** = | x| () The characterization of those ( P> q)-summing multi-
norms which are equivalent to the minimum multinorm based on an ¢,-space was studied
in [5]. It was shown (see [5, Theorem 3.9] (or 3, Theorem 1.11] for a different proof) that
in the case E = £,,1 < r < oo, there exists C > 1 such that

| < 2] P9 < x| min (4)

foralln e Nand x = (x1,...,%,) € (£,)" ifandonlyif}l) - é > 1

In this paper we shall generalize (1) and (2) and introduce power-norms defined by
means of Orlicz sequence spaces or symmetric sequence spaces. We shall formulate the
analogues of (3) and (4) in this setting and obtain alternative proofs of the known results
for the (p, q)-summing power-norms.

As in the case of the (p, q)-summing power-norms one should expect a connection
with the theory of the (X;, X, )-summing operators, where X; and X, are symmetric sequ-
ence spaces (in particular, Orlicz spaces). We shall also show that the geometric properties
of the Banach space E actually plays a role in the equivalence appearing in (4). The reader
should be aware that the notions of the (X, X, )-summing operators with respect to sym-
metric sequence spaces have previously been used for other purposes (for instance see [9]
or [15]). Let us recall here the notion of the (®,1)-summing operator and the ®-Orlicz
property of a Banach space E introduced by L. Maligranda and M. Mastylo (see [15]).
Given the Orlicz function @ and two Banach spaces E and F, a bounded linear operator
T:E — F is called (®,1)-summing whenever (|Tx|) € € for any weakly summable

sequence (xi) € €' (E), where ¢}’ (E) stands for the space of sequences in E such that

(k) lev ey = sup 3| {xks A)| < o0.
[Agx<1 &
It is not difficult to see that T is (®, 1)-summing if and only if there exists a constant C > 0
such that

ST )] < c(i <D*(||Ak||))m,n<x>
k=1 k=1

forallm e N, x = (x1,...,%x,) € E",and A = (Ay,...,A,) € (E*)", where ®* is the
complementary function of ®. A Banach space E is said to satisfy the ®-Orlicz property
whenever the identity map Id: E — E is (®,1)-summing.

This paper contains four sections besides this introduction. In the first one we re-
call the basic definitions and results on Orlicz sequence spaces to be used in the rest of
the paper. In Section 3 we define the notion of the (®, ¥)-summing power-norm and
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study the connection between the spaces having the ®-Orlicz property and those satis-
fying the analogue of (4) for Orlicz functions. Section 4 is devoted to recalling some
facts on symmetric sequence spaces and studying the notion of the (X, X;)-summing
power-norm for symmetric sequence spaces X; and X,. Finally we present an extension
of (3) for (Xj, X, )-summing power-norms in the last section.

2. Preliminaries on Orlicz spaces

We shall say that ®:[0,00) — [0,00) is an Orlicz function whenever it is convex and
takes value zero only at zero (it is called a non-degenerated Orlicz function for instan-
ce in [14]). In particular @ is continuous, increasing, lim,_, . ®(t) = oo, and ®(t)/t is
non-decreasing. Hence

O(st) <s®(t), 0<s<Lt20

and
DO(s)+D(t) <D(s+t), s,t20.

We denote by @ the complementary function (also called the Young conjugate) of ®
defined by
O*(s) =sup{ts—D(t) : t 20}, s

WV

0.

In particular
st<O(t) + O (s), t,s20.

Observe that with this definition we allow ®*(s) = oo for some values of s (for instance
in the case ®(t) = t). We shall be interested only in the case when ®@* is also a (non-dege-
nerated) Orlicz function so we restrict ourselves to the class of Orlicz functions satisfying
O(t O(t

¥ - oo () _

and lim —= =0. (5)
t—0+ t

lim

t—o0

We shall denote by O the class of Orlicz functions satisfying (5). Every Orlicz function
®, being increasing and convex, has a non-negative and non-decreasing right derivative
¢(t) for every t > 0 and ®(t) = fot ¢(s)ds. For functions @ € O one has that ¢(0) = 0
and lim,_,o, ¢(t) = oo, and if y stands for the right-inverse of ¢, that is,

y(u) =sup{t : ¢(t)<u}, u>0,

which turns out to be right-continuous, non-decreasing with y(0) = 0 and y(u) > 0 for
u > 0, one obtains that ®*(s) = [, y(u)du for s > 0 and

sy(s) = (D(I//(S)) +@*(s), s>0.
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Recall that an Orlicz function @ is said to satisfy the A,-condition with constant C > 0

whenever
D(2t) < CO(t), t>0.

Since 2d(t) < ®(2t) for ¢ > 0 then the A,-condition implies C > 2.

If we assume that C = 2 we automatically have, by convexity, that ®(2t) = 20(¢) and
O(t+s) = O(t) + D(s). Hence @(ns) = n®(s) and O(L) = %t) foralln,meN,s,t>0
and, using that @ is continuous, we obtain that ®(¢) = t®(1) for ¢ > 0.

Therefore we have that @ satisfies the A,-condition with constant C = 2 if and only
if ®(t) = ®(1)t for t > 0.

2.1. Proposition. Let @ satisfy the A,-condition with constant C.
(i) If A> C then there exists y > 1 such that

t
O(yt) < AD (5) t>0.

(ii) If B =log, C > 1then
ud(t) < d(tu) < CuPO(t), ux1, t>0. (6)
CWPO(s) <D(sv) <v(s), 0<v<1,t>0. (7)

Proof. (i). If A > C? it suffices to take y = 2. Assuming C < A < C%,let 0 < 6 < 1such that
A=(1-6)C+6C*andsety=1+6>1 Now

O(yt) = d((1- 0)1 + 621) < (1- 0)D(1) + 6D(21) < AD (é)

(ii). Since u®(t) < @ (ut) for any u > 1and t > 0, selecting m € N so that 2" < u < 2™
and using the A,-condition, with C = 28 we have

O (ut) < C"O(t) < 2P"D(t) = 2PuP D (1).
This shows (6). Finally (7) follows from (6) with the change v = % and s = tu. O

For each Orlicz function @, we define £, as the space all sequences of complex num-
bers (zx) such that there exists p > 0 satisfying pq)(%) < o0, where

po((z1) = ) ©(|zl).
k=0
We equip the space £¢ with the Luxemburg norm
H(zk)H(LD = inf{p >0: qu((%k)) < 1}.

Note that pp ((2x)) < 1if and onlyif || (zx) |5 < 1.
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2.2. Notation. For eachn e Nand z = (2, ..., z,) € C", we write
n
po(2) = 3 0(Jzi).
k=1

2.3. Proposition. Let (E, | - ||) = (C,|-|) and let ® be an Orlicz function with ®(1) = 1.
For each n € Nand z = Y|_, z;.0x where (8 ) stands for the canonical basis of co, we write

L s t
€y 0(2) H];ZNqu)-

Then ((C", €% ) :n € N) is a power-norm based on C.

Proof. Note that £} ,(-) is a norm in C" for all n € N and that €] ,(2) = |z|/®7'(1) = |¢]
for z € C. Clearly p,,0(Z5(1)s -+ +>Z0(n)) = Pn,0(2) and pui10(21-..524,0) = puo(2),
for any z = (z,...,2,) and permutation o. Hence (P1) and (P2) hold. Now (P3) follows
using that @ is increasing since we have p, o(@z) < pno(Az) for A = maxjcxen ok
where az = (21,..., €2, ). This gives €% , (az) < AL (2) forany z, @ € C". O

We can equip the space £¢ with other equivalent norms, such as the Amemiya norm

Izl =inf{p >0+ ~(1+po((pz)) <1)
or the Orlicz norm
2013 = sup{|,§ o] pon (90)) < 1}.
Itis easy to see that | (zi)[[5 < |(z)§ < 20 (z)[l5 and (219 < (2114, Tt was

shown by H. Hudzik and L. Maligranda in [11] that actually | (zx)|$ = | (zx)[4-
It is elementary to see that

L
O*

o 0
> wize < [[ 20 | O)]
k=1

forany (zy) € € and (wy ) € £o+,and actually (¢g)* = £+ whenever @* is a finite-valued
function.
Using the Orlicz norm we can also define a power-norm based on C.

2.4. Proposition. Let (E, |- ||) = (C, |-|) and let ® € O such that ®*(1) = 1. Foreachn € N
andz = (z1,...,2z,) € C" we denote

€0 0(2) - sup{

n
szwk‘ D pnor (W) < 1}.
k=1

Then ((C", €3 ) : 1 € N) is a power-norm based on C.
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Proof. Note that €2 ; () isa norm in C" for all n € Nand €2, (z) = |2[(®*) (1) = |¢| for
z € C. Clearly, denoting z, = (z4(1), - - - > Z4(n)) for z € C" and permutation o, we have

E,?,q,(z,,) = sup{ Zza(k)wk| D pmar (W) < 1}
k=1

= sup{ szwa—l(k)‘ D pnor (W) < l}
k=1

= eg,(b(z)'

Hence (P1) holds.
Since py,0+ (W) < pui1,0t (W, wyi1) where (2,2,11) = (21, - ., Zu> Zns1) We have

€9 6((2,0)) = Sup{ szwk| : parnor (W, whi)) < 1}
P

= sup{

szwk| : pnor (W) < 1}
k=1
= gg,cb (2).

Hence (P2) holds.
Letz,a € C", A = maxj¢x<, |ak|- Then

n
tro(az) < S“P{Z|“kzkwk| e (W) < 1}
k=1

< Asup{Z|zkwk‘ D pno (W) < 1}
k=

1
= Asup{ szfk’ . pn,qy*(f) < 1}
k=1
= ALY o (2).
Hence (P3) holds and the proof is finished. O

Let us consider a notion that generalizes the concept of complementary function and
which will be useful for our purposes.

2.5. Definition. Let y, ® be Orlicz functions such that

im 20 _ im 200 _
}Ln;lo W -0 tlir(% v(t) =0. (H)

We define the complementary function of ® with respect to y by the formula

Dy(s) = sup{y/(ts) -O(¢t) s t> 0}.

and
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2.6. Remark. Assumption H implies that
0<Dy(s) <oo, 520
and
ew E e@.

Indeed, we have that for each s > 1 there exists ¢, > 1 so that
w(st) = d(£) < (st) - %CD(st) <0, txt.
Hence, using continuity of y and @,
Dy (s) = sup{y(ts) - D(t) : 0< t< L} < oo.

On the other hand, it is known (see [14, page 139]) that €,, € £¢ with continuous embed-
ding if and only if there exists Co, £y > 0 such that

q)(t) < C()I//(t), 0<t<ty. (8)
Since (8) follows from lim;_, o+ % =0, one gets £y, C L.
2.7. Proposition. Let O, y be Orlicz functions satisfying H. Then @, is an Orlicz function.

Proof. Denoting by ¥, for each ¢ > 0 the convex function ¥, (u) = y(tu) — ©(t), one gets
that @, (s) = sup,,, ¥¢(s) is convex. Clearly ®,,(0) = 0. From H there exists ty > 0 such
that that y(t) — ®(t) > 0 for 0 < t < t,. Since @, is increasing, it suffices to show that
®,(s) > 0 for s small enough. Let 0 < s < min{ty,1} and observe that

By (5) > Y(s) - D(1) > y(s) - B(s) > 0.
The proof is then complete. O

2.8. Example. Let1 < p < g < oo with % + % < land set y(t) = % and O(t) = %. Then

@, (t) = = where % = é +1

p
Indeed, it suffices to observe that

sPtP 11 sPt(s)?  t(s)?
DOy (s)=supd — - — : t20p=—2 7
9 =sup L5 of SN

_p
where #(s) is the solution of the equation s?t?~! = 17!, that s, #(s) = s?-1. Hence @, (s) =

igr,
r

2.9. Proposition. Let v, ® be Orlicz functions satisfying H such that y satisfies the A,-con-

dition with constant C and
.. D(2t)
inf > C.
>0 (D(t)

Then @, satisfies the A,-condition.
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Proof. Let A =inf %2:)) > C. We know from (i) in Proposition 2.1 that there exists y > 1

so that y(yt) < Ay(3) forall ¢ > 0. Then
1
Dy(s) > sup{t//(st) - Z(D(Zt) tt> 0}

1 s

= sup{Al//(zu) -O(u) :u> 0}

> %sup{l//(ysu) -O(u) :u> 0}
1

= Z(DV/(VS)'

Let m € N be such that 1 < y < 2//". Hence @y (25) < A" Dy (s) and then @, satisfies the
A,-condition with constant A™. O

2.10. Corollary. Let ® € O with

.. D(2t)
1tr>1g o) > 2. 9)

then ®* is an Orlicz function satisfying the A,-condition.

3. (®, ¥Y)-summing norms

3.1. Definition. Let (E, || - |) be a normed space and ® be an Orlicz function. For each
neNand A= (1y,...,1,) € (E*)" we define

‘ué‘,,n(k) = sup inf{p >0 : Zn:(l)(|<x, ﬁ>D < 1}

[l x]|=1 k=1 P

3.2. Remark. Of course we have

Hon (1) = sup{€y o ({x,4)) x| <1}, (10)
where (x,A) = ({x, A1),...,{x,A,)).

3.3. Definition. Let (E, | - |) be a normed space and let ® € O. For each n € N and
A=(A,...,A,) € (E*)" we define

Hon(A) = sup{ngkkkH’  pnor (2) < 1}.

3.4. Remark. Clearly we have

Hon(A) =sup{€ o ((x,)) : [x] <1}. (11)
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Hence
Uon(A) < g, () <2pg,(R).

Making use of Proposition 2.3 and Proposition 2.4 together with (10) and (11) we
arrive at the following result.

3.5. Proposition. If @ is an Orlicz function with ®(1) = 1 (respectively, ® € O with ®*(1) =
1) then the sequence ((E*)", u§ , () :n € N) (respectively, (E*)", u3 ,(-) : n € N)) defines
a power-norm based on E*.

Note that if ¢ is convex with ¢(0) = 0, for each z = (z1,...,2,) € C", 2,1, € C, and
|| + |B| < 1 one has that

Pritp(Z1s -5 Zno1, &2, BZn) < P,y (2), (12)
P (215 Zn1s &Zn + BZns1) < Pring(2s Zns1)- (13)
Using these estimates we can easily get the following facts.

3.6. Proposition. Let n € N, A = (Ay,...,A,) € (E*)", (A, dps1) € (E*)™, and (a, B) €
C? such that |a| + |B| = 1. Then

Pao,n (Ao Aot ddy + PAnsr) € ponr1(A, Apsr) (14)
#(D,n-kl(/lly e An—l: (X/\n) ﬁ/\n) < ,U(D,n(A) (15)

where po, , stands for either u  or uk .

Proof. The case ‘ué,m follows directly from (12) and (13). To see the case yg)n note that for
each p, ¢+ (2) <1land p,i1,0+ (W) <1, using (12) and (13) again, we have

H;lz_::zm\k +zp(ad, + /J’AM)H, < #8,%1(&%“),

and

<pg (D).

n-1
> widi + (Woa + w1 f)An)
k=1

These estimates give (14) and (15). O
3.7. Proposition. Let @, y be Orlicz functions satisfying H. Then
o,y n(ZA) <385 0 (2) 16, (1) (16)

and
by n(21) <365 o (2)pg,, (1) (17)
forallne N, A= (A, ..., ,) € (E*)", 2= (21,...,2,) € C" wherezA = (z1Ay, ..., z24Ay).
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Proof. Assume that ug (1) <land £}, .(2) <1 Since
uvw <Y (u) + O(v) + @y(w), u,v, w20

then for each x € E with |x| = 1and p,, 0, (w) <1we have that

3 wkzk(x,)tk)‘ <Py (2) + pro, (W) + pro((x,2)).
k=1

Therefore, using that p,, y+(z) <1and p, o({x,A)) < 1, we obtain EHO’(%)* ((x,2z1)) <3
for any || x| = 1. This gives (16).
A similar argument shows (17) and the proof is complete. O

3.8. Definition. Let (E,
eachn e Nand x = (xy,...,x,) € E" we define

- |) be a normed space, ® an Orlicz function, and ¥ € O. For

|#[5™" = sup{egy (%, 1))+ p,,(A) <1} (18)
where (x,A) = ((x1, A1) .. 5 (Xn> An)).
We write x| *) for @(t) = t? and || ("7 for ¥(¢) = 1.

Of course, to define | x|| (@)

sup{€, w((x,4)) : 4, (A) <1},
sup{€L y ((x,1)) + 43, (1) <1}

we might have chosen other possibilities such as

sup{€0 ({x, 1)) + 3., (1) <1}

all of them being equivalent.
Notice that the norm in (18) is given by

15 = sup{ 330,20 < e 2) <1, ) €1 19)
k=1

The next result is elementary but we include the proof for the sake of completeness.

3.9. Proposition. Let (E, | - |) be a Banach space, ® an Orlicz function, and ¥ € O with

¥*(1) = (1) = 1. Then the sequence (|| - H,(;D’\Y) :n € N) defines a power-norm based on E.
Proof. Foreachn e N, | - Hr(fb’\y) is a norm on E" and ||x\|f1q)’\y) coincides with the norm
of the operator T, from ((E*)", u§, ,,) into (C", €9 ) given by T, (1) = (x,A). Forn =1,
x € Eand A € E* we have

#oa () = A1/ (1) = AL IxlE™ = Il (2*) (@7 (1) = [x].
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Letx € E",a € C", 0 beapermutationof {1,..., n} and denote x5 = (X(1)s > Xg(n))-
Then

M=

|00 sup{
k

= sup{
k

|,

()] < e (2) <1, (1) <1}

1

NIE

(51020110 Ao 110)] ¢ P (2) <L, (A) € 1}

SL

= | x|

This shows (P1).
Now using that p,41,9+(2,0) = p,w+(2) and p,,w+(2) < pps1,wr (2, 2ns1) we have

M=

(x5, 0)| &0 = sup{

= sup{
k

= =]

<xk,2k1k>’ pnwe(2) <1, #é,nﬂ(l) < 1}

=~
I

1

M=

<xk>ZkAk>’ L pmw (2) <1 pg () < 1}

=0

This gives (P2).
Finally, denoting ax = (i, ..., a,x,), (P3) follows trivially since

x| () = sup{

> {@kxis zeAk) ‘ puwe(2) <1, pg (M) < 1}

< (max |ock|) sup{2| (xk> zkAg) | puw(2) <L pg ,(A) < 1}

1<k

< (maX |k ) SUP{

1<k

Z Xk EkAk) | puw () <L g, (1) < 1}
k=1

_ (0,¥
- (max ) 1

The proof is then complete. O

3.10. Proposition. Let E be a Banach space and let v, ® be Orlicz functions satisfying H.

Then

R D)%
[l < 3]l

foreachn e Nand x = (xy,...,x,) € E™.
Proof. Let A = (Ay,...,A;) € (E*)"and z = (z1,...,2,) € C" with p§ ,(1) < 1and
pny+(2) <1. Then, due to (16) we have

Uloyyen(ZA) < Uy yen(2h) <3,
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Hence
‘gzﬁxk»/\k)‘ < §|<xk,zkik)|
<l Dby ). (20)
<30,
The proof is complete using now (19). O

3.11. Proposition. Let (E, | - |) be a normed space and ¥ € O with ¥*(1) = 1. Then the

sequence (| - H(l ine N) defines a multinorm based on E.

Proof. Due to Proposition 3.9 we only need to check property (M). Givenx = (x1, ..., Xp—1,
Xp) € E" we shall show that

n-1

Y (ks 26k} + (s 2k + Znet k)| < ]S (20)
k=1

forall u{ (1) <land p1,9+(2) <
Given A € (E*)"*' and z e C"*! w1th iy (A) <land py1,9+(2) <1, we first select
a > 0 such that
W (a) = ¥ (Jzmal) + ¥* (2],

Hence denoting

and
- Z 1
Zn=a, Ap= —/1 hiaEy S
we have
n-1 n
Z(xk, Zk)tk> + <xn> ann + zn+1/1n+1 Z Xk> Zklk
k=1 =l

Notice that p,, g+ (2) = pus1,w+(2) <

Zn

yin(}tl, S

Therefore we obtain (20). O

Zn+1
A, + 2" )L,M)@.
(04

Recall from the introduction that the y-Orlicz property of a Banach space is equiva-
lent to the existence of a constant C > 0 such that

( ) < Cptia(x)

for any x € E".
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3.12. Theorem. Let @ € O and let E be a Banach space. The following statements are equ-
ivalent:

(i) E* has the ®-Orlicz property.
(ii) There exists C > 1 such that

[ < x5 < ]

forany x = (x1,...,x,) € E".

Proof. (i) = (ii). Let x € E" with max;¢x¢, [xx]| = 1, and let A € (E*)" with py ,(1) < 1.
Hence

ro((x.4)) <o (M- 2] < C.

Then |x|{"®) < C|x|™". Since the inequality |x|™" < [x]{"® holds for any power-
-norm, the implication is complete.

(i) = (i). Let A = (A1,..., A,) € (E*)" with yy,,(A) < 1. For each € > 0, select xy € E with
[xk| =1for1< k <mand (1-¢)|Ax|” < (xk, Ax) < |Ak|’- Hence, by the assumption, we

obtain

Gro(@=8) ', (1= &) Aa]") < C.
Therefore €% o (([M1]s- .., [ Aa])) < & Finally, taking limits as ¢ - 0 the ®-Orlicz pro-
perty of E* is shown. O

3.13. Corollary. Let E = £ where @ € O satisfies the A,-condition and ®* (\/t) is concave,
and let ¥ be an Orlicz function such that €, € €y with continuous embedding. Then there
exists C > 1 such that

i < x| %) < ) min (21)

forany x = (x1,...,x,) € (€o)".

Proof. Recall that €¢+ = (€¢)*, and ®*(1/t) being concave implies that £¢+ has cotype 2
(see [13]), and in particular

" 1/2
(z ||Ak||%p*) < Cunn(1).
k=1
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for each A € (£¢+)". Let x € (£¢)" and A € (£¢+)" and use the following estimates

v ({2, 1)) < w(lalol Mo [xallo|An] o)

L
< (max Lxeo) ek v (1 o)

%> os | An]

. 1/2
< Com nlo) (3 Il
< CoCi max [xio )pr.n (A).

Hence we obtain (21) from Theorem 3.12. O

Let M(€o,¢,) denote the space of pointwise multipliers between two Orlicz spa-
ces, i.e.

M(€o,y) = {(Zk)keN P (wrzk) € €,V (wi) € €®}
and

H(Zk)HM(é’m,&,,) = SuP{H(Wka)kHeW S (wi) e € 1}-
3.14. Lemma. Let @, y be Orlicz functions satisfying H. Then
by, € M(Lo,8y)
with continuous embedding.
Proof. Let n € N, z € C" with p, ¢,(z) < 1. We shall see that if p, o(w) < 1 then
pny(32w) <1where zw = (zjwy, ..., 2,W, ). Indeed, since y(ts) < (1) + Dy (s),
1 1 1 1 1
Pn,v/(zzw) < Pn,CD(EZ) + Pn,cDW(EW) < EPn,cD(Z) + EPn,%(W) <L
This shows that [|(zk) | mes.e,) < 4l (26) ] eo, - 0
We now borrow a result from [15].

3.15. Lemma (see [15, Theorem 2.3]). Let @ be a super-multiplicative Orlicz function such
that t - ®(:\/t) is convex. Then the space £¢, has the ®-Orlicz property.

3.16. Theorem. Let ®,y € O satisfying H with ®(1) = 1, ®(\/t) convex, and ®(ts) >
O(t)D(s) for t,s > 0. Then

1,
xS < Ceh g, (Ixi|oss o [xallor ) (22)

forany x = (x1,...,x,) € (Lo+)".
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Proof. Let us first show that @ satisfies (9). Since ®(2t) > ®(2)d(¢) it suffices to see
that ®(2) > 2. This follows using that ®(2) > 2®(/2) > 2®(1) = 2. Hence from Co-
rollary 2.10 we conclude that @* satisfies the A,-condition and, in particular, we have
2o = (€o+)*. On the other hand Lemma 3.15 gives that € has the ®-Orlicz property.
Hence for each A € (€4 )" we have

o (IMillos- s [Aallo) < Caan (D). (23)

Therefore, combining Lemma 3.14 and (23) we have
try((x1) <€y (Iaflo- 4
|(1xilos -

<Clyo, (Il

%0 [An]0)
L
nttensn oo (Il

O* ),“l,n (A)

This gives (22). O

(ORI

IN

/\n”Q))

Xn H(D*)

(D"')'--)Hxnl

The behaviour at infinity of ¢}'**(E), which stands for the “rate of growth” of the
maximum multinorm, has been carefully analyzed in [7]. From (22) we obtain upper esti-
mates for the “rate of growth” ¢, (E) whenever E = £y is an Orlicz sequence space with

certain properties and the multinorm |- ||, = | - | ("%) for another Orlicz function adapted
to V.

3.17. Corollary. Let @,y € O satisfying H with ®(1) = 1, ®(\/t) convex, and ®(ts) >
D(1)D(s) for t,s > 0. Then ¢ v (Lo < C((@w)_l(%))_l.
In particular, for 1< p, q < oo and q > max{2, p} we obtain ¢ . (£q') < CnPla,

4. Summing power-norms on symmetric sequence spaces
Orlicz spaces are particular cases of the so-called symmetric sequence spaces. Recall that
a symmetric sequence space (£, | - |) is a Banach space of sequences in CN such that

(A1) If (zx) € € and |wi| < |zx| for all k € N, then (wy) € £and ||(wi)| < ||(zx) |-
(A2) If (zx) € and 0: N — N is a permutation, then (z,(x)) € €and ||(z,(x))| = [[(z«)]|-
In particular, any non-trivial symmetric sequence space ¢ satisfies

(1) € € ¢ c £ with continuity.

(2) O € tforall kand |8k | = |6, forall j € N, where 8 (i) = 8y; for any k, i € N.

We say that a symmetric sequence space is maximal (see [12,14]) whenever, denoting
Pu((2zk)) = Xg=1 2k0k = (zk)}_,» it satisfies
(A3) [[(zi)[ = sup, e |1Pn((26))]-
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As usual we denote by ¢ the associated sequence space given by

¢ = {(wk) P |ekwi] < 00 V (z¢) € E}
K

with the norm ||(wy) " = sup{ Xy [zxwi]: [ (zi) | = 1.
The connection between power-norms and maximal symmetric sequence spaces is
due to the following observation which follows from both definitions.

4.1. Proposition. Let L, be a norm on C" for each n € N. Then ((C",L,) : n € N) is
a power-norm based on C if and only if

¢ = {(zk) ssupLy(zy,...,2,) < oo}
neN

is a maximal symmetric sequence space with ||| = 1.

A way to generate examples of symmetric sequence spaces is the use of “pointwise
multipliers”. Let ¢, £ be symmetric sequence spaces. We define

M(f, E) = {(Zk)keN : (Wka) € {7 V(Wk) € f}

and
”(Zk)HM(e,é) = SuP{H(Wka)kHé Flwr)lle < 1}-

It is elementary to see that M (£, £) is also a symmetric sequence space. In the case
C=10={(zx): 252, |zk| < 0o} one has M(¢,¢,) = €.
A simple consequence of Holder’s inequality gives, for1 < p, q < 00,1/s = (1/g-1/p)*
and a* = max{a, 0}
M(€,,84) = ¢. (24)

Recall that the so-called “fundamental function” associated to a given symmetric se-
quence space (¢, | - |) is defined by

oot = [335]

We shall use the notation ¢, (1) = ¢ v(, 7 (1) for the fundamental function of the space
of multipliers between two symmetric sequence spaces £ and ?, that is,

$e.e(n) = sup{(we)izilg = | (wi)iaalle <1}

In particular, for £ = £, and £ = £,,1< p, q < oo, one has that

(pr(n) = nl/p) ¢€p,€q(”) = n(l/q—l/p)Jr.
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It is known (see [14, page 118]) that for symmetric sequence spaces
pe(n)pe(n)=n, neN.
In particular, for any Orlicz function @ € O the fundamental function of (£q, || - [5)

(respectively, (£o+, | - [ Q. ) is given by

Peo(n) = ®+(_1) (respectively, Pe,. (1) = nqp—l(%))‘

Throughout this section (¢, | - |¢) stands for a maximal symmetric sequence space
with |81, =1, ¢ stands for its associate space, and we use the notation

@) = | 3 zediler Li(2) = sup{Z 2]+ Lo(w) < 1}.
k=1

k=1
Let us define the following sequence of norms on E”.

4.2. Definition. Let (E, | - |) be a normed space and ¢ a maximal symmetric sequence
space. For x = (xi,...,x,) € E" we define

en(x) = sup{Ly((x1,A), s (s A)) = A e E¥, 2] <1}
It is easy to check that for the dual space E* and A = (A,...,4,) € (E*)" one has

pen(A) = sup{Ln((x,/h),...,(x,)tn)) x| < 1}.

In the case E = £, for a given maximal symmetric sequence space £, and a particular
choice Ay = zx 0y € E* forz = (z1,...,2,) € C" we observe that

pen(z101,...,2,0,) = ||ZHM(E,€)- (25)

In particular

pen (0105 0n) = ¢40(n) = by o (n).
It is also elementary to show that for £ € £ and x € £ for k = 1,..., n, one has
ten (X155 %) < ¢é,e(”).”é,n(xl’ s Xn),

In particular for1< p< g < o0

1 I
lbl) (xl""’x)gnl/s(u ,n(xb---)x )’ -—=\--"—] .
pn n q n s (p q)
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4.3. Proposition. Let E and € be a normed space and a maximal symmetric sequence space
with L1 (81) = 1respectively. Then the sequence (pe,,(-) : n € N) defines a power-norm based
on E*. Moreover, for any maximal symmetric sequence space E = £ one has

Hen(81) < min{Hf||M(é,e)/4é,n(/1)’ in(f)#m(é,e),n(/\)} (26)

foralln e N, A = (Ay,...,A,) € (EX )" and & = (&,,...,¢,) € C" where EA = (§Ay,...,
Euln).

Proof. 1t is straightforward that the sequence (p¢ ,(-) : n € N) defines a power-norm
basedon E*. Letn e N,A = (Ay,...,A,) € (E*)",and & = (&,...,&,) € C". Then

pen(81) = sup{Ly(&(x, ), Eu(x, An)) + ] = 1}
<&l pcaey sup{Ln ({0 M)y oo (2, A0)) = %] = 1}
= HfHM(E,e)P‘E,n(A)-

Similarly, changing the roles between & and (x, ;) one gets the other estimate. This
shows (26). O

4.4. Definition. Let £ and £ be maximal symmetric sequence spaces and let us write

L,((z15...524)) = HkZ:Zk(SkHZ and I:n((zl,...,zn)) = HkZ:zk(Sk 7 neN.
Forn e Nand x = (xi,...,x,) € E" we define
%559 = sup{ Lo ({61, 1) (s M)+ pren(A) <1
It is elementary to check that | (xy,...,x,) ||£,€’é) is given by the infimum of the con-

stants C satisfying

> Wil M| < CLL (W) pew(R).
k=1

4.5. Proposition. Let E be a normed space and let € and ¢ be maximal symmetric sequence
spaces with Ly (&) = L1(8,) = 1. Then the sequence (|| - ||E1e,e) :n € N) defines a power-norm
based on E satisfying that

[0 < e ) @7)

forallneN, x = (x,...,x,) € E".
In particular, for 1 < p,g < oo and 1/s = (1/p —1/q)*

s l,s'
29 < x| (28)

forallneN, x = (x,...,x,) € E".
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Proof. Ttis straightforward that the sequence (| - || ,(f’é) :n € N) defines a power-norm. Let
neN,xeE", Ae(E*)", and set (x,A) = ({x1, A1), ..., (xn,A,)) € C". Clearly one has

H("UA)HM(Z,Z) = Sup{Ln(<x1’A1W1)’ o (X Aawy)) ]:n(w) < 1}

= sup{z (ks Ak ywize| = L (2) <1, L,(w) < 1}
k=1

=sup{ L, ({x1, lz1)> .., (X, Auzu)) : L, (2) <1}
< %80 sup{p n(2A) : Ly (2) <1}
< xS e (1)

where the last inequality follows from the estimate y; ,(z1) < L}, (2)t¢,»(A). Finally, ta-
king € = £ and £ = ¢°, one has M(¢, £) = £7 and (28) follows from (27). O

5. Computing the fundamental function

Throughout this section X; and X, will stand for maximal symmetric sequence spaces
with ||61]x, = [d1]x, = 1, and E will be also a maximal symmetric sequence space L
with |8,z = 1. Our aim is to compute ||(J;,...,8,)] (X1%2) A in the previous section we
denote by L,, and L, the norms of X; and X, restricted to C", respectively.

5.1. Proposition. Let x = (x1,...,%,) € L" with x; = 372, x;,;8; € L for j € {1,...,n}.
Then
Ln(xl,l, ce ,xn,n) < HXH,(le’Xz)(/)L,Xl(H).

In particular

(X1,X2) z(”)
|81 8 > h (29)

Proof. Take Ay = &y € L* = L' for all k and notice that
xin (5.5 0) = SUP{HZZk‘SkHL, t Ly(2) < 1} = ¢xp,1r(n) = ¢r.x,(n).
k=1

Therefore . . X
(B P ZLn(<x1,m&),...,(xn,mén)).

Hence
En(xitseeordtnn) < 2] 61 5, (n).

In particular, when applied to x; = ;, we obtain (29). O
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5.2. Lemma. Let A = (Ay,...,A,) € (L')" with Aj = Y72, 1;,8; € L' for j € {1,...,n}.
Then
,qu,n(/\l,lals cees An,nén) < ‘”Xl,n()‘)'

Proof. For eachy = (y1,...,y,) € (L")", as in the introduction, we use the notation
_____ yn) (2) = X1 zkyx for the operator from (C", | - [ x7) into L'. We shall write S, =
P, T, that is,

Sy(z) = (Z ZkVkds - z Zk)/k,n)-
k=1 k=1

Clearly we have

txn(AL101s -5 A 0n) = [1S(a160,. A 60) (@)~ (€ )

and [y cen, 4 )~ 1) <A Tylen -1 = #xin (9)-
Foreach je {1,...,n} and py = (1-268y ;)0 for k € {1,...,n} we denote by A; the

operator S, .,y thatis to say,

.....

AJ(Z) = T(51 ’’’’’ —8;,8)415m s (gn)(Z) = (Zl, e Zj1 72 Tl e e ,Zn).

Obviously HAj H((C"»H'”x;)—’(C")H'”x{) = HAJ-||((Cn,||AHL,)_,(C»1,||AHL,) =1forall je{1,...,n}.
lx;) = (T |-

Now for each j € {1,...,n} and each bounded operator T: (C", L)

we define )
It is straightforward to see that for each j € {I,...,n} and y € (L")" we have that A;S, =
SGP ) where

),I(CJ') - Zyk)iéi fork+j and V§j) =7,i0;.

i%j
In particular
1
ASy = E(S/\ T AISIAL) = (018057, A )0y M b))
Repeating the procedure we obtain
SMadisehundn) = BnAu-1-A18).
Hence, since HA]’T”((Cn’H,HX{)‘)((CW’H.”L,) <7 (C ) (€, 1) WE conclude that
ﬂXl,n(/\l,lals ) )Ln,n(Sn) = HAnAn—l"'AISl H((C",X{)—)((C",L’)
< Talleenxpy-rr
= nquﬂ(/l)'

The proof is now complete. O
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5.3. Theorem. Let Xy, X,, and L be maximal symmetric sequence spaces with | 6| x, =
[91lx, = [81][1 = 1. Then
X1,Xz
[(z101,.., 22 8,) [ S = Izl Atertcexi).xs) (30)
forallz = (z,...,z,) € C".
In particular, for L = €, and 1< p,q < oo
1(81, ..., 8,) HglP»q) - n(W/a=Q/p=1/r)")* (31)

Proof. Due to Lemma 5.2,

12181, - . 208,) |5 =
= sup{in((zlél,ll), ceos{Zn0ms An)) + ux, n(A) < l}
= sup{ Ly (2101, w161)> - . > (2u 8 W 0n)) © pix,,n (w101, ..., wn8n)) <1}
=sup{L,(2w) : pux,n(Wi81,...,ws0,)) <1}
where zw = (z1wy, ..., Z,W,).
From (25) we know that px, ,(w101,...,w48,)) = |[w| rq(z,x,) and therefore we ob-
tain (30).
To see (31), we use (30) and (24) to get

[(B1s- s 8IS = s en () = nWa)"

forl/s=(1/p—-1/r)* O

5.4. Corollary. Let E = L and X, be maximal symmetric sequence spaces. Then

181 8) 1S5 = s 1 ().
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