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Summing multinorms defined by Orlicz spaces

and symmetric sequence spaces

Oscar Blasco

Summary.We develop the notion of the (X1 , X2)-summing power-norm

based on a Banach space E, where X1 and X2 are symmetric sequence spa-

ces.We study the particular case when X1 and X2 are Orlicz spaces ℓΦ and

ℓΨ respectively and analyze under which conditions the (Φ, Ψ)-summing

power-normbecomes amultinorm. In the casewhen E is also a symmetric

sequence space L, we compute the precise value of ∥(δ1 ,⋯, δn)∥
(X1 ,X2)
n

where (δk) stands for the canonical basis of L, extending known results

for the (p, q)-summing power-norm based on the space ℓr which corre-

sponds to X1 = ℓp , X2 = ℓq , and E = ℓr .
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1. Introduction

In the recent decade the use of multinormed spaces and their variations has been shown

to be very fruitful for several purposes. Fe theory of multinorms was introduced by

H.G. Dales and M. E. Polyakov in [7], and it is strongly connected to the theory of ab-

solutely summing operators and tensor norms, among other things (see [3–5, 18]). Re-

cently a new link to the theory of Banach lattices has also been found via the notion of

p-multinormed spaces (see [6]), extending the results previously considered by G. Pisier

and his student (see [7, Feorem 4.56] or [16]) in the case of multinorms. Fe concepts
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such as “multinorm”, “dual multinorm” and “p-multinorm” are particular cases of a more

general notion called either a “special norm” (see [7,18]) or a “power-norm” (see [2,6]).We

shall use the latter terminology, and recall here the definition. A sequence (∥ ⋅ ∥n ∶ n ∈ N)
of norms defined on E n

, where (E , ∥ ⋅ ∥) is a normed space over the complex field C, is
called a power-norm based on E if ∥x∥1 = ∥x∥ for each x ∈ E, and the axioms:

(P1) ∥(xσ(1), . . . , xσ(n))∥n = ∥x∥n ;
(P2) ∥(x1 , . . . , xn , 0)∥n+1 = ∥x∥n ;
(P3) ∥αx∥n ⩽ (max1⩽i⩽n ∣α i ∣)∥x∥n
are satisfied for each permutation σ of the set {1, . . . , n}, n ∈ N, x = (x1 , . . . , xn) ∈ E n

,

and α = (α1 , . . . , αn) ∈ Cn
, where αx = (α1x1 , . . . , αnxn).

A power-norm based on E is said to be amultinorm whenever the extra axiom:

(M) ∥(x1 , . . . , xn−1 , xn , xn)∥n+1 = ∥x∥n
is satisfied for all n ∈ N and x = (x1 , . . . , xn) ∈ E n

.

In the category of multinormed spaces, the maximum and the minimum multinorm

based on a normed space E, denoted by (∥ ⋅ ∥maxn ∶ n ∈ N) and (∥ ⋅ ∥min

n ∶ n ∈ N), respectively,
and defined by the property

∥x∥min

n ⩽ ∥x∥n ⩽ ∥x∥maxn , x ∈ E n
, n ∈ N

for any multinorm (∥ ⋅ ∥n ∶ n ∈ N) based on E, were considered and studied in [4, 7]. It is

easy to see that

∥x∥min

n = max
1⩽i⩽n

∥x i∥

for any n ∈ N and x = (x1 , . . . , xn) ∈ E n
, and a description of ∥x∥maxn was found in [7,

Feorem 3.33]).

We recall that for each multinorm ((En
, ∥ ⋅ ∥n) ∶ n ∈ N) based on E, there exists a se-

quence measuring the “rate of growth” of the multinorm (see [7, Definition 3.1]), defined

by

φ∥⋅∥n(E) = sup{∥x∥n ∶ ∥x1∥ = ⋅ ⋅ ⋅ = ∥xn∥ = 1};

in other words, φ∥⋅∥n(E) is the norm of the identity operator from (En
, ∥ ⋅ ∥min

n ) into

(En
, ∥ ⋅ ∥n).
Fe two fundamental questions in the theory of multinormed spaces based on a con-

crete normed space E is the determination under which conditions ∥x∥n ≈ ∥x∥min

n for all

x ∈ E n
and n ∈ N, and the calculation, or at least an estimation of φ∥⋅∥n(E) for particular

multinorms based on E.

In this paper we address these questions for the sequence Orlicz space E = ℓΦ and

multinorms defined with (1,ψ)-summing operators, which are motivated by the corre-

sponding results already known for ℓp-spaces and (1, p)-summing multinorms.
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We recall two basic power-norms to be considered and generalized in the sequel: the

so-called weak p-summing power-norm, denoted by µp ,n(⋅) in [5, 7, 12], and the (p, q)-
-summing power-norm, first introduced in [7] for p ⩽ q and used later in [2] for 1 ⩽ p, q ⩽
∞, and denoted by ∥⋅∥(p ,q)n .

Let E be a normed space and let 1 ⩽ p, q < ∞. For each n ∈ N and x = (x1 , . . . , xn) ∈
E n
, we define the weak p-summing power-norm by

µp ,n(x) = sup{(
n
∑
i=1

∣⟨x i , λ⟩∣p)
1/p

∶ λ ∈ E∗, ∥λ∥ = 1} (1)

and the (p, q)-summing power-norm by

∥x∥(p ,q)n = sup{(
n
∑
j=1

∣⟨x j , λ j⟩∣q)
1/q

∶ λ ∈ (E∗)n , µp ,n(λ) ⩽ 1}. (2)

It is easy to see that for the dual space E∗ one has

µp ,n(λ) = sup{(
n
∑
i=1

∣⟨x , λ j⟩∣p)
1/p

∶ x ∈ E , ∥x∥ = 1}

for λ = (λ1 , . . . , λn) ∈ (E∗)n .
An equivalent formulation of the weak p-summing power-norm is given by

µp ,n(x) = ∥Tx ∶ (Cn
, ∥ ⋅ ∥p′) → E∥ = sup{∥

n
∑
k=1
zkxk∥ ∶ (

n
∑
k=1

∣zk ∣p
′

)
1/p′

= 1}

(with the obvious modification for p = 1), where Tx stands for the operator Tx(z) =
∑n

k=1 zkxk . Actually, the map x ↦ Tx is an isometric linear isomorphism from (En
, µp ,n)

onto B((Cn
, ∥ ⋅ ∥p′), E).

Concerning the (p, q)-summing power-norm let us mention that in the case p ⩽ q

it is actually a multinorm and has been studied deeply (see [3, 5]). It was shown to be

connected to the theory of (q, p)-summing operators (see [8, 10, 12]) via the following key

result (see [5, Feorem 2.6]) which establishes that

∥x∥(p ,q)n = πq ,p(T ′
x
∶ E∗ → c 0)

for n ∈ N and x = (x1 , . . . , xn) ∈ E n
, where T ′

x
stands for the adjoint of Tx .

Computing the precise value of ∥x∥(p ,q)n is rather diÚcult in general. For instance,

in the case E = ℓr for 1 ⩽ r ⩽ ∞ and 1 ⩽ p, q < ∞ it is known that

∥(δ1 , . . . , δn)∥(p ,q)n = n
( 1

q−(
1

p−
1

r )
+)+
, (3)
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where (δk) stands for the canonical basis of ℓr and a
+ = max{a, 0}. Fis result was first

proved for p ⩽ q (see [5, Example 2.16]) and later extended with a di×erent proof for all

values 1 ⩽ p, q ⩽ ∞ (see [2, Proposition 2.13]).

With the help of (p, q)-summing multinorms Dales and Polyakov (see [7, Feorem

3.33]) found that ∥x∥maxn = ∥x∥(1,1)n . Fe characterization of those (p, q)-summing multi-

normswhich are equivalent to theminimummultinorm based on an ℓr-space was studied

in [5]. It was shown (see [5, Feorem 3.9] (or [3, Feorem 1.11] for a di×erent proof) that

in the case E = ℓr , 1 ⩽ r < ∞, there exists C ⩾ 1 such that

∥x∥min

n ⩽ ∥x∥(p ,q)n ⩽ C∥x∥min

n (4)

for all n ∈ N and x = (x1 , . . . , xn) ∈ (ℓr)n if and only if 1

p −
1

q ⩾
1

r .

In this paper we shall generalize (1) and (2) and introduce power-norms defined by

means of Orlicz sequence spaces or symmetric sequence spaces. We shall formulate the

analogues of (3) and (4) in this setting and obtain alternative proofs of the known results

for the (p, q)-summing power-norms.

As in the case of the (p, q)-summing power-norms one should expect a connection

with the theory of the (X1 , X2)-summing operators, where X1 and X2 are symmetric sequ-

ence spaces (in particular, Orlicz spaces).We shall also show that the geometric properties

of the Banach space E actually plays a role in the equivalence appearing in (4).Fe reader

should be aware that the notions of the (X1 , X2)-summing operators with respect to sym-

metric sequence spaces have previously been used for other purposes (for instance see [9]

or [15]). Let us recall here the notion of the (Φ, 1)-summing operator and the Φ-Orlicz

property of a Banach space E introduced by L. Maligranda and M. Mastyło (see [15]).

Given the Orlicz function Φ and two Banach spaces E and F, a bounded linear operator

T ∶ E → F is called (Φ, 1)-summing whenever (∥Txk∥) ∈ ℓΦ for any weakly summable

sequence (xk) ∈ ℓw1 (E), where ℓw1 (E) stands for the space of sequences in E such that

∥(xk)∥ℓw
1
(E) = sup

∥λ∥E∗⩽1
∑
k
∣⟨xk , λ⟩∣ < ∞.

It is not diÚcult to see that T is (Φ, 1)-summing if and only if there exists a constant C > 0

such that
n
∑
k=1

∣⟨Txk , λk⟩∣ ⩽ C(
n
∑
k=1

Φ
∗(∥λk∥))µ1,n(x)

for all n ∈ N, x = (x1 , . . . , xn) ∈ En
, and λ = (λ1 , . . . , λn) ∈ (E∗)n , where Φ∗

is the

complementary function of Φ. A Banach space E is said to satisfy the Φ-Orlicz property

whenever the identity map Id∶ E → E is (Φ, 1)-summing.

Fis paper contains four sections besides this introduction. In the first one we re-

call the basic definitions and results on Orlicz sequence spaces to be used in the rest of

the paper. In Section 3 we define the notion of the (Φ, Ψ)-summing power-norm and
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study the connection between the spaces having the Φ-Orlicz property and those satis-

fying the analogue of (4) for Orlicz functions. Section 4 is devoted to recalling some

facts on symmetric sequence spaces and studying the notion of the (X1 , X2)-summing

power-norm for symmetric sequence spaces X1 and X2. Finally we present an extension

of (3) for (X1 , X2)-summing power-norms in the last section.

2. Preliminaries on Orlicz spaces

We shall say that Φ∶ [0,∞) → [0,∞) is an Orlicz function whenever it is convex and

takes value zero only at zero (it is called a non-degenerated Orlicz function for instan-

ce in [14]). In particular Φ is continuous, increasing, limt→∞Φ(t) = ∞, and Φ(t)/t is
non-decreasing. Hence

Φ(st) ⩽ sΦ(t), 0 < s ⩽ 1, t ⩾ 0

and

Φ(s) +Φ(t) ⩽ Φ(s + t), s, t ⩾ 0.

We denote by Φ
∗ the complementary function (also called the Young conjugate) of Φ

defined by

Φ
∗(s) = sup{ts −Φ(t) ∶ t ⩾ 0}, s ⩾ 0.

In particular

st ⩽ Φ(t) +Φ
∗(s), t, s ⩾ 0.

Observe that with this definition we allow Φ
∗(s) = ∞ for some values of s (for instance

in the case Φ(t) = t). We shall be interested only in the case when Φ
∗
is also a (non-dege-

nerated) Orlicz function so we restrict ourselves to the class of Orlicz functions satisfying

lim
t→∞

Φ(t)
t

= ∞ and lim
t→0

+

Φ(t)
t

= 0. (5)

We shall denote by O the class of Orlicz functions satisfying (5). Every Orlicz function

Φ, being increasing and convex, has a non-negative and non-decreasing right derivative

ϕ(t) for every t > 0 and Φ(t) = ∫
t
0

ϕ(s)ds. For functions Φ ∈ O one has that ϕ(0) = 0

and limt→∞ ϕ(t) = ∞, and if ψ stands for the right-inverse of ϕ, that is,

ψ(u) = sup{t ∶ ϕ(t) ⩽ u}, u ⩾ 0,

which turns out to be right-continuous, non-decreasing with ψ(0) = 0 and ψ(u) > 0 for

u > 0, one obtains that Φ
∗(s) = ∫

s
0
ψ(u)du for s ⩾ 0 and

sψ(s) = Φ(ψ(s)) +Φ
∗(s), s > 0.
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Recall that anOrlicz functionΦ is said to satisfy the ∆2-conditionwith constantC > 0

whenever

Φ(2t) ⩽ CΦ(t), t > 0.

Since 2Φ(t) ⩽ Φ(2t) for t > 0 then the ∆2-condition implies C ⩾ 2.

If we assume that C = 2 we automatically have, by convexity, that Φ(2t) = 2Φ(t) and
Φ(t+ s) = Φ(t)+Φ(s). Hence Φ(ns) = nΦ(s) and Φ( t

m ) = Φ(t)
m for all n,m ∈ N, s, t > 0

and, using that Φ is continuous, we obtain that Φ(t) = tΦ(1) for t > 0.

Ferefore we have that Φ satisfies the ∆2-condition with constant C = 2 if and only

if Φ(t) = Φ(1)t for t > 0.

2.1. Proposition. Let Φ satisfy the ∆2-condition with constant C.

(i) If A > C then there exists γ > 1 such that

Φ(γt) ⩽ AΦ ( t

2

) , t > 0.

(ii) If β = log
2
C ⩾ 1 then

uΦ(t) ⩽ Φ(tu) ⩽ CuβΦ(t), u ⩾ 1, t ⩾ 0. (6)

C−1vβΦ(s) ⩽ Φ(sv) ⩽ vΦ(s), 0 < v ⩽ 1, t ⩾ 0. (7)

Proof. (i). If A ⩾ C2
it suÚces to take γ = 2. Assuming C < A < C2

, let 0 < θ < 1 such that

A = (1 − θ)C + θC2
and set γ = 1 + θ > 1. Now

Φ(γt) = Φ((1 − θ)t + θ2t) ⩽ (1 − θ)Φ(t) + θΦ(2t) ⩽ AΦ ( t

2

) .

(ii). Since uΦ(t) ⩽ Φ(ut) for any u ⩾ 1 and t ⩾ 0, selecting m ∈ N so that 2
m−1 ⩽ u ⩽ 2

m

and using the ∆2-condition, with C = 2
β
, we have

Φ(ut) ⩽ Cm
Φ(t) ⩽ 2

βm
Φ(t) = 2

βuβΦ(t).

Fis shows (6). Finally (7) follows from (6) with the change v = 1

u and s = tu.

For each Orlicz function Φ, we define ℓΦ as the space all sequences of complex num-

bers (zk) such that there exists ρ > 0 satisfying ρΦ( (zk)ρ ) < ∞, where

ρΦ((zk)) =
∞
∑
k=0

Φ(∣zk ∣).

We equip the space ℓΦ with the Luxemburg norm

∥(zk)∥
L
Φ
= inf{ρ > 0 ∶ ρΦ((

zk

ρ
)) ⩽ 1}.

Note that ρΦ((zk)) ⩽ 1 if and only if ∥(zk)∥LΦ ⩽ 1.
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2.2. Notation. For each n ∈ N and z = (z1 , . . . , zn) ∈ Cn
, we write

ρn ,Φ(z) =
n
∑
k=1

Φ(∣zk ∣).

2.3. Proposition. Let (E , ∥ ⋅ ∥) = (C, ∣ ⋅ ∣) and let Φ be an Orlicz function with Φ(1) = 1.

For each n ∈ N and z = ∑n
k=1 zkδk where (δk) stands for the canonical basis of c0, we write

ℓLn ,Φ(z) = ∥
n
∑
k=1
zkδk∥

L

Φ

.

Fen ((Cn
, ℓLn ,Φ) ∶ n ∈ N) is a power-norm based on C.

Proof. Note that ℓLn ,Φ(⋅) is a norm in Cn
for all n ∈ N and that ℓL

1,Φ
(z) = ∣z∣/Φ−1(1) = ∣z∣

for z ∈ C. Clearly ρn ,Φ(zσ(1), . . . , zσ(n)) = ρn ,Φ(z) and ρn+1,Φ(z1 , . . . , zn , 0) = ρn ,Φ(z),
for any z = (z1 , . . . , zn) and permutation σ . Hence (P1) and (P2) hold. Now (P3) follows

using that Φ is increasing since we have ρn ,Φ(αz) ⩽ ρn ,Φ(Az) for A = max1⩽k⩽n ∣αk ∣
where αz = (α1z1 , . . . , αnzn). Fis gives ℓLn ,Φ(αz) ⩽ AℓLn ,Φ(z) for any z , α ∈ Cn

.

We can equip the space ℓΦ with other equivalent norms, such as the Amemiya norm

∥(zk)∥AΦ = inf{ρ > 0 ∶ 1

ρ
(1 + ρΦ((ρzk)) ⩽ 1}

or the Orlicz norm

∥(zk)∥OΦ = sup{∣
∞
∑
k=1
zkwk ∣ ∶ ρΦ∗((wk)) ⩽ 1}.

It is easy to see that ∥(zk)∥LΦ ⩽ ∥(zk)∥OΦ ⩽ 2∥(zk)∥LΦ and ∥(zk)∥OΦ ⩽ ∥(zk)∥AΦ . It was
shown by H. Hudzik and L. Maligranda in [11] that actually ∥(zk)∥OΦ = ∥(zk)∥AΦ .

It is elementary to see that

∣
∞
∑
k=1
wkzk ∣ ⩽ ∥(zk)∥

O
Φ
∥(wk)∥

L
Φ
∗

for any (zk) ∈ ℓΦ and (wk) ∈ ℓΦ∗ , and actually (ℓΦ)∗ = ℓΦ∗ wheneverΦ
∗
is a finite-valued

function.

Using the Orlicz norm we can also define a power-norm based on C.

2.4. Proposition. Let (E , ∥ ⋅∥) = (C, ∣ ⋅ ∣) and let Φ ∈ O such that Φ∗(1) = 1. For each n ∈ N
and z = (z1 , . . . , zn) ∈ Cn we denote

ℓOn ,Φ(z) = sup{∣
n
∑
k=1
zkwk ∣ ∶ ρn ,Φ∗(w) ⩽ 1}.

Fen ((Cn
, ℓOn ,Φ) ∶ n ∈ N) is a power-norm based on C.
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Proof. Note that ℓOn ,Φ(⋅) is a norm in Cn
for all n ∈ N and ℓO

1,Φ
(z) = ∣z∣(Φ∗)−1(1) = ∣z∣ for

z ∈ C. Clearly, denoting zσ = (zσ(1), . . . , zσ(n)) for z ∈ Cn
and permutation σ , we have

ℓOn ,Φ(zσ) = sup{∣
n
∑
k=1
zσ(k)wk ∣ ∶ ρn ,Φ∗(w) ⩽ 1}

= sup{∣
n
∑
k=1
zkwσ−1(k)∣ ∶ ρn ,Φ∗(w) ⩽ 1}

= ℓOn ,Φ(z).

Hence (P1) holds.

Since ρn ,Φ∗(w) ⩽ ρn+1,Φ∗(w ,wn+1) where (z , zn+1) = (z1 , . . . , zn , zn+1) we have

ℓOn ,Φ((z , 0)) = sup{∣
n
∑
k=1
zkwk ∣ ∶ ρn+1,Φ∗((w ,wn+1)) ⩽ 1}

= sup{∣
n
∑
k=1
zkwk ∣ ∶ ρn ,Φ∗(w) ⩽ 1}

= ℓOn ,Φ(z).

Hence (P2) holds.

Let z , α ∈ Cn
, A = max1⩽k⩽n ∣αk ∣. Fen

ℓOn ,Φ(αz) ⩽ sup{
n
∑
k=1

∣αkzkwk ∣ ∶ ρn ,Φ∗(w) ⩽ 1}

⩽ A sup{
n
∑
k=1

∣zkwk ∣ ∶ ρn ,Φ∗(w) ⩽ 1}

= A sup{∣
n
∑
k=1
zk ξk ∣ ∶ ρn ,Φ∗(ξ) ⩽ 1}

= AℓOn ,Φ(z).

Hence (P3) holds and the proof is finished.

Let us consider a notion that generalizes the concept of complementary function and

which will be useful for our purposes.

2.5. Definition. Let ψ, Φ be Orlicz functions such that

lim
t→∞

Φ(t)
ψ(t)

= ∞ and lim
t→0

+

Φ(t)
ψ(t)

= 0. (H)

We define the complementary function of Φ with respect to ψ by the formula

Φψ(s) = sup{ψ(ts) −Φ(t) ∶ t > 0}.
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2.6. Remark. Assumption H implies that

0 ⩽ Φψ(s) < ∞, s ⩾ 0

and

ℓψ ⊆ ℓΦ .
Indeed, we have that for each s > 1 there exists ts > 1 so that

ψ(st) −Φ(t) ⩽ ψ(st) − 1

s
Φ(st) < 0, t ⩾ ts .

Hence, using continuity of ψ and Φ,

Φψ(s) = sup{ψ(ts) −Φ(t) ∶ 0 ⩽ t ⩽ ts} < ∞.

On the other hand, it is known (see [14, page 139]) that ℓψ ⊆ ℓΦ with continuous embed-

ding if and only if there exists C0 , t0 > 0 such that

Φ(t) ⩽ C0ψ(t), 0 ⩽ t ⩽ t0 . (8)

Since (8) follows from limt→0
+

Φ(t)
ψ(t) = 0, one gets ℓψ ⊆ ℓΦ .

2.7. Proposition. Let Φ,ψ be Orlicz functions satisfying H. Fen Φψ is an Orlicz function.

Proof. Denoting by Ψt for each t > 0 the convex function Ψt(u) = ψ(tu)−Φ(t), one gets
that Φψ(s) = supt>0 Ψt(s) is convex. Clearly Φψ(0) = 0. From H there exists t0 > 0 such

that that ψ(t) − Φ(t) > 0 for 0 < t < t0. Since Φψ is increasing, it suÚces to show that

Φψ(s) > 0 for s small enough. Let 0 < s < min{t0 , 1} and observe that

Φψ(s) ⩾ ψ(s) −Φ(1) ⩾ ψ(s) −Φ(s) > 0.

Fe proof is then complete.

2.8. Example. Let 1 < p < q < ∞ with
1

p +
1

q < 1 and set ψ(t) = t p
p and Φ(t) = tq

q . Fen

Φψ(t) = tr
r where

1

p =
1

q +
1

r .

Indeed, it suÚces to observe that

Φψ(s) = sup{ sp tp

p
− tq

q
∶ t ⩾ 0} = sp t(s)p

p
− t(s)q

q

where t(s) is the solution of the equation sp tp−1 = tq−1, that is, t(s) = s
p

p−q . Hence Φψ(s) =
1

r s
r
.

2.9. Proposition. Let ψ, Φ be Orlicz functions satisfying H such that ψ satisfies the ∆2-con-

dition with constant C and

inf
t>0

Φ(2t)
Φ(t)

> C .

Fen Φψ satisfies the ∆2-condition.



154 Oscar Blasco

Proof. Let A = inf t>0
Φ(2t)
Φ(t) > C. We know from (i) in Proposition 2.1 that there exists γ > 1

so that ψ(γt) ⩽ Aψ( t
2
) for all t > 0. Fen

Φψ(s) ⩾ sup{ψ(st) − 1

A
Φ(2t) ∶ t > 0}

= 1

A
sup{Aψ( s

2

u) −Φ(u) ∶ u > 0}

⩾ 1

A
sup{ψ(γsu) −Φ(u) ∶ u > 0}

= 1

A
Φψ(γs).

Let m ∈ N be such that 1 < γ ⩽ 2
1/m

. Hence Φψ(2s) ⩽ Am
Φψ(s) and then Φψ satisfies the

∆2-condition with constant Am
.

2.10. Corollary. Let Φ ∈ O with

inf
t>0

Φ(2t)
Φ(t)

> 2. (9)

then Φ
∗ is an Orlicz function satisfying the ∆2-condition.

3. (Φ, Ψ)-summing norms

3.1. Definition. Let (E , ∥ ⋅ ∥) be a normed space and Φ be an Orlicz function. For each

n ∈ N and λ = (λ1 , . . . , λn) ∈ (E∗)n we define

µL
Φ,n(λ) = sup

∥x∥=1
inf{ρ > 0 ∶

n
∑
k=1

Φ(∣⟨x , λk
ρ

⟩∣) ⩽ 1}

3.2. Remark. Of course we have

µL
Φ,n(λ) = sup{ℓLn ,Φ(⟨x , λ⟩) ∶ ∥x∥ ⩽ 1}, (10)

where ⟨x , λ⟩ = (⟨x , λ1⟩, . . . , ⟨x , λn⟩).

3.3. Definition. Let (E , ∥ ⋅ ∥) be a normed space and let Φ ∈ O. For each n ∈ N and

λ = (λ1 , . . . , λn) ∈ (E∗)n we define

µO
Φ,n(λ) = sup{∥

n
∑
k=1
zkλk∥

′
∶ ρn ,Φ∗(z) ⩽ 1}.

3.4. Remark. Clearly we have

µO
Φ,n(λ) = sup{ℓOn ,Φ(⟨x , λ⟩) ∶ ∥x∥ ⩽ 1}. (11)



Summing multinorms 155

Hence

µL
Φ,n(λ) ⩽ µO

Φ,n(λ) ⩽ 2µL
Φ,n(λ).

Making use of Proposition 2.3 and Proposition 2.4 together with (10) and (11) we

arrive at the following result.

3.5. Proposition. If Φ is an Orlicz function withΦ(1) = 1 (respectively,Φ ∈ O withΦ∗(1) =
1) then the sequence ((E∗)n , µL

Φ,n(⋅) ∶ n ∈ N) (respectively, ((E∗)n , µO
Φ,n(⋅) ∶ n ∈ N)) defines

a power-norm based on E∗.

Note that if φ is convex with φ(0) = 0, for each z = (z1 , . . . , zn) ∈ Cn
, zn+1 ∈ C, and

∣α∣ + ∣β∣ ⩽ 1 one has that

ρn+1,φ(z1 , . . . , zn−1 , αzn , βzn) ⩽ ρn ,φ(z), (12)

ρn ,φ(z1 , . . . , zn−1 , αzn + βzn+1) ⩽ ρn+1,φ(z , zn+1). (13)

Using these estimates we can easily get the following facts.

3.6. Proposition. Let n ∈ N, λ = (λ1 , . . . , λn) ∈ (E∗)n , (λ, λn+1) ∈ (E∗)n+1, and (α, β) ∈
C2 such that ∣α∣ + ∣β∣ = 1. Fen

µΦ,n(λ1 , . . . , λn−1 , αλn + βλn+1) ⩽ µΦ,n+1(λ, λn+1) (14)

µΦ,n+1(λ1 , . . . , λn−1 , αλn , βλn) ⩽ µΦ,n(λ) (15)

where µΦ,n stands for either µO
Φ,n or µ

L
Φ,n .

Proof. Fe case µL
Φ,n follows directly from (12) and (13). To see the case µO

Φ,n note that for

each ρn ,Φ∗(z) ⩽ 1 and ρn+1,Φ∗(w) ⩽ 1, using (12) and (13) again, we have

∥
n−1
∑
k=1
zkλk + zn(αλn + βλn+1)∥

′
⩽ µO

Φ,n+1(λ, λn+1),

and

∥
n−1
∑
k=1
wkλk + (wnα +wn+1β)λn)∥

′
⩽ µO

Φ,n(λ).

Fese estimates give (14) and (15).

3.7. Proposition. Let Φ,ψ be Orlicz functions satisfying H. Fen

µO
(Φψ)∗ ,n(zλ) ⩽ 3ℓLn ,ψ∗(z)µL

Φ,n(λ) (16)

and

µO
ψ ,n(zλ) ⩽ 3ℓLn ,Φψ

(z)µL
Φ,n(λ) (17)

for all n ∈ N, λ = (λ1 , . . . , λn) ∈ (E∗)n , z = (z1 , . . . , zn) ∈ Cn where zλ = (z1λ1 , . . . , znλn).
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Proof. Assume that µL
Φ,n(λ) ⩽ 1 and ℓLn ,ψ∗(z) ⩽ 1. Since

uvw ⩽ ψ∗(u) +Φ(v) +Φψ(w), u, v ,w ⩾ 0

then for each x ∈ E with ∥x∥ = 1 and ρn ,Φψ(w) ⩽ 1 we have that

∣
n
∑
k=1
wkzk⟨x , λk⟩∣ ⩽ ρn ,ψ∗(z) + ρn ,Φψ(w) + ρn ,Φ(⟨x , λ⟩).

Ferefore, using that ρn ,ψ∗(z) ⩽ 1 and ρn ,Φ(⟨x , λ⟩) ⩽ 1, we obtain ℓOn ,(Φψ)∗(⟨x , zλ⟩) ⩽ 3

for any ∥x∥ = 1. Fis gives (16).

A similar argument shows (17) and the proof is complete.

3.8. Definition. Let (E , ∥ ⋅ ∥) be a normed space, Φ an Orlicz function, and Ψ ∈ O. For
each n ∈ N and x = (x1 , . . . , xn) ∈ En

we define

∥x∥(Φ,Ψ)n = sup{ℓOn ,Ψ(⟨x , λ⟩) ∶ µL
Φ,n(λ) ⩽ 1} (18)

where ⟨x , λ⟩ = (⟨x1 , λ1⟩, . . . , ⟨xn , λn⟩).
We write ∥x∥(p ,Ψ)n for Φ(t) = tp and ∥x∥(Φ,q)n for Ψ(t) = tq .

Of course, to define ∥x∥(Φ,Ψ)n we might have chosen other possibilities such as

sup{ℓLn ,Ψ(⟨x , λ⟩) ∶ µL
Φ,n(λ) ⩽ 1},

sup{ℓLn ,Ψ(⟨x , λ⟩) ∶ µO
Φ,n(λ) ⩽ 1}

or

sup{ℓOn ,Ψ(⟨x , λ⟩) ∶ µO
Φ,n(λ) ⩽ 1}

all of them being equivalent.

Notice that the norm in (18) is given by

∥x∥(Φ,Ψ)n = sup{∣
n
∑
k=1

⟨xk , zkλk⟩∣ ∶ ρn ,Ψ∗(z) ⩽ 1, µL
Φ,n(λ) ⩽ 1}. (19)

Fe next result is elementary but we include the proof for the sake of completeness.

3.9. Proposition. Let (E , ∥ ⋅ ∥) be a Banach space, Φ an Orlicz function, and Ψ ∈ O with
Ψ
∗(1) = Φ(1) = 1. Fen the sequence (∥ ⋅ ∥(Φ,Ψ)n ∶ n ∈ N) defines a power-norm based on E.

Proof. For each n ∈ N, ∥ ⋅ ∥(Φ,Ψ)n is a norm on En
and ∥x∥(Φ,Ψ)n coincides with the norm

of the operator Tx from ((E∗)n , µL
Φ,n) into (Cn

, ℓOn ,Ψ) given by Tx(λ) = ⟨x , λ⟩. For n = 1,

x ∈ E and λ ∈ E∗ we have

µL
Φ,1

(λ) = ∥λ∥/Φ−1(1) = ∥λ∥, ∥x∥(Φ,Ψ)
1

= ∥x∥(Ψ∗)−1(1)Φ−1(1) = ∥x∥.
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Let x ∈ En
, α ∈ Cn

, σ be a permutation of {1, . . . , n} anddenote xσ = (xσ(1), . . . , xσ(n)).
Fen

∥xσ∥(Φ,Ψ)n = sup{∣
n
∑
k=1

⟨xσ(k), zkλk⟩∣ ∶ ρn ,Ψ∗(z) ⩽ 1, µL
Φ,n(λ) ⩽ 1}

= sup{∣
n
∑
k=1

⟨xk , zσ−1(k)λσ−1(k)⟩∣ ∶ ρn ,Ψ∗(z) ⩽ 1, µL
Φ,n(λ) ⩽ 1}

= ∥x∥(Φ,Ψ)n .

Fis shows (P1).

Now using that ρn+1,Ψ∗(z , 0) = ρn ,Ψ∗(z) and ρn ,Ψ∗(z) ⩽ ρn+1,Ψ∗(z , zn+1) we have

∥(x , 0)∥(Φ,Ψ)n+1 = sup{∣
n
∑
k=1

⟨xk , zkλk⟩∣ ∶ ρn+1,Ψ∗(z) ⩽ 1, µL
Φ,n+1(λ) ⩽ 1}

= sup{∣
n
∑
k=1

⟨xk , zkλk⟩∣ ∶ ρn ,Ψ∗(z) ⩽ 1, µL
Φ,n(λ) ⩽ 1}

= ∥x∥(Φ,Ψ)n .

Fis gives (P2).

Finally, denoting αx = (α1x1 , . . . , αnxn), (P3) follows trivially since

∥αx∥(Φ,Ψ)n = sup{∣
n
∑
k=1

⟨αkxk , zkλk⟩∣ ∶ ρn ,Ψ∗(z) ⩽ 1, µL
Φ,n(λ) ⩽ 1}

⩽ (max
1⩽k⩽n

∣αk ∣) sup{
n
∑
k=1

∣⟨xk , zkλk⟩∣ ∶ ρn ,Ψ∗(z) ⩽ 1, µL
Φ,n(λ) ⩽ 1}

⩽ (max
1⩽k⩽n

∣αk ∣) sup{∣
n
∑
k=1

⟨xk , ξkλk⟩∣ ∶ ρn ,Ψ∗(ξ) ⩽ 1, µL
Φ,n(λ) ⩽ 1}

= (max
1⩽k⩽n

∣αk ∣)∥x∥(Φ,Ψ)n .

Fe proof is then complete.

3.10. Proposition. Let E be a Banach space and let ψ, Φ be Orlicz functions satisfying H.

Fen

∥x∥(Φ,ψ)n ⩽ 3∥x∥((Φψ)∗ ,1)
n

for each n ∈ N and x = (x1 , . . . , xn) ∈ En .

Proof. Let λ = (λ1 , . . . , λn) ∈ (E∗)n and z = (z1 , . . . , zn) ∈ Cn
with µL

Φ,n(λ) ⩽ 1 and

ρn ,ψ∗(z) ⩽ 1. Fen, due to (16) we have

µL
(Φψ)∗ ,n(zλ) ⩽ µO

(Φψ)∗ ,n(zλ) ⩽ 3.
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Hence

∣
n
∑
k=1
zk⟨xk , λk⟩∣ ⩽

n
∑
k=1

∣⟨xk , zkλk⟩∣

⩽ ∥x∥((Φψ)∗ ,1)
n µL

(Φψ)∗ ,n(zλ)

⩽ 3∥x∥((Φψ)∗ ,1)
n .

Fe proof is complete using now (19).

3.11. Proposition. Let (E , ∥ ⋅ ∥) be a normed space and Ψ ∈ O with Ψ
∗(1) = 1. Fen the

sequence (∥ ⋅ ∥(1,Ψ)n ∶ n ∈ N) defines a multinorm based on E.

Proof. Due toProposition 3.9we only need to check property (M).Given x = (x1 , . . . , xn−1 ,
xn) ∈ En

we shall show that

∣
n−1
∑
k=1

⟨xk , zkλk⟩ + ⟨xn , znλn + zn+1λn+1⟩∣ ⩽ ∥x∥(1,Ψ)n (20)

for all µL
1,n+1(λ) ⩽ 1 and ρn+1,Ψ∗(z) ⩽ 1.

Given λ ∈ (E∗)n+1 and z ∈ Cn+1
with µL

1,n+1(λ) ⩽ 1 and ρn+1,Ψ∗(z) ⩽ 1, we first select

α > 0 such that

Ψ
∗(α) = Ψ

∗(∣zn+1∣) +Ψ
∗(∣zn ∣).

Hence denoting

z̃k = zk , ˜λk = λk , k = 1, . . . , n − 1

and

z̃n = α, ˜λn =
zn

α
λn +

zn+1
α

λn+1

we have
n−1
∑
k=1

⟨xk , zkλk⟩ + ⟨xn , znλn + zn+1λn+1⟩ =
n
∑
k=1

⟨xk , z̃k ˜λk⟩.

Notice that ρn ,Ψ∗(z̃) = ρn+1,Ψ∗(z) ⩽ 1 and, using that max{∣zn+1∣, ∣zn ∣} ⩽ α, we have

µL
1,n(λ1 , . . . , λn−1 ,

zn

α
λn +

zn+1
α

λn+1) ⩽ 1.

Ferefore we obtain (20).

Recall from the introduction that the ψ-Orlicz property of a Banach space is equiva-

lent to the existence of a constant C > 0 such that

ℓLn ,ψ(∥x1∥, . . . , ∥xn∥) ⩽ Cµ1,n(x)

for any x ∈ En
.
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3.12. Feorem. Let Φ ∈ O and let E be a Banach space. Fe following statements are equ-

ivalent:

(i) E∗ has the Φ-Orlicz property.

(ii) Fere exists C ⩾ 1 such that

∥x∥min
n ⩽ ∥x∥(1,Φ)n ⩽ C∥x∥min

n

for any x = (x1 , . . . , xn) ∈ En .

Proof. (i) ⇒ (ii). Let x ∈ En
with max1⩽k⩽n ∥xk∥ = 1, and let λ ∈ (E∗)n with µ1,n(λ) ⩽ 1.

Hence

ℓLn ,Φ(⟨x , λ⟩) ⩽ ℓLn ,Φ(∥λ1∥, . . . , ∥λn∥) ⩽ C .

Fen ∥x∥(1,Φ)n ⩽ C∥x∥min
n . Since the inequality ∥x∥min

n ⩽ ∥x∥(1,Φ)n holds for any power-

-norm, the implication is complete.

(ii)⇒ (i). Let λ = (λ1 , . . . , λn) ∈ (E∗)n with µ1,n(λ) ⩽ 1. For each ε > 0, select xk ∈ E with

∥xk∥ = 1 for 1 ⩽ k ⩽ n and (1 − ε)∥λk∥′ ⩽ ⟨xk , λk⟩ ⩽ ∥λk∥′. Hence, by the assumption, we

obtain

ℓLn ,Φ((1 − ε)∥λ1∥′, . . . , (1 − ε)∥λn∥′) ⩽ C .

Ferefore ℓLn ,Φ((∥λ1∥, . . . , ∥λn∥)) ⩽ C
1−ε . Finally, taking limits as ε → 0 the Φ-Orlicz pro-

perty of E∗ is shown.

3.13. Corollary. Let E = ℓΦ whereΦ ∈ O satisfies the ∆2-condition and Φ
∗(

√
t) is concave,

and let Ψ be an Orlicz function such that ℓ2 ⊆ ℓΨ with continuous embedding. Fen there

exists C ⩾ 1 such that

∥x∥min
n ⩽ ∥x∥(1,Ψ)n ⩽ C∥x∥min

n (21)

for any x = (x1 , . . . , xn) ∈ (ℓΦ)n .

Proof. Recall that ℓΦ∗ = (ℓΦ)∗, and Φ∗(
√

t) being concave implies that ℓΦ∗ has cotype 2

(see [13]), and in particular

(
n
∑
k=1

∥λk∥2

Φ
∗)

1/2

⩽ C1µ1,n(λ).
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for each λ ∈ (ℓΦ∗)n . Let x ∈ (ℓΦ)n and λ ∈ (ℓΦ∗)n and use the following estimates

ℓLn ,Ψ(⟨x , λ⟩) ⩽ ℓLn ,Ψ(∥x1∥Φ∥λ1∥Φ∗ , . . . , ∥xn∥Φ∥λn∥Φ∗)
⩽ (max

1⩽k⩽n
∥xk∥Φ)ℓLn ,Ψ(∥λ1∥Φ∗ , . . . , ∥λn∥Φ∗)

⩽ C0(max
1⩽k⩽n

∥xk∥Φ)(
n
∑
k=1

∥λk∥2

Φ
∗)

1/2

⩽ C0C1(max
1⩽k⩽n

∥xk∥Φ)µ1,n(λ).

Hence we obtain (21) from Feorem 3.12.

LetM(ℓΦ , ℓψ) denote the space of pointwise multipliers between two Orlicz spa-

ces, i.e.

M(ℓΦ , ℓψ) = {(zk)k∈N ∶ (wkzk) ∈ ℓψ∀(wk) ∈ ℓΦ}

and

∥(zk)∥M(ℓΦ ,ℓψ) = sup{∥(wkzk)k∥ℓψ ∶ ∥(wk)∥ℓΦ ⩽ 1}.

3.14. Lemma. Let Φ,ψ be Orlicz functions satisfying H. Fen

ℓΦψ ⊆M(ℓΦ , ℓψ)

with continuous embedding.

Proof. Let n ∈ N, z ∈ Cn
with ρn ,Φψ(z) ⩽ 1. We shall see that if ρn ,Φ(w) ⩽ 1 then

ρn ,ψ( 1

4
zw) ⩽ 1 where zw = (z1w1 , . . . , znwn). Indeed, since ψ(ts) ⩽ Φ(t) +Φψ(s),

ρn ,ψ(
1

4

zw) ⩽ ρn ,Φ(
1

2

z) + ρn ,Φψ(
1

2

w) ⩽ 1

2

ρn ,Φ(z) +
1

2

ρn ,Φψ(w) ⩽ 1.

Fis shows that ∥(zk)∥M(ℓΦ ,ℓψ) ⩽ 4∥(zk)∥ℓΦψ
.

We now borrow a result from [15].

3.15. Lemma (see [15, Feorem 2.3]). Let Φ be a super-multiplicative Orlicz function such

that t → Φ(
√

t) is convex. Fen the space ℓΦ has the Φ-Orlicz property.

3.16. Feorem. Let Φ,ψ ∈ O satisfying H with Φ(1) = 1, Φ(
√

t) convex, and Φ(ts) ⩾
Φ(t)Φ(s) for t, s ⩾ 0. Fen

∥x∥(1,ψ)n ⩽ CℓLn ,Φψ
(∥x1∥Φ∗ , . . . , ∥xn∥Φ∗) (22)

for any x = (x1 , . . . , xn) ∈ (ℓΦ∗)n .
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Proof. Let us first show that Φ satisfies (9). Since Φ(2t) ⩾ Φ(2)Φ(t) it suÚces to see

that Φ(2) > 2. Fis follows using that Φ(2) ⩾ 2Φ(
√

2) > 2Φ(1) = 2. Hence from Co-

rollary 2.10 we conclude that Φ
∗

satisfies the ∆2-condition and, in particular, we have

ℓΦ = (ℓΦ∗)∗. On the other hand Lemma 3.15 gives that ℓΦ has the Φ-Orlicz property.

Hence for each λ ∈ (ℓΦ)n we have

ℓLn ,Φ(∥λ1∥Φ , . . . , ∥λn∥Φ) ⩽ Cµ1,n(λ). (23)

Ferefore, combining Lemma 3.14 and (23) we have

ℓLn ,ψ(⟨x , λ⟩) ⩽ ℓLn ,ψ(∥x1∥Φ∗∥λ1∥Φ , . . . , ∥xn∥Φ∗∥λn∥Φ)

⩽ ∥(∥x1∥Φ∗ , . . . , ∥xn∥Φ∗)∥M(ℓΦ ,ℓψ)ℓ
L
n ,Φ(∥λ1∥Φ , . . . , ∥λn∥Φ)

⩽ CℓLn ,Φψ
(∥x1∥Φ∗ , . . . , ∥xn∥Φ∗)µ1,n(λ).

Fis gives (22).

Fe behaviour at infinity of φmax
n (E), which stands for the “rate of growth” of the

maximummultinorm, has been carefully analyzed in [7]. From (22) we obtain upper esti-

mates for the “rate of growth” φ∥⋅∥n(E) whenever E = ℓΨ is an Orlicz sequence space with

certain properties and the multinorm ∥ ⋅ ∥n = ∥ ⋅ ∥(1,ψ)n for another Orlicz function adapted

to Ψ.

3.17. Corollary. Let Φ,ψ ∈ O satisfying H with Φ(1) = 1, Φ(
√

t) convex, and Φ(ts) ⩾
Φ(t)Φ(s) for t, s ⩾ 0. Fen φ∥⋅∥1,ψn (ℓΦ∗) ⩽ C((Φψ)−1( 1

n ))
−1
.

In particular, for 1 < p, q < ∞ and q > max{2, p} we obtain φ∥⋅∥1,pn
(ℓq′) ⩽ Cnp/q

.

4. Summing power-norms on symmetric sequence spaces

Orlicz spaces are particular cases of the so-called symmetric sequence spaces. Recall that

a symmetric sequence space (ℓ, ∥ ⋅ ∥) is a Banach space of sequences in CN
such that

(A1) If (zk) ∈ ℓ and ∣wk ∣ ⩽ ∣zk ∣ for all k ∈ N, then (wk) ∈ ℓ and ∥(wk)∥ ⩽ ∥(zk)∥.
(A2) If (zk) ∈ ℓ and σ ∶N→ N is a permutation, then (zσ(k)) ∈ ℓ and ∥(zσ(k))∥ = ∥(zk)∥.
In particular, any non-trivial symmetric sequence space ℓ satisfies

(1) ℓ1 ⊆ ℓ ⊆ ℓ∞ with continuity.

(2) δk ∈ ℓ for all k and ∥δk∥ = ∥δ1∥ for all j ∈ N, where δk(i) = δki for any k, i ∈ N.
We say that a symmetric sequence space ismaximal (see [12, 14]) whenever, denoting

Pn((zk)) = ∑n
k=1 zkδk = (zk)nk=1, it satisfies

(A3) ∥(zk)∥ = supn∈N ∥Pn((zk))∥.



162 Oscar Blasco

As usual we denote by ℓ′ the associated sequence space given by

ℓ′ = {(wk) ∶ ∑
k
∣zkwk ∣ < ∞ ∀ (zk) ∈ ℓ}

with the norm ∥(wk)∥′ = sup{∑k ∣zkwk ∣ ∶ ∥(zk)∥ = 1}.
Fe connection between power-norms and maximal symmetric sequence spaces is

due to the following observation which follows from both definitions.

4.1. Proposition. Let Ln be a norm on Cn for each n ∈ N. Fen ((Cn
, Ln) ∶ n ∈ N) is

a power-norm based on C if and only if

ℓ = {(zk) ∶ sup

n∈N
Ln(z1 , . . . , zn) < ∞}

is a maximal symmetric sequence space with ∥δ1∥ = 1.

A way to generate examples of symmetric sequence spaces is the use of “pointwise

multipliers”. Let ℓ, ℓ̃ be symmetric sequence spaces. We define

M(ℓ, ℓ̃) = {(zk)k∈N ∶ (wkzk) ∈ ℓ̃ ∀(wk) ∈ ℓ}

and

∥(zk)∥M(ℓ , ℓ̃) = sup{∥(wkzk)k∥ℓ̃ ∶ ∥(wk)∥ℓ ⩽ 1}.

It is elementary to see thatM(ℓ, ℓ̃) is also a symmetric sequence space. In the case

ℓ̃ = ℓ1 = {(zk) ∶∑∞k=1 ∣zk ∣ < ∞} one hasM(ℓ, ℓ1) = ℓ′.
A simple consequence ofHölder’s inequality gives, for 1 ⩽ p, q ⩽ ∞, 1/s = (1/q−1/p)+

and a+ = max{a, 0}
M(ℓp , ℓq) = ℓs . (24)

Recall that the so-called “fundamental function” associated to a given symmetric se-

quence space (ℓ, ∥ ⋅ ∥) is defined by

φℓ(n) = ∥
n
∑
j=1
δ j∥.

We shall use the notation ϕℓ , ℓ̃(n) = φM(ℓ , ℓ̃)(n) for the fundamental function of the space

of multipliers between two symmetric sequence spaces ℓ and ℓ̃, that is,

ϕℓ , ℓ̃(n) = sup{∥(wk)nk=1∥ℓ̃ ∶ ∥(wk)nk=1∥ℓ ⩽ 1}.

In particular, for ℓ = ℓp and ℓ̃ = ℓq , 1 ⩽ p, q ⩽ ∞, one has that

φℓp(n) = n1/p
, ϕℓp ,ℓq(n) = n(1/q−1/p)

+

.
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It is known (see [14, page 118]) that for symmetric sequence spaces

φℓ(n)φℓ′(n) = n, n ∈ N.

In particular, for any Orlicz function Φ ∈ O the fundamental function of (ℓΦ , ∥ ⋅ ∥LΦ)
(respectively, (ℓΦ∗ , ∥ ⋅ ∥O

Φ
∗) is given by

φℓΦ(n) =
1

Φ
−1( 1

n )
(respectively, φℓ

Φ
∗
(n) = nΦ−1( 1

n
)).

Froughout this section (ℓ, ∥ ⋅ ∥ℓ) stands for a maximal symmetric sequence space

with ∥δ1∥ℓ = 1, ℓ′ stands for its associate space, and we use the notation

Ln(z) = ∥
n
∑
k=1
zkδk∥ℓ , L′n(z) = sup{

n
∑
k=1

∣zkwk ∣ ∶ Ln(w) ⩽ 1}.

Let us define the following sequence of norms on En
.

4.2. Definition. Let (E , ∥ ⋅ ∥) be a normed space and ℓ a maximal symmetric sequence

space. For x = (x1 , . . . , xn) ∈ En
we define

µℓ ,n(x) = sup{Ln(⟨x1 , λ⟩, . . . , ⟨xn , λ⟩) ∶ λ ∈ E∗, ∥λ∥′ ⩽ 1}.

It is easy to check that for the dual space E∗ and λ = (λ1 , . . . , λn) ∈ (E∗)n one has

µℓ ,n(λ) = sup{Ln(⟨x , λ1⟩, . . . , ⟨x , λn⟩) ∶ ∥x∥ ⩽ 1}.

In the case E = ℓ̃, for a given maximal symmetric sequence space ℓ̃, and a particular

choice λk = zkδk ∈ E∗ for z = (z1 , . . . , zn) ∈ Cn
we observe that

µℓ ,n(z1δ1 , . . . , znδn) = ∥z∥M(ℓ̃ ,ℓ). (25)

In particular

µℓ ,n(δ1 , . . . , δn) = ϕ ℓ̃ ,ℓ(n) = ϕℓ′ , ℓ̃′(n).

It is also elementary to show that for ℓ ⊆ ℓ̃ and xk ∈ ℓ for k = 1, . . . , n, one has

µℓ ,n(x1 , . . . , xn) ⩽ ϕ ℓ̃ ,ℓ(n)µ ℓ̃ ,n(x1 , . . . , xn),

In particular for 1 ⩽ p ⩽ q < ∞

µp ,n(x1 , . . . , xn) ⩽ n1/sµq ,n(x1 , . . . , xn),
1

s
= ( 1

p
− 1

q
)
+
.
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4.3. Proposition. Let E and ℓ be a normed space and a maximal symmetric sequence space

with L1(δ1) = 1 respectively.Fen the sequence (µℓ ,n(⋅) ∶ n ∈ N) defines a power-norm based
on E∗. Moreover, for any maximal symmetric sequence space E = ℓ̃ one has

µℓ ,n(ξλ) ⩽ min{∥ξ∥M(ℓ̃ ,ℓ)µ ℓ̃ ,n(λ), L̃n(ξ)µM(ℓ̃ ,ℓ),n(λ)} (26)

for all n ∈ N, λ = (λ1 , . . . , λn) ∈ (E∗)n and ξ = (ξ1 , . . . , ξn) ∈ Cn where ξλ = (ξ1λ1 , . . . ,
ξnλn).

Proof. It is straightforward that the sequence (µℓ ,n(⋅) ∶ n ∈ N) defines a power-norm
based on E∗. Let n ∈ N, λ = (λ1 , . . . , λn) ∈ (E∗)n , and ξ = (ξ1 , . . . , ξn) ∈ Cn

. Fen

µℓ ,n(ξλ) = sup{Ln(ξ1⟨x , λ1⟩, . . . , ξn⟨x , λn⟩) ∶ ∥x∥ = 1}
⩽ ∥ξ∥M(ℓ̃ ,ℓ) sup{L̃n(⟨x , λ1⟩, . . . , ⟨x , λn⟩) ∶ ∥x∥ = 1}

= ∥ξ∥M(ℓ̃ ,ℓ)µ ℓ̃ ,n(λ).

Similarly, changing the roles between ξk and ⟨x , λk⟩ one gets the other estimate. Fis

shows (26).

4.4. Definition. Let ℓ and ℓ̃ be maximal symmetric sequence spaces and let us write

Ln((z1 , . . . , zn)) = ∥
n
∑
k=1
zkδk∥

ℓ
and L̃n((z1 , . . . , zn)) = ∥

n
∑
k=1
zkδk∥

ℓ̃
, n ∈ N.

For n ∈ N and x = (x1 , . . . , xn) ∈ En
we define

∥x∥(ℓ , ℓ̃)n = sup{L̃n(⟨x1 , λ1⟩, . . . , ⟨xn , λn⟩) ∶ µℓ ,n(λ) ⩽ 1}.

It is elementary to check that ∥(x1 , . . . , xn)∥(ℓ , ℓ̃)n is given by the infimum of the con-

stants C satisfying

∣
n
∑
k=1
wk⟨xk , λk⟩∣ ⩽ CL̃′n(w)µℓ ,n(λ).

4.5. Proposition. Let E be a normed space and let ℓ and ℓ̃ be maximal symmetric sequence

spaces with L1(δ1) = L̃1(δ1) = 1. Fen the sequence (∥ ⋅ ∥(ℓ , ℓ̃)n ∶ n ∈ N) defines a power-norm
based on E satisfying that

∥x∥(ℓ ,M(ℓ̃ ,ℓ))n ⩽ ∥x∥(ℓ1 , ℓ̃
′)

n (27)

for all n ∈ N, x = (x1 , . . . , xn) ∈ En .

In particular, for 1 ⩽ p, q < ∞ and 1/s = (1/p − 1/q)+

∥x∥(p ,q)n ⩽ ∥x∥(1,s
′)

n (28)

for all n ∈ N, x = (x1 , . . . , xn) ∈ En .
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Proof. It is straightforward that the sequence (∥ ⋅ ∥(ℓ , ℓ̃)n ∶ n ∈ N) defines a power-norm. Let

n ∈ N, x ∈ En
, λ ∈ (E∗)n , and set ⟨x , λ⟩ = (⟨x1 , λ1⟩, . . . , ⟨xn , λn⟩) ∈ Cn

. Clearly one has

∥⟨x , λ⟩∥M(ℓ̃ ,ℓ) = sup{Ln(⟨x1 , λ1w1⟩, . . . , ⟨xn , λnwn⟩) ∶ L̃n(w) ⩽ 1}

= sup{
n
∑
k=1

∣⟨xk , λk⟩wkzk ∣ ∶ L′n(z) ⩽ 1, L̃n(w) ⩽ 1}

= sup{L̃′n(⟨x1 , λ1z1⟩, . . . , ⟨xn , λnzn⟩) ∶ L′n(z) ⩽ 1}

⩽ ∥x∥(ℓ1 , ℓ̃
′)

n sup{µ1,n(zλ) ∶ L′n(z) ⩽ 1}

⩽ ∥x∥(ℓ1 , ℓ̃
′)

n µℓ ,n(λ)

where the last inequality follows from the estimate µ1,n(zλ) ⩽ L′n(z)µℓ ,n(λ). Finally, ta-
king ℓ = ℓp and ℓ̃ = ℓs , one hasM(ℓ̃, ℓ) = ℓq and (28) follows from (27).

5. Computing the fundamental function

Froughout this section X1 and X2 will stand for maximal symmetric sequence spaces

with ∥δ1∥X1
= ∥δ1∥X2

= 1, and E will be also a maximal symmetric sequence space L

with ∥δ1∥L = 1. Our aim is to compute ∥(δ1 , . . . , δn)∥(X1 ,X2)
n . As in the previous section we

denote by Ln and L̃n the norms of X1 and X2 restricted to Cn
, respectively.

5.1. Proposition. Let x = (x1 , . . . , xn) ∈ Ln with x j = ∑∞i=1 x j , iδ i ∈ L for j ∈ {1, . . . , n}.
Fen

L̃n(x1,1 , . . . , xn ,n) ⩽ ∥x∥(X1 ,X2)
n ϕL ,X1

(n).

In particular

∥(δ1 , . . . , δn)∥
(X1 ,X2)
n ⩾ φX2

(n)
ϕL ,X1

(n)
. (29)

Proof. Take λk = δk ∈ L∗ = L′ for all k and notice that

µX1 ,n(δ1 , . . . , δn) = sup{∥
n
∑
k=1
zkδk∥

L′
∶ L′n(z) ⩽ 1} = ϕX′

1
,L′(n) = ϕL ,X1

(n).

Ferefore

∥x∥(X1 ,X2)
n ⩾ L̃n(⟨x1 ,

1

ϕL ,X1
(n)

δ1⟩, . . . , ⟨xn ,
1

ϕL ,X1
(n)

δn⟩).

Hence

L̃n(x1,1 , . . . , xn ,n) ⩽ ∥x∥(X1 ,X2)
n ϕL ,X1

(n).

In particular, when applied to x j = δ j , we obtain (29).
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5.2. Lemma. Let λ = (λ1 , . . . , λn) ∈ (L′)n with λ j = ∑∞i=1 λ j , iδ i ∈ L′ for j ∈ {1, . . . , n}.
Fen

µX1 ,n(λ1,1δ1 , . . . , λn ,nδn) ⩽ µX1 ,n(λ).

Proof. For each γ = (γ1 , . . . , γn) ∈ (L′)n , as in the introduction, we use the notation

T(γ1 , . . . ,γn)(z) = ∑
n
k=1 zkγk for the operator from (Cn

, ∥ ⋅ ∥X′
1

) into L′. We shall write Sγ =
PnTγ , that is,

Sγ(z) = (
n
∑
k=1
zkγk ,1 , . . . ,

n
∑
k=1
zkγk ,n).

Clearly we have

µX1 ,n(λ1,1δ1 , . . . , λn ,nδn) = ∥S(λ1,1δ1 , . . . ,λn ,nδn)∥(Cn
,∥⋅∥X′

1

)→(Cn
,∥⋅∥L′)

and ∥Sγ∥(Cn
,∥⋅∥X′

1

)→(Cn
,∥⋅∥L′) ⩽ ∥Tγ∥(Cn

,∥⋅∥X′
1

)→L′ = µX1 ,n(γ).
For each j ∈ {1, . . . , n} and ρk = (1 − 2δk , j)δk for k ∈ {1, . . . , n} we denote by A j the

operator S(ρ1 , . . . ,ρn) , that is to say,

A j(z) = T(δ1 , . . . ,−δ j ,δ j+1 , . . . ,δn)(z) = (z1 , . . . , z j−1 ,−z j , z j+1 , . . . , zn).

Obviously ∥A j∥(Cn
,∥⋅∥X′

1

)→(Cn
,∥⋅∥X′

1

) = ∥A j∥(Cn
,∥⋅∥L′)→(Cn

,∥⋅∥L′) = 1 for all j ∈ {1, . . . , n}.
Now for each j ∈ {1, . . . , n} and each bounded operator T ∶ (Cn

, ∥⋅∥X′
1

) → (Cn
, ∥⋅∥L′)

we define

∆ jT = 1

2

(T + A jTA j).

It is straightforward to see that for each j ∈ {1, . . . , n} and γ ∈ (L′)n we have that ∆ jSγ =
S(γ( j)

1
, . . . ,γ( j)n )

where

γ
( j)
k = ∑

i≠ j
γk , iδ i for k ≠ j and γ

( j)
j = γ j , jδ j .

In particular

∆1Sλ =
1

2

(Sλ + A1SλA1) = S(λ1,1δ1 ,∑n
j=2

λ2, jδ j , . . . ,∑n
j=2

λn , jδ j).

Repeating the procedure we obtain

S(λ1,1δ1 , . . . ,λn ,nδn) = ∆n∆n−1⋯∆1Sλ .

Hence, since ∥∆ jT∥(Cn
,∥⋅∥X′

1

)→(Cn
,∥⋅∥L′) ⩽ ∥T∥(Cn

,∥⋅∥X′
1

)→(Cn
,∥⋅∥L′), we conclude that

µX1 ,n(λ1,1δ1 , . . . , λn ,nδn) = ∥∆n∆n−1⋯∆1Sλ∥(Cn
,X′

1
)→(Cn

,L′)

⩽ ∥Tλ∥(Cn
,X′

1
)→L′

= µX1 ,n(λ).

Fe proof is now complete.
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5.3. Feorem. Let X1 , X2, and L be maximal symmetric sequence spaces with ∥δ1∥X1
=

∥δ1∥X2
= ∥δ1∥L = 1. Fen

∥(z1δ1 , . . . , znδn)∥(X1 ,X2)
n = ∥z∥M(M(L ,X1),X2) (30)

for all z = (z1 , . . . , zn) ∈ Cn .

In particular, for L = ℓr and 1 ⩽ p, q < ∞

∥(δ1 , . . . , δn)∥(p ,q)n = n(1/q−(1/p−1/r)
+)+

. (31)

Proof. Due to Lemma 5.2,

∥(z1δ1 , . . . , znδn)∥(X1 ,X2)
n =

= sup{L̃n(⟨z1δ1 , λ1⟩, . . . , ⟨znδn , λn⟩) ∶ µX1 ,n(λ) ⩽ 1}
= sup{L̃n(⟨z1δ1 ,w1δ1⟩, . . . , ⟨znδn ,wnδn⟩) ∶ µX1 ,n(w1δ1 , . . . ,wnδn)) ⩽ 1}
= sup{L̃n(zw) ∶ µX1 ,n(w1δ1 , . . . ,wnδn)) ⩽ 1}

where zw = (z1w1 , . . . , znwn).
From (25) we know that µX1 ,n(w1δ1 , . . . ,wnδn)) = ∥w∥M(L ,X1) and therefore we ob-

tain (30).

To see (31), we use (30) and (24) to get

∥(δ1 , . . . , δn)∥(p ,q)n = ϕℓs ,ℓq(n) = n(1/q−1/s)
+

for 1/s = (1/p − 1/r)+

5.4. Corollary. Let E = L and X2 be maximal symmetric sequence spaces. Fen

∥(δ1 , . . . , δn)∥(ℓ1 ,X2)
n = ϕX′

2
,L(n).
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