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1. Introduction. Let R and N be the sets of reals and positive integers,
respectively. As usual S(X) (resp. B(X)) stands for the unit sphere (resp. the
closed unit ball) of a Banach space (X, ‖·‖X).

Let L0 = L0 (I,m) be a set of all (equivalence classes of) extended real valued
Lebesgue measurable functions on I, where I = [0, 1) or I = [0,∞) and m is the
Lebesgue measure on the real line. For x ∈ L0 we denote its distribution function
by

dx(λ) = m {t ∈ I : |x (t)| > λ} , λ ≥ 0,

and its decreasing rearrangement by

x∗ (t) = inf {λ > 0 : dx (λ) ≤ t} , t ≥ 0.

Given x ∈ L0 we denote the maximal function of x∗ by

x∗∗(t) =
1

t

∫ t

0

x∗(s)ds.
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It is well known that x∗ ≤ x∗∗, x∗∗ is non-increasing and subadditive, i.e.

(1) (x+ y)∗∗ ≤ x∗∗ + y∗∗

for any x, y ∈ L0. For the properties of dx, x∗ and x∗∗, the reader is referred to
[1, 21].

A Banach lattice (E, ‖·‖E) is called a Banach function space (or a Köthe function
space) if it is a sublattice of L0 satisfying the following conditions

(1) If x ∈ L0, y ∈ E and |x| ≤ |y| a.e., then x ∈ E and ‖x‖E ≤ ‖y‖E .

(2) There exists a strictly positive x ∈ E.

The set E+ = {x ∈ E : x ≥ 0} is called the positive cone of E. A Banach
function space is said to be strictly monotone (E ∈ (SM) for short) if for any
x, y ∈ E+ \ {0} such that x ≤ y and y 6= x, we have ‖x‖E < ‖y‖E .

A point x ∈ E is said to have an order continuous norm if for any sequence
(xn) in E such that 0 ≤ xn ≤ |x| and xn → 0 m-a.e. we have ‖xn‖E → 0. A Köthe
space E is called order continuous (E ∈ (OC) for short) if every element of E has
an order continuous norm (see [17, 22, 26]). As usual Ea stands for the subspace
of order continuous elements of E. Recall that a Banach function space E has the
Fatou property if for any sequence (xn) such that 0 ≤ xn ∈ E for all n ∈ N, x ∈ L0,
xn ↑ x a.e. with supn∈N ‖xn‖E <∞, we have x ∈ E and ‖xn‖E ↑ ‖x‖E .

A Banach function space E is said to be symmetric or rearrangement invariant
if for every x ∈ L0 and y ∈ E with dx = dy, we have x ∈ E and ‖x‖E = ‖y‖E .
For any symmetric Banach function space E denote by φE its fundamental func-
tion, that is φE(t) = ‖χ[0,t)‖E for any t ∈ I (see [1, 21]). It is well known that
every fundamental function is quasi-concave, i.e. φE(0) = 0, φE(t) is positive,
non-decreasing and t−1φE(t) is non-increasing for t ∈ (0,m(I)) . It is well-known
that quasi-concavity of fundamental function φE on I is equivalent to the fact
that φE(t) ≤ max(1, t/s)φE(s) for all s, t ∈ (0,m(I)). Moreover, for each fun-
damental function φE , there is an equivalent, concave function φ̃E , defined by
φ̃E(t) := infs∈(0,m(I))(1 + t

s )φE(s). Then φE(t) ≤ φ̃E(t) ≤ 2φE(t) for all t ∈ I.
For each symmetric function space E with the concave fundamental function φE

there are the smallest and the largest symmetric space with the same fundamental
function, namely the Lorentz space ΛφE and the Marcinkiewicz spaceMφE that will
be defined below.

For any symmetric space E we have L1 ∩ L∞ ⊂ E ⊂ L1 + L∞, where

L1 ∩ L∞ =
{
x : x ∈ L1 and x ∈ L∞

}

and L1+L∞ is the space which consists of all functions x in L0 that are representable
as a sum x = y + z of functions y in L1 and z in L∞. The spaces L1 ∩ L∞ and
L1 + L∞ are equipped with the norms

‖x‖L1∩L∞ = max {‖x‖L1 , ‖x‖L∞}

and
‖x‖L1+L∞ = inf

{
‖y‖1 + ‖z‖∞ : y + z = x, y ∈ L1, z ∈ L∞

}
,
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respectively.
The relation ≺ is defined for any x, y in L1 + L∞ by

x ≺ y ⇔ x∗∗(t) ≤ y∗∗(t) for all t > 0.

Recall that a symmetric space E is K-monotone (KM for short) or has the
majorant property if for any x ∈ L1 + L∞ and y ∈ E such that x ≺ y, we have
x ∈ E and ‖x‖E ≤ ‖y‖E .

It is well known that a symmetric space isK-monotone iff it is exact interpolation
space between L1 and L∞. Moreover, symmetric spaces with Fatou property as well
as separable symmetric spaces are K-monotone (see [21]).

A symmetric space E is called strictly K-monotone (SKM for short) if for any
x, y ∈ E such that x ≺ y and x∗ 6= y∗ we have ‖x‖E < ‖y‖E .

There is proved in [3] (Proposition 2.1) that every separable symmetric space
E with the Kadec-Klee property is strictly K-monotone. Moreover, in separable
Lorentz spaces, strict K-monotonicity is equivalent to the Kadec-Klee property (see
[3], Theorem 2.11).

H. Hudzik, A. Kamińska and M. Mastyło showed in [12] the following lemma.

Lemma 1.1 Every symmetric rotund and K-monotone space E is strictly K-mo-
notone.

The goal of this note is to discuss some sufficient and necessary conditions for
strict K-monotonicity of some important concrete symmetric spaces. By the way
we conclude that the converse of Lemma 1.1 is not true in general.

2. Results. Let ϕ be an Orlicz function, i.e. ϕ : R → [0,∞], ϕ is convex,
even, vanishing and continuous at zero, left continuous on (0,∞) and not identically
equal to zero. Denote

aϕ = sup {u ≥ 0 : ϕ (u) = 0} and bϕ = sup {u ≥ 0 : ϕ (u) <∞} .

We write ϕ > 0 when aϕ = 0 and ϕ <∞ if bϕ =∞. Denote by p the right hand side
derivative of ϕ with the domain restricted to the interval [0,∞). An Orlicz function
ϕ is said to be strictly convex (ϕ ∈ (SC) for short) if the inequality

ϕ

(
u+ v

2

)
<

1

2
ϕ(u) +

1

2
ϕ(v)

holds for any u, v ∈ [0,∞) such that u 6= v. Define on L0 a convex semimodular Iϕ
by

Iϕ(x) =

{
‖ϕ ◦ x‖E if ϕ ◦ x ∈ E,
∞ otherwise,

where (ϕ ◦ x) (t) = ϕ (x (t)) , t ∈ T. By the Calderón-Lozanovskĭı space Eϕ we mean

Eϕ = {x ∈ L0 : Iϕ(cx) <∞ for some c > 0}

equipped with so called Luxemburg-Nakano norm defined by

‖x‖Eϕ = inf {λ > 0 : Iϕ (x/λ) ≤ 1} .
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If E = L1, then Eϕ is the classical Orlicz function space Lϕ equipped with the
Luxemburg-Nakano norm. If E is a Lorentz function space, then Eϕ is the cor-
responding Orlicz-Lorentz function space equipped with the Luxemburg-Nakano
norm (see [10, 11, 18]). On the other hand, if ϕ(u) = up, 1 ≤ p <∞, then Eϕ is the
p-convexification E(p) of E with the norm ‖x‖E(p) = ‖|x|p‖1/pE . We still assume that
E is symmetric and consequently Eϕ is also symmetric. We also assume that E has
the Fatou property, whence Eϕ has also Fatou property, whence Eϕ is K-monotone
Banach space.

We say an Orlicz function ϕ satisfies condition ∆2(∞) if there exist K > 0
and u0 > 0 such that ϕ(u0) < ∞ and the inequality ϕ(2u) 6 Kϕ(u) holds for all
u ∈ [u0,∞). If there exists K > 0 such that ϕ(2u) 6 Kϕ(u) for all u > 0, then we
say that ϕ satisfies condition ∆2(R+). We write for short ϕ ∈ ∆2(∞), ϕ ∈ ∆2(R+),
respectively.

For a Köthe function space E and an Orlicz function ϕ we say that ϕ satisfies
condition ∆E

2 (ϕ ∈ ∆E
2 for short) if:

1) ϕ ∈ ∆2(∞) whenever I = [0, 1);
2) ϕ ∈ ∆2(R+) whenever I = [0,∞) (see [11]).

Proposition 2.1 (i) Suppose Ea 6= {0} . If Eϕ ∈ (SKM) , then ϕ > 0 and ϕ ∈
∆E

2 .
(ii) If ϕ > 0, ϕ ∈ ∆E

2 and E ∈ (SKM) , then Eϕ ∈ (SKM) .
(iii) If ϕ ∈ ∆E

2 , E ∈ (SM) and ϕ ∈ (SC), then Eϕ ∈ (SKM) .

Proof. (i) In order to prove that ϕ > 0 and ϕ ∈ ∆E
2 we need first to show

the equality bϕ = ∞. Let bϕ < ∞. Since Ea 6= {0} , the fundamental function
φE(t) = ‖χ(0,t)‖E , t ∈ I, has the Darboux property on [0, ‖χI‖E) (see [7]). Consider
the following cases.

a) Assume that ϕ(bϕ) <∞. Then there are numbers a < bϕ and t1, t2 ∈ I with
t1 < t2 such that

ϕ(bϕ)‖χ[0,t1)‖E + ϕ(a)‖χ[t1,t2)‖E < 1.

Define
x = bϕχ[0,t1) + aχ[t1,t2) and y = bϕχ[0,t1) +

a

2
χ[t1,t2).

Obviously, x = x∗, y = y∗, x∗ 6= y∗ and y∗∗ ≤ x∗∗. Since y ≤ x, we have

Iϕ(y) ≤ Iϕ(x) = ‖ϕ ◦ x‖E ≤ ϕ(bϕ)‖χ[0,t1)‖E + ϕ(a)‖χ[t1,t2)‖E < 1.

Moreover,

Iϕ

(x
λ

)
≥ Iϕ

( y
λ

)
=

∥∥∥∥ϕ ◦
(
bϕ
λ
χ[0,t1) +

a

2λ
χ[t1,t2)

)∥∥∥∥
E

≥
∥∥∥∥ϕ ◦

(
bϕ
λ
χ[0,t1)

)∥∥∥∥
E

= ϕ

(
bϕ
λ

)∥∥χ[0,t1)

∥∥
E

=∞

for any λ ∈ (0, 1) . Hence, by the definition of the norm ‖·‖Eϕ , we conclude that
‖x‖Eϕ = ‖y‖Eϕ = 1. Consequently, Eϕ 6∈ (SKM) .
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b) Let ϕ(bϕ) = ∞. For any n ∈ N define un =
(
1− 1

2n

)
bϕ. Then (ϕ(un)) is

an increasing sequence tending to infinity. By the Darboux property (see [7]), we
conclude that limt−→0+ ‖χ[0,t)‖E = 0. Take a decreasing sequence (sn) such that

sn <
1

2n
and ϕ(un)‖χ[0,sn)‖E <

1

2n

for every n ∈ N. Let tn =
∑∞
k=n sk for every n ∈ N. Setting

x =
∞∑

n=1

unχ[tn+1,tn) and y =
∞∑

n=2

unχ[tn+1,tn),

we have

Iϕ(y) ≤ Iϕ(x) = ‖ϕ ◦ x‖E ≤
∞∑

n=1

ϕ(un)‖χ[tn+1,tn)‖E =
∞∑

n=1

ϕ(un)‖χ[0,sn)‖E < 1

and

Iϕ

(x
λ

)
≥ Iϕ

( y
λ

)
=
∥∥∥ϕ ◦

( y
λ

)∥∥∥
E

=

∥∥∥∥∥ϕ ◦
( ∞∑

n=2

un
λ
χ[tn+1,tn)

)∥∥∥∥∥
E

≥
∥∥∥ϕ ◦

(uk
λ
χ[tk+1,tk)

)∥∥∥
E

= ϕ
(uk
λ

)
‖χ[0,sk)‖E

for any λ ∈ (0, 1) and any k ∈ N. Obviously, there is kλ ∈ N such that uk
λ > bϕ

for any k ≥ kλ. Consequently, ϕ
(
uk
λ

)
= ∞ for each k ≥ kλ. Hence Iϕ (x/λ) =

Iϕ (y/λ) = ∞ for any λ ∈ (0, 1) . Therefore, by the definition of the norm ‖·‖Eϕ ,
we conclude that ‖x‖Eϕ = ‖y‖Eϕ = 1.

On the other hand, it is easy to see that x∗ 6= y∗ and y∗∗ ≤ x∗∗. Thus Eϕ 6∈
(SKM) .

To prove that ϕ > 0, suppose conversely that aϕ > 0. Since bϕ =∞, there exists
b > aϕ such that ϕ(b)

∥∥χ[0, 1/2)

∥∥
E

= 1. Setting

x = bχ[0, 12 ) + aϕχ[ 1
2 ,1)

and y = bχ[0, 12 ) +
aϕ
2
χ[ 1

2 ,1)
,

we get x∗ 6= y∗ and y∗∗ ≤ x∗∗. Moreover, Iϕ(y) = Iϕ(x) = 1 and
min

{
Iϕ
(
x
λ

)
, Iϕ

(
y
λ

)}
> 1 for any λ ∈ (0, 1) . Hence, by the definition of the norm

‖·‖Eϕ , we have ‖x‖Eϕ = ‖y‖Eϕ = 1. Therefore, Eϕ 6∈ (SKM) .

Suppose ϕ /∈ ∆E
2 . We discuss only the case I = [0, 1). Then ϕ /∈ ∆2 (∞) and we

find an element x =
∑∞
i=1 uiχAi , where the sequence (ui) increases to ∞, (Ai) is a

sequence of Lebesgue measurable pairwise disjoint sets, Iϕ(x) < 1 and ‖x‖Eϕ = 1
(see Theorem 1 in [9]). Taking y =

∑∞
i=2 uiχAi we get x∗∗ ≥ y∗∗, x∗ 6= y∗ and

‖y‖Eϕ = 1. Thus Eϕ /∈ (SKM) .
(ii) Take x, y ∈ Eϕ, x∗∗ ≤ y∗∗ and x∗ 6= y∗. Without loss of generality we may

assume that ‖y‖Eϕ = 1. We have
∫ t

0

x∗(s)ds ≤
∫ t

0

y∗(s)ds
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for all t ∈ I. By property 18o from [21], page 100, (see also [1, page 56, Proposition
3.6]), ∫ t

0

x∗(s)z(s)ds ≤
∫ t

0

y∗(s)z(s)ds

for all t ∈ I and any z, provided z = z∗. Take z = ϕ◦x∗
x∗ χsupp x∗ that is non-

increasing as the composition of the non-decreasing function ϕ(u)
u and the non-

increasing function x∗. Therefore,
∫ t

0

ϕ (x∗(s)) ds ≤
∫ t

0

ϕ (y∗(s)) ds

for any t ∈ I. Set u = ϕ ◦ x and v = ϕ ◦ y. Then v ∈ E and ‖v‖E = 1, by ϕ ∈ ∆E
2 .

Moreover, by ϕ > 0,

u∗ = (ϕ ◦ x)
∗

= ϕ ◦ x∗ 6= ϕ ◦ y∗ = (ϕ ◦ y)
∗

= v∗.

Furthermore,

u∗∗ (t) =
1

t

∫ t

0

ϕ (x∗(s)) ds ≤ 1

t

∫ t

0

ϕ (y∗(s)) ds = v∗∗ (t)

for each t ∈ I. By strictK-monotonicity of E, we have u ∈ E and Iϕ(x) = ‖u‖E < 1.
Finally, by ϕ ∈ ∆E

2 , we obtain ‖x‖Eϕ < 1.
(iii). By Corollary 2.8 [18], Eϕ ∈ (SC). Now, applying Lemma 1.1, we conclude

that Eϕ ∈ (SKM).

Remark 2.2 The implication in Proposition 2.1 (ii) cannot be reversed, i.e. the
condition E ∈ (SKM) is not necessary for Eϕ ∈ (SKM). The suitable countere-
xample is given in Remark 2.11.

Corollary 2.3 Let p > 1. If E ∈ (SKM), then its p-convexification E(p) ∈
(SKM).

Notice that Proposition 2.1 (ii) is a generalization of Theorem 14 from [12].
Take

E = Λφ =

{
x ∈ L0 : ‖x‖Λφ =

∫

I

x∗(t)φ′(t)dt <∞
}

where φ is concave, increasing function with φ (0) = φ (0+) = 0. If φ′ is strictly
decreasing then Λφ ∈ (SKM) by Theorem 2.11 from [3]. Therefore, Theorem 14
in [12] follows from our Proposition 2.1 (ii) . Moreover, the assumptions ϕ > 0 and
ϕ <∞ are stated apriori in [12] and we proved that these conditions are necessary
for Eϕ ∈ (SKM).

The space

Mφ =

{
x ∈ L0 : ‖x‖Mφ

= sup
t∈I

φ(t)x∗∗(t) <∞
}
,
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where φ is quasi-concave function on I, is called the Marcinkiewicz function space.
Mφ is a symmetric Banach function space on I with the fundamental function
φMφ

(t) = φ(t). Moreover, for any symmetric Banach function space E we have

E
1
↪→MφE since

x∗∗(t) ≤ 1

t
‖x∗‖E‖χ[0,t]‖E′ = ‖x‖E

1

φE(t)

for any t ∈ I (see, for example, [1] or [21]).

Lemma 2.4 The Marcinkiewicz function space Mφ is not strictly K-monotone for
any quasi-concave function φ.

Proof. For any Banach function spaces E,F, we have that φE�F = φEφF , where
E � F denotes the pointwise product of E and F, i.e.

E � F = {xy : x ∈ E and y ∈ F}

equipped with a quasi norm defined by the formula

‖z‖E�F = inf {‖x‖E ‖y‖F : z = xy, x ∈ E, y ∈ F} .

By the well-known Lozanovskĭı factorization theorem, for any Banach function space
E we have that L1 ≡ E � E′, where E′ denotes the Köthe dual of E. Then, by
Theorem 2 from [20],

t = φL1(t) = φE�E′(t) = φE(t)φE′(t)

for any t ∈ I. Taking E = Λφ in the above inequality, we get φE′(t) = t
φ(t) , so

this function must be quasi-concave. Consequently, its derivative is non-increasing
(the same we may conclude from the well known equality (Λφ)

′
= M t/ϕ(t)). Let

a ∈ (0, 1) . Denote

x (t) =

{ (
t

φ(t)

)′
for t < a,

0 for t ≥ a
and

y (t) =

(
t

φ (t)

)′

for any t ∈ I. Then x = x∗. Moreover,
∫ t

0

x∗(s)ds =
t

φ (t)

for any t < a, whence

x∗∗ (t) =

{
1
φ(t) for t < a,
a

tφ(a) for t ≥ a.

Thus
‖x‖Mφ

= max

{
1, sup
t≥a

aφ (t)

tφ (a)

}
= 1,
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because φ (t) /t is non-increasing. Clearly, ‖y‖Mφ
= 1. Since x∗∗ ≤ y∗∗ and x∗ 6= y∗,

by the definition of strict K-monotonicity, the proof is finished.
By Lemma 2.4 and the transposition of Lemma 1.1, we get immediately.

Corollary 2.5 The Marcinkiewicz function space Mφ is not rotund.

Corollary 2.5 is also an immediate consequence of results obtained by A. Ka-
mińska and A.M. Parrish in [16]. Namely, they proved that the only extreme points

of the unit ball S(Mφ) are x ∈ S(Mφ) such that x∗(t) =
[

t
φ(t)

]′
for all t ∈ I.

Consider also another Marcinkiewicz spaceM∗φ than the spaceMφ defined above,
as

M∗φ = M∗φ(I) = {x ∈ L0(I) : ‖x‖M∗φ = sup
t∈I

φ(t)x∗(t) <∞}.

The Marcinkiewicz space M∗φ need not be a Banach space and always we have

Mφ
1
↪→M∗φ . Moreover, M∗φ

C
↪→Mφ if and only if

∫ t

0

1

φ(s)
ds ≤ C t

φ(t)

for all t ∈ I (see [20]). In general, M∗φ is quasi-Banach function space.

Lemma 2.6 Let I = [0, 1) or I = [0,∞). The Marcinkiewicz function space M∗φ is
not strictly K-monotone for any quasi-concave function φ.

Proof. It is enough to replace the function t
φ(t) by 1

φ(t) in the proof of Lemma
2.4.

The following result, related also to Lemma 1.1, describes relationship between
strict monotonicity and strict K-monotonicity.

Theorem 2.7 If (E, ‖·‖) a symmetric space is strictly K-monotone and has pro-
perty that x∗(∞) = 0 for every x ∈ E, then E is strictly monotone.

Proof Let x, y ∈ E, 0 ≤ x ≤ y and x 6= y. Since x∗(∞) = 0, by Lemma 3.2 [13], we
get x∗ ≤ y∗ and x∗ 6= y∗. Since x∗∗ ≤ y∗∗, x∗ 6= y∗ and, by strict K-monotonicity
of ‖·‖ , we obtain ‖x‖ < ‖y‖. �

Remark 2.8 Notice that the reverse conclusion does not hold, in other words even
uniform monotonicity does not imply strict K-monotonicity. Indeed, considering
L1[0, 1] and taking x = 2χ[0,1/2] and y = χ[0,1] we obtain x∗ 6= y∗, y∗∗ ≤ x∗∗ and
‖x‖L1 = ‖y‖L1 . Recall also that if E ∈ (OC), then x∗(∞) = 0 for any x ∈ E.
Moreover, the converse is not true (see [6], Lemma 2.5 and Remark 2.1).
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Remark 2.9 We claim that Theorem 2.7 is false when the assumption that x∗(∞) =
0 for any x ∈ E is omitted. Let’s focus on E = Λφ where φ is strictly concave and
φ(∞) < ∞. It is easy to observe that the proof of the implication (i) ⇒ (ii) of
Theorem 2.11 [3] does not require the assumption that for each x ∈ E we have
x∗(∞) = 0, and so Λφ is strictly K-monotone. Finally, by assumption φ(∞) < ∞
and, by Lemma 3.1 [18], it follows that the Lorentz space Λφ is not strictly mono-
tone, which proves our claim.

Suppose w is a measurable nonnegative weight function defined on I and 0 <
p <∞. Consider now the space

Γp,w =

{
x ∈ L0 : ‖x‖Γp,w =

(∫

I

(x∗∗(t))pw(t)dt

)1/p

<∞
}
.

In order to Γp,w 6= {0} we need to assume that w is from class Dp that is

W (s) :=

∫ s

0

w(t)dt <∞ and Wp(s) := sp
∫ α

s

t−pw(t)dt <∞

for all 0 < s ∈ I, where α = m (I). It is well known that
(
Γp,w, ‖ · ‖Γp,w

)
is a symme-

tric Banach (quasi Banach) function space when p ≥ 1 (if 0 < p < 1), respectively.
Moreover, Γp,w has the Fatou property. The spaces Γp,w were introduced by A.P.
Calderón in [2]. He was inspired by the classical Lorentz spaces

Λp,w =

{
x ∈ L0 : ‖x‖Λp,w =

(∫

I

(x∗(t))pw(t)dt

)1/p

<∞
}

introduced by G.G. Lorentz in [23]. The spaces Λp,w are p-convexification of the Lo-
rentz spaces Λφ (defined above) with φ′ = w. Γp,w is an interpolation space between
L1 and L∞ yielded by the Lions-Peetre K-method [1, 21]. Obviously, Γp,w ⊂ Λp,w.
The reverse inclusion Λp,w ⊂ Γp,w holds iff w ∈ Bp (cf. [15]). Moreover, the spaces
Γp,w and Λp,w are also related by Sawyer’s result (Theorem 1 in [24]; see also [25]),
which states that the Köthe dual of Λp,w, for 1 < p <∞ and

∫∞
0
w(t)dt =∞, coin-

cides with the space Γp′,w̃, where 1/p+ 1/p′ = 1 and w̃(t) =
(
t/
∫ t

0
w(s)ds

)p′
w(t).

The following result characterizes conditions under which the Lorentz space Γp,w
is strictly K-monotone. The deliberated property in Γp,w is expressed in notion of
W (u) =

∫ u
0
w(s)ds. Observe that W is strictly increasing if and only if for any

(a, b) ⊂ I we have m((a, b) ∩ supp(w)) > 0.

Theorem 2.10 Let 0 < p < ∞. The space Γp,w has strictly K-monotone quasi-
norm ‖·‖Γp,w if and only if W is strictly increasing.

Proof Necessity. Suppose conversely that there exists (β, γ) ⊂ I with β < γ
such that

(2) m((β, γ) ∩ supp(w)) = 0.
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Define
f = χ(0, β+γ

2 ), g = χ(0,β) +
1

2
χ(β,γ).

Then f = f∗ 6= g = g∗. Observe that

f∗∗(t) = χ(0, β+γ
2 )(t) +

β + γ

2t
χ[ β+γ

2 ,α)(t)

and
g∗∗(t) = χ(0,β](t) +

t+ β

2t
χ(β,γ)(t) +

β + γ

2t
χ[γ,α)(t),

for all t > 0, whence f∗∗ ≥ g∗∗. Moreover, by equality (2), we get

‖f‖pΓp,w =

∫ α

0

(
χ(0, β+γ

2 )(t) +
β + γ

2t
χ[ β+γ

2 ,α)(t)

)p
w(t)dt

=

∫ β

0

w(t)dt+

∫ α

γ

(
β + γ

2

)p
w(t)

tp
dt

and

‖g‖pΓp,w =

∫ α

0

(
χ(0,β](t) +

t+ β

2t
χ(β,γ)(t) +

β + γ

2t
χ[γ,α)(t)

)p
w(t)dt

=

∫ β

0

w(t)dt+

∫ α

γ

(
β + γ

2

)p
w(t)

tp
dt.

Consequently, ‖f‖Γp,w = ‖g‖Γp,w which provides that Γp,w is not strictlyK-monotone.
Sufficiency. Assume for the contrary that W is strictly increasing and Γp,w

is not strictly K-monotone. Then there exist f, g ∈ Γp,w such that f∗∗ ≤ g∗∗,
f∗ 6= g∗ and ‖f‖Γp,w = ‖g‖Γp,w . Notice that 2f∗∗ ≤ (f∗ + g∗)∗∗ ≤ 2g∗∗ and, by
K-monotonicity of ‖·‖Γp,w , we get

2 ‖f∗‖Γp,w ≤ ‖f
∗ + g∗‖Γp,w ≤ 2 ‖g∗‖Γp,w .

Since ‖f∗‖Γp,w = ‖g∗‖Γp,w , it follows that
∫

I

((
f∗ + g∗

2

)∗∗p
(t)− f∗∗p(t)

)
w(t)dt = 0.

On the other hand, m((a, b) ∩ supp(w)) > 0 for any (a, b) ⊂ (0, α) and
(
f∗ + g∗

2

)∗∗
(t)− f∗∗(t) =

1

2t

∫ t

0

(g∗(s)− f∗(s)) ds = 0

for all t > 0, which implies that f∗ = g∗ and this contradiction completes the
proof. �
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Remark 2.11 (i)The converse of Lemma 1.1 is not true in general. It is enough to
consider Γp,w[0,∞) with

∫∞
0
w(t)dt <∞ and the function W (u) =

∫ u
0
w(t)dt being

strictly increasing. By Theorem 2.10, Γp,w[0,∞) ∈ (SKM) and, by Theorem 3.2
from [5], we conclude, that Γp,w[0,∞) is not rotund.

(ii) Note that a strictly K-monotone function space may contain an isometric
copy of l∞. It is enough to consider the space Γp,w[0,∞) with W being strictly
increasing and W (∞) < ∞. Then, by Theorem 2.10, Γp,w[0,∞) has strictly K-
monotone quasi-norm ‖·‖Γp,w , although, by Proposition 2.1 from [5], it contains an
order-isometric copy of l∞. Clearly, l∞ is not strictly K-monotone. Since strict K-
monotonicity is established on the cone of decreasing rearrangements of Γp,w[0,∞),
possessing of order-isometric copy of l∞ does not contradict the discussed property.

(iii) The condition E ∈ (SKM) is not necessary for Eϕ ∈ (SKM) (cf. Pro-
position 2.1 (ii)). It is enough to take E = Γp,w[0,∞) with

∫∞
0
w(t)dt = ∞,

W being not strictly increasing and ϕ ∈ (SC). Then, by Theorem 2.2 in [5],
Γp,w[0,∞) ∈ (SM) and, by Theorem 2.10, Γp,w[0,∞) 6∈ (SKM). In view of Propo-
sition 2.1 (iii), Eϕ ∈ (SKM) , because ϕ ∈ (SC).

References

[1] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics Series
129, Academic Press Inc.,1988.

[2] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math.
24 (1964), 113–190.

[3] V. I. Chilin, P. G. Dodds, A. A. Sedaev, and F. A. Sukochev, Characterizations of Kadec-Klee
properties in symmetric spaces of measurable functions, Trans. Amer. Math. Soc. 348,12
(1996), 4895-4918.

[4] M. Ciesielski, A. Kamińska and R. Płuciennik, Gâteaux derivatives and their applications to
approximation in Lorentz spaces Γp,w., Math. Nachr. 282,9 (2009), 1242-1264.

[5] M. Ciesielski, A. Kamińska, P. Kolwicz and R. Płuciennik, Monotonicity and rotundity of
Lorentz spaces Γp,w, Nonlinear Analysis 75 (2012), 2713-2723.

[6] M. Ciesielski, P. Kolwicz and A. Panfil Local monotonicity structure of Lorentz spaces Γp,w,
J. Math. Anal. Appl. 409 (2014), 649-642.

[7] I. Dobrakov, On submeasures I, Diss. Math. 62 (1974), 1–35.

[8] H. Hudzik and A. Kamińska, Monotonicity properties of Lorentz spaces, Proc. Amer. Math.
Soc. 123,9, (1995), 2715-2721.

[9] H. Hudzik, A. Kamińska and M. Mastyło, Geometric properties of some Calderón-Lozanovskĭı
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spaces, Math. Nachr. 286,8-9 (2013), 876-907.

[20] P. Kolwicz, K. Leśnik and L. Maligranda, Pointwise products of some Banach function spaces
and factorization, J. Funct. Anal. 266,2 (2014), 616-659.

[21] S. G. Krein, Yu. I. Petunin and E. M. Semenov, Interpolation of linear operators, Nauka,
Moscow, 1978 (in Russian).

[22] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II. Function spaces, Springer-
Verlag, Berlin-New York, 1979.

[23] G. G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1, (1951) 411-429.

[24] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96,2
(1990), 145-158.

[25] V. D. Stepanov, The weighted Hardy’s inequality for nonincreasing functions, Tran. Amer.
Math. Soc. 338 (1993), 173–186.

[26] W. Wnuk, Banach lattices with order continuous norms, Polish Scientific Publisher PWN,
Warszawa 1999.

Maciej Ciesielski
Institute of Mathematics, Poznań University of Technology
Piotrowo 3A, 60-965 Poznań
E-mail: maciej.ciesielski@put.poznan.pl

Paweł Kolwicz
Institute of Mathematics, Poznań University of Technology
Piotrowo 3A, 60-965 Poznań
E-mail: pawel.kolwicz@put.poznan.pl

Ryszard Płuciennik
Institute of Mathematics, Poznań University of Technology
Piotrowo 3A, 60-965 Poznań
E-mail: ryszard.pluciennik@put.poznan.pl

(Received: 29.10.13)


