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1. Introduction. In this paper we state several convergence results for vector-
valued pramarts and convex weakly compact valued pramarts-sub-superpramarts in
a separable Banach space. There is an abundant bibliography on this subject, see [2,
9, 13, 15, 16, 18, 23, 24, 26, 27, 28, 29, 32] and the references therein. We provide here
a comprehensive presentation of the subject under consideration by using results for
real-valued submartingales-pramarts [18, 26], Convex Analysis [11], Young measures
[10] and other tools. In particular, this study contains famous a.s. norm convergence
results in [15, 16, 18, 23, 26, 28] dealing with vector-valued martingales and vector-
valued pramarts in the separable dual of a separable Banach space. Main results are
given in Sects 4-5-6-7-8-9 where several convergence results for the aforementioned
objects are presented. The paper is organized as follows. In section 2 we summarize
some basic properties of the Mosco convergence [25], Hausdorff topology and linear
topology [4] in the space of closed convex subsets in a Banach space. In section 3 we
state and summarize for reference the multivalued conditional expectation of closed
convex valued integrable multifunctions. In section 4 we provide some versions
of the biting compactness theorem for both the space L1

E of Bochner integrable
mappings in a separable Banach space E. These results are of importance in the
problem of identifying the limits in the pramart convergence problems and further
related results. In section 5 we provide the a.s. norm convergence for vector-valued
pramarts in separable Banach space via the biting compactness method. Section 6 is



224 Convergence results for a class of pramarts and superpramarts in Banach spaces

devoted to the a.s. convergence with respect to the linear topology for convex weakly
compact valued pramarts when the underlying Banach space is separable and its
strong dual is separable. Here we also focus on further convergence results related
to the structure of the pramarts, namely, the pointwise supremum property and the
a.s. pointwise convergence with respect to the Hausdorff excess. In section 7 we
discuss the notion of sub-superpramart for convex weakly compact valued mappings
and state new convergence results for these objects extending some results in the
literature dealing with convex weakly compact valued supermartingales. Section 8
is devoted to a.s. norm convergence of pramarts in the dual of a separable Banach
space. In section 9 we state an unusual convergence result for bounded positive
submartingales in separable order continuous Banach lattice via a renorming lattice
norm [15] and other related tools.Notations and preliminaries Throughout this paper
(Ω,F , P ) is a complete probability space, (Fn)n∈N is an increasing sequence of
sub σ-algebras of F such that F is the σ-algebra generated by ∪n∈NFn. E is
a separable Banach space and E∗ is its topological dual. Let BE (resp. BE∗)e
the closed unit ball of E (resp. E∗) and 2E the collection of all subsets of E.
Let c(E) (resp. cc(E)) (resp. cwk(E)) (resp. Rwk(E)) be the set of nonempty
closed (resp. closed convex)resp. convex weak compact) (resp. closed convex ball-
weakly compact ) subsets of E, here a closed convex subset in E is ball-weakly
compact if its intersection with any closed ball in E is weakly compact. For A ∈
cc(E), the distance function and the support function associated with A are defined
respectively by

d(x,A) = inf{‖x− y‖ y ∈ A}, (x ∈ E)

δ∗(x∗, A) = sup{〈x∗, y〉 : y ∈ A}, (x∗ ∈ E∗).
e also define

|A| = sup{||x|| : x ∈ A}.
Let us denote by eH the Hausdorff excess and dH the Hausdorff distance defined
on cc(E) associated with the topology of the norm in E. Given a sub-σ-algebra B
in Ω, a mapping X : Ω→ 2E is B-measurable if for every open set U in E the set

X−U := {ω ∈ Ω : X(ω) ∩ U 6= ∅}

is a member of B. A function f : Ω → E is a B-measurable selection of X if
f(ω) ∈ X(ω) for all ω ∈ Ω. A Castaing representation of X is a sequence (fn)n∈N
of B-measurable selections of X such that

X(ω) = cl{fn(ω), n ∈ N} ∀w ∈ Ω

where the closure is taken with respect to the topology of associated with the norm
in E. It is known that a nonempty closed-valued multifunction X : Ω → c(E)
is B-measurable iff it admits a Castaing representation. If B is complete, the B-
measurability is equivalent to the measurability in the sense of graph, namely the
graph of X is a member of B ⊗ B(E), here B(E) denotes the Borel tribe on E.
A cc(E)-valued B-measurable X : Ω → cc(E) is integrable if the set S1

X(B) of all
B-measurable and integrable selections of X is nonempty. We denote by L1

E(B)
the space of E-valued B-measurable and Bochner-integrable functions defined on Ω
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and L1
cwk(E)(B) the space of all B-measurable multifunctions X : Ω→ cwk(E), such

that |X| ∈ L1
R(B). A sequence (Xn)n∈N in L1

cwk(E)(F) is bounded (resp. uniformly
integrable) f the sequence (|Xn|)n∈N is bounded (resp. uniformly integrable) in
L1
R(F). ∼= Acc(E)−valuedequence(Xn)n∈Nosco-convergesMo to X∞ ∈ cc(E)f

X∞ = s-liXn = w-lsXn

where
s-liXn = {x ∈ E : ||xn − x|| → 0, xn ∈ Xn}

and
w-lsXn = {x ∈ E : x = w- lim

j→∞
xnj , xnj ∈ Xnj}

and s (resp. w) is the strong (resp. weak) topology in E. If (Xn)n∈N Mosco-
converges to X∞ in cc(E), we write

M - lim
n→∞

Xn = X∞.

A cc(E)-valuedequence (Xn)n∈Nonvergeso X∞ ∈ cc(E) with respect to the linear
topology τL [4]f

lim
n→∞

δ∗(x∗, Xn) = δ∗(x∗, X∞) ∀x∗ ∈ E∗.
lim
n→∞

d(x,Xn) = d(x,X∞) ∀x ∈ E.
Beer showed that the τL-topology is stronger than the Mosco-topology. We refer
to [11] for the theory of Measurable Multifunctions and Convex Analysis, and to
[18, 26] for basic theory of martingales and adapted sequences.

2. Multivalued conditional expectation theorem. Given a sub-σ-
algebra, B of F and an integrable F-measurable cc(E)-valued multifunction X :
Ω⇒ E: i.e. d(0, X) is integrable, Hiai and Umegaki [22] showed the existence of a
B-measurable cc(E)-valued integrable mutifunction, denoted by EBX such that

S1
EBX(B) = cl{EBf : f ∈ S1

X(F)}
the closure being taken in L1

E(Ω,A, P ); EBX is the multivalued conditional expec-
tation of X relative to B. If X ∈ L1

cwk(E)(F), and the strong dual E∗b is separable,
then EBX ∈ L1

cwk(E)(B) with S1
EBX(B) = {EBf : f ∈ S1

X(F)}. This result was
stated by the first author. A unified approach for general conditional expectation of
cc(E)-valued integrable multifunctions is given in [31] allowing to recover both the
cc(E)-valued conditional expectation of cc(E)-valued integrable multifunctions in
the sense of [22] and the cwk(E)-valued conditional expectation of cwk(E)-valued
integrably bounded multifunctions given in [5]. For more information on multiva-
lued conditional expectation and related subjects we refer to [1, 8, 11, 22, 31]. In the
context of this paper we present a specific version of conditional expectation that
we summarize below. A fairly general version of conditional expectation for closed
convex integrable random sets in the dual of a separable Fréchet space is obtained
by Valadier [31, Theorem 3]. Here we need only a special version of this result in
the dual space E∗s , where E∗s is the vector space E∗ endowed with the weak star
topology σ(E∗, E).
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Theorem 2.1 Let E be a separable Banach space and let Γ be a closed convex
valued integrable random set in E∗s : i.e. dE∗b (0,Γ) is integrable. Let B be a sub-σ-
algebra of F . Then there exist a closed convex B-measurable mapping Σ in E∗s such
that:
1) Σ is the smallest closed convex B-measurable mapping Θ such that ∀u ∈ S1

Γ,
EBu(ω) ∈ Θ(ω) a.s.
2) Σ is the unique closed convex B-measurable mapping Θ such that ∀v ∈ L∞E (B),

∫

Ω

δ∗(v,Γ)dP =

∫

Ω

δ∗(v,Θ)dP.

3) Σ is the unique closed convex B-measurable mapping such that S1
Σ = cl EB(S1

Γ))
where cl denotes the closure with respect to σ(L1

E∗(B), L∞E (B)).

Theorem 2.1 allows to treat the conditional expectation of convex weakly com-
pact valued integrably bounded mappings.

Proposition 2.2 Assume that E∗b is separable. Let B be a sub-σ-algebra of F and
an integrably bounded F-measurable cwk(E)-valued multifunction X : Ω⇒ E. Then
there is a unique (for the equality a.s.) B-measurable cwk(E)-valued multifunction
Y satisfying the property

(∗) ∀v ∈ L∞E∗(B),

∫

Ω

δ∗(v(ω), Y (ω))P (dω) =

∫

Ω

δ∗(v(ω), X(ω))P (dω).

EBX := Y is the conditional expectation of X.

Proof Indeed if F := E∗b is separable and if Γ is a convex weakly compact valued
measurable mapping in E with Γ(ω) ⊂ α(ω)BE where α ∈ L1

R, then applying
Theorem 2.1 to F ∗ gives Σ(ω) = EBΓ(ω) ⊂ E∗∗ with Σ(ω) ⊂ EBα(ω)BE∗∗ where
BE∗∗ is the closed unit ball in E∗∗. As S1

Γ is σ(L1
E , L

∞
E∗) compact, S1

Σ = EB(S1
Γ) ⊂

L1
E . Whence Σ(ω) ⊂ E a.s. See [31, Remark 4, page 10] for details. �

3. Biting Compactness Theorem. We state and summarize some biting
compactness convergence results in the space L1

E(F) which will be used in the
problem of identification of the limit occurring in the convergence of pramarts in
Banach space.

Theorem 3.1 Suppose that E is a separable and (Xn)n∈N is bounded and Rwk(E)-
tight sequence L1

E(F), that is, for every ε > 0, there is a Rwk(E)-valued measurable
mapping Lε : Ω⇒ E such that

∀n ∈ N, P ([ω ∈ Ω : Xn(ω) 6∈ Lε(ω)]) ≤ ε.
Then there exist an increasing sequence (Ap)p∈N in F with limp→∞ P (Ap) = 1, a
subsequence (Zn)n∈N of (Xn)n∈N and X∞ ∈ L1

E(F) such that, for each p ∈ N, and
for each g ∈ L∞E∗(Ap ∩ F), the following holds:

lim
n→∞

∫

Ap

〈g, Zn〉 dP =

∫

Ap

〈g,X∞〉 dP.
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Proof As (Xn)n∈N is bounded in L1
E(F), a well-known biting argument cf. [6, 10,

18, 19, 28] provides an increasing sequence (Ap)p∈N in F such that limp→∞ P (Ap) =
1, a subsequence (Yn)n∈N of (Xn)n∈N such that the restrictions (Yn|Ap) to each
Ap is uniformly integrable, so that, by the tightness condition (Yn|Ap) is relatively
weakly compact in L1

E(F ∩ Ap) (cf. [3], Theorem 1). By successive applications of
this weak compactness result, for each p ∈ N, we provide a sequence (Y np )n∈N such
that (Y np+1)n∈N is extracted from (Y np )n∈N and Wp ∈ L1

E(Ap ∩ F) and that

lim
n→∞

∫

Ap

〈g, Y np 〉dP =

∫

Ap

〈g,Wp〉dP

for each g ∈ L∞E∗(Ap∩F). Let us set Zn = Y nn for all n ∈ N. Then, for each p ∈ N,
(Zn|Ap) converges σ(L1

E , L
∞
E∗) to Wp ∈ L1

E(Ap ∩ F). As (Ap)p∈N is increasing
Wp = Wp+1 a.s. on Ap. Let us define X∞ = Wp if ω ∈ Ap and X∞ = 0 elsewhere.
Clearly X∞ is F measurable and belongs to L1

E(F). Indeed, we have

(∗)
∫

Ω

|X∞|dP =

∫

∪pAp
|X∞|dP

= sup
p∈N

∫

Ap

|X∞|dP = sup
p∈N

∫

Ap

|Wp|dP. �

But, for each p ∈ N, (Zn|Ap)i∈N converges σ(L1
E , L

∞
E∗) to Wp, by the weak lower

semicontinuity of the functional f 7→
∫
|f |dP (f ∈ L1

E) we deduce that

(∗∗)
∫

Ap

|Wp|dP ≤ lim inf
n

∫

Ap

|Zn|dP ≤ sup
n

∫

Ω

||Xn(ω)||dP (ω) <∞.

By (∗) and (∗∗) it follows that
∫

Ω
|X∞|dP < ∞. Coming back to Zn and X∞ we

have
lim
n→∞

∫

Ap

〈g, Zn〉 dP =

∫

Ap

〈g,Wp〉 dP =

∫

Ap

〈g,X∞〉 dP

for each p ∈ N and for each g ∈ L∞E∗(Ap ∩ F).

There is a useful variant

Theorem 3.2 Suppose that E∗b is a separable, E has the Radon Nikodym property,
(Xn)n∈N is a bounded sequence L1

E(F) such that for each A ∈ F , the set {
∫
A
XndP :

n ∈ N} is relatively weakly compact in E. Then there exist an increasing sequence
(Ap)p∈N in F such that limp→∞ P (Ap) = 1, a subsequence (Zn)n∈N of (Xn)n∈N
and X∞ ∈ L1

E(F) such that, for each p ∈ N and for each g ∈ L∞E∗(Ap ∩ F), the
following holds:

lim
n→∞

∫

Ap

〈g, Zn〉 dP =

∫

Ap

〈g,X∞〉 dP.

Proof As (Xn)n∈N is bounded in L1
E(F), using a biting argument cf. [6, 10, 18,

19, 28] provides an increasing sequence (Ap)p∈N in F such that limp→∞ P (Ap) = 1,
a subsequence (Yn)n∈N of (Xn)n∈N such that the restrictions (Yn|Ap) to each Ap
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is uniformly integrable, so that, by our assumption and the Dunford theorem ([17],
Theorem 1, p. 101), (Yn|Ap) is relatively weakly compact in L1

E(F). The proof can
be finished as that of Theorem 4.2. �

The following result is easy, since it can be applied directly in the convergence
of convex weakly compact valued pramart, we will provide some details of proof for
the sake of completeness. See ([18], Theorem IX.1.1) for a related result dealing
with L1

E-bounded sequences.

Theorem 3.3 Assume that E∗b is separable, E has the Radon-Nikodym property
and (Xn)n∈N is a sequence in L1

cwk(E)(F) with the following properties
(i) |Xn| ≤ g for all n ∈ N where g is a positive integrable,
(ii) For each A ∈ F , the set {

∫
A
XndP : n ∈ N} is relatively weakly compact in E,

(iii) For every x∗ ∈ E∗, and for every A ∈ F , limn→∞ δ∗(x∗,
∫
A
XndP ) exists,1

(iv) For every x∗ ∈ E∗, (δ∗(x∗, Xn)) converges a.s. to an integrable function ϕx∗ .
Then there exists X ∈ L1

cwk(E)(F) such that

lim
n→∞

δ∗(x∗, Xn) = δ∗(x∗, X)

a.s. for all x∗ ∈ BE∗ .
Proof We may assume that for each A ∈ F , {

∫
A
XndP : n ∈ N} is included in a

convex weakly compact subset KA. Set

l(A, x∗) := lim
n→∞

∫

A

δ∗(x∗, Xn)dP = lim
n→∞

δ∗(x∗,
∫

A

XndP )

for A ∈ F and x∗ ∈ BE∗ . Then for any fixed A ∈ F , x∗ 7→ l(A, x∗) is the support
function of a convex weakly compact set M(A) ⊂ KA. Set

δ∗(x∗,M(A)) = l(A, x∗), x∗ ∈ E∗, A ∈ F .
Then M : F → cwk(E) is a convex weakly compact valued multimeasure [14, 20]
with bounded variation, that is A 7→ δ∗(x∗,M(A)) is a real-valued measure and
there exists a finite measure ν on F such that M(A) ⊂ ν(A)BE for all A ∈ F and
that ν is absolutely continuous with respect to P . Indeed we have |δ∗(x∗,M(A))| ≤
ν(A) :=

∫
A
gdP for all x∗ ∈ BE∗ and for all A ∈ F so that |M(A)| ≤ ν(A) =∫

A
gdP for all A ∈ F . Since E has the RNP, the multimeasure M admits a density

X ∈ L1
cwk(E)(F) [7, 14], that isM(A) =

∫
A
XdP for A ∈ F , so that δ∗(x∗,M(A)) =∫

A
δ∗(x∗, X)dP for all x∗ ∈ E∗ and for all A ∈ F . Whence we have

lim
n→∞

∫

A

δ∗(x∗, Xn)dP =

∫

A

δ∗(x∗, X)dP =

∫

A

ϕx∗dP

for every A ∈ F and for every x∗ ∈ BE∗ . Let D∗1 = (e∗m) be a dense sequence in BE∗
with respect to the Mackey topology. Then we deduce that limn→∞ δ∗(e∗m, Xn) =
δ∗(e∗m, X) a.s. for all m ∈ N so that

lim
n→∞

δ∗(x∗, Xn) = δ∗(x∗, X)

1Actually (i) and (iv) imply (iii).
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a.s. for all x∗ ∈ BE∗ . �

4. Vector-valued pramarts. In this section we present some applications
of the biting compactness results to a.s. convergence for vector-valued pramarts in
separable Banach space. Let us recall some needed notions in the pramart conver-
gence.

Definition 4.1 A sequence (Xn,Fn)n∈N in L1
E(F) is an adapted sequence if each

Xn is Fn-measurable. An adapted sequence (Xn,Fn)n∈N in L1
E(F) is a pramart if,

for every ε > 0, there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([ ||EFσXτ −Xσ|| > ε]) ≤ ε

where T denotes the set of bounded stopping times.

We also need the classical notion of subpramarts.

Definition 4.2 An adapted sequence (Xn,Fn)n∈N in L1
R(F) is a subpramart, if

for every ε > 0 there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([Xσ − EFσXτ > ε]) ≤ ε

We need the following definition of uniform sequence of subpramarts that is due
to Egghe ([18], definition VIII.1.14).

Definition 4.3 Let (Xm
n ,Fn) (m ∈ N) be a sequence of real-valued subpramarts

in L1
R(F). It is called a uniform sequence of subpramarts if for every ε > 0, there

is σ0 ∈ T such that if σ ∈ T (σ0) and τ ∈ T (σ), then

P ([ sup
m∈N

(Xm
σ − EFσXm

τ ) > ε]) ≤ ε.

Theorem 4.4 Assume that E is separable. Let (Xn,Fn)n∈N be a bounded and
Rwk(E)-tight pramart in L1

E(F). Then there is X∞ ∈ L1
E(F) such that

lim
n→∞

||EFnX∞ −Xn|| = 0 a.s.

so that
lim
n→∞

||Xn −X∞|| = 0 a.s.

Proof the proof is divided in two steps.
Step 1. For any sub-σ-algebra B of F and for any X ∈ L1

E∗s
(F), for any x ∈ E, we

have

(5.1.1) ||x− EBX|| ≤ EB||x−X|| a.s.



230 Convergence results for a class of pramarts and superpramarts in Banach spaces

Next we deduce that, for every x ∈ E, (||x − Xn||)n∈N is a positive L1-bounded
subpramart. Indeed using (5.1.1) we have

||x−Xσ|| − EFσ ||x−Xτ || ≤ ||x−Xσ|| − ||x− EFσXτ ||
≤ ||EFσXτ −Xσ||.

Therefore (|Xn|)n∈N is a L1-bounded positive subpramart in L1
R(F). So (|Xn|)n∈N

pointwise converges a.s. to an integrable function by Millet-Sucheston theorem, see
([18], Theorem VIII.1.11). Consequently (Xn)n∈N is pointwise bounded:
supn∈N |Xn| < ∞ a.s. As each (〈x∗, Xn〉) (x∗ ∈ BE∗) is a L1-bounded pramart
in L1

R(F), it converges a.s. to an integrable function mx∗ ∈ L1
R(F). By Theorem

4.1, there exist an increasing sequence (Ap)p∈N in F such that limp→∞ P (Ap) = 1,
a subsequence (X ′n)n∈N of (Xn)n∈N and X∞ ∈ L1

E(F) such that, for each p ∈ N,
for each A ∈ Ap ∩ F and for each x∗ ∈ E∗, the following holds:

lim
n→∞

∫

A

〈x∗, X ′n〉 =

∫

A

mx∗dP =

∫

A

〈x∗, X∞〉 dP.

Now let (e∗m)m∈N be a dense sequence in the closed unit ball BE∗ of E with respect
to the weak star topology. By identifying the limits, we have that

lim
n→∞

〈e∗m, Xn〉 = 〈e∗m, X∞〉 a.s. ∀m ∈ N.

Step 2. For each x ∈ E and for each m ∈ N, we have

〈e∗m, EFσ (x−Xτ )〉 = EFσ 〈e∗m, (x−Xτ )〉

so that

|〈e∗m, EFσ (x−Xτ )〉| = |EFσ 〈e∗m, (x−Xτ )〉| ≤ EFσ |〈e∗m, (x−Xτ )〉|.

We deduce the estimation

(5.1.2) |〈e∗m, (x−Xσ)〉| − EFσ |〈e∗m, (x−Xτ )〉|
≤ |〈e∗m, (x−Xσ)〉| − |〈e∗m, EFσ (x−Xτ )〉|

≤ |〈e∗m, (x−Xσ)− EFσ (x−Xτ )〉|
≤ ||EFσXτ −Xσ||.

Since this estimation holds for all m ∈ N and (Xn)n∈N is a L1-bounded pramart,
by (5.1.2) we see that the sequence

((|〈e∗m, x−Xn〉|)n∈N)m∈N

is a positive L1-bounded uniform subpramart in the sense of the definition 5.3.
Applying Lemma VIII.1.15 in [18] to this sequence yields

lim
n→∞

||x−Xn|| = lim
n→∞

sup
m∈N

|〈e∗m, x−Xn〉| = sup
m∈N

lim
n→∞

〈e∗m, x−Xn〉|

= sup
m∈N

|〈e∗m, x−X∞〉| = ||x−X∞|| a.s.
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which proves (b). We finish the proof as follows. We have

||EFnX∞ −Xn|| = sup
m∈N

|〈e∗m, EFnX∞〉 − 〈e∗m, Xn〉|.

It is clear that (〈e∗m, EFnX∞〉−〈em, Xn〉)n∈N are real-valued L1-bounded pramarts
in L1

R(F) which converges a.s. to 0 when n → ∞. Since (Yn = EFnX∞)n∈N is a
martingale: Yσ = EFσYτ , σ ≤ τ , by similar computation as in (5.1.2) we see that

((|〈e∗m, EFnX∞〉 − 〈e∗m, Xn〉|)n∈N)m∈N

is a uniform sequence of positive L1-bounded subpramarts. Now applying Lemma
VIII.1.15 in [18] to this sequence yields

lim
n→∞

||EFnX∞ −Xn|| = lim
n→∞

sup
m∈N

|〈e∗m, EFnX∞〉 − 〈e∗m, Xn〉|

= sup
m∈N

lim
n→∞

|〈e∗m, EFnX∞〉 − 〈e∗m, Xn〉| = 0 a.s. �

By Levy’s theorem
||EFnX∞ −X∞|| → 0 a.s.

we deduce that
lim
n→∞

||Xn −X∞|| = 0 a.s.

Here is a corollary of Theorem 5.1.

Theorem 4.5 Assume that E is separable. Let (Xn,Fn)n∈N be a bounded pramart
in L1

E(F) satisfying: there is a closed convex ball-weakly compact valued measurable
mapping K : Ω → E such that Xn(ω) ∈ K(ω) for all n ∈ N and for all ω ∈ Ω.
Then there is X∞ ∈ L1

E(F) such that

lim
n→∞

||EFnX∞ −Xn|| = 0 a.s.

so that
lim
n→∞

||Xn −X∞|| = 0 a.s.

Remark. Actually one can replace closed convex ball-weakly compact by convex
weakly compact since by the proof of Theorem 5.1,

r(ω) := sup
n∈N
||Xn(ω)|| <∞ a.s.

See also Corollary 6.1.
Using Theorem 4.2 and repeating the arguments of the proof of Theorem 5.1 we

have a useful variant

Theorem 4.6 Suppose that E∗b is a separable, E has the Radon Nikodym property,
(Xn) is a bounded pramart in L1

E(F) such that: for each A ∈ F , the set {
∫
A
XndP :

n ∈ N} is relatively weakly compact in E. Then there is X∞ ∈ L1
E(F) such that

lim
n→∞

||EFnX∞ −Xn|| = 0 a.s.
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so that
lim
n→∞

||Xn −X∞|| = 0 a.s.

In particular, if E is separable reflexive, Theorem 5.1 and 5.3 are reduced to

Theorem 4.7 Assume that E is reflexive separable. Let (Xn,Fn)n∈N be a bounded
pramart in L1

E(F). Then there is X∞ ∈ L1
E(F) such that

lim
n→∞

||EFnX∞ −Xn|| = 0 a.s.

so that
lim
n→∞

||Xn −X∞|| = 0 a.s.

5. Multivalued Pramarts. From now we will assume in the majority
of this section that the strong dual E∗b is separable in order to ensure the weak
compactness of conditional expectation of convex weakly compact valued random
sets. This assumption can be removed in some particular cases. Before going further
we state and summarize some properties of convex weakly compact valued pramarts.
Let us recall and summarize some definitions.

Definition 5.1 A sequence (Xn,Fn)n∈N in L1
cwk(E)(F) is an adapted sequence

if each Xn is Fn-measurable. An adapted sequence (Xn,Fn)n∈N in L1
cwk(E)(F) is

a pramart if, for every ε > 0, there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([dH(EFσXτ , Xσ) > ε]) ≤ ε

where T denotes the set of bounded stopping times and dH the Hausdorff distance
defined on cc(E).

It is clear that if (Xn,Fn)n∈N is a pramart in L1
cwk(E)(F), then, for each x∗ ∈

BE∗ , the adapted sequence (δ∗(x∗, Xn),Fn)n∈N is a real-valued pramart in L1
R(F)

because
|δ∗(x∗, EFσXτ )− δ∗(x∗, Xσ)| ≤ dH(EFσXτ , Xσ).

It is clear that this definition covers the notion of vector-valued pramarts in L1
E(F).

For the convenience of the reader, we recall and summarize some useful results.
See [9, 13].

Lemma 5.2 Assume that E∗b is separable and D∗1 := (e∗m)m∈N is a dense sequence
in BE∗ with respect to the Mackey topology. Let (Xn,Fn)n∈N be a pramart in
L1
cwk(E)(F). Then the following holds:

[δ∗(e∗m, Xσ)+ − EFσδ∗(e∗m, Xτ )+] ≤ [δ∗(e∗m, Xσ)− EFσδ∗(e∗m, Xτ )]+

≤ |δ∗(e∗m, Xσ)− EFσδ∗(e∗m, Xτ )| ≤ dH(Xσ, E
FσXτ ) a.s.



C. Castaing, A. Salvadori 233

for all m ∈ N , for all σ, τ ∈ T, τ ≥ σ. Similarly

[δ∗(e∗m, Xσ)− − EFσδ∗(e∗m, Xτ )−] ≤ [δ∗(e∗m, Xσ)− EFσδ∗(e∗m, Xτ )]−

≤ |δ∗(e∗m, Xσ)− EFσδ∗(e∗m, Xτ )| ≤ dH(Xσ, E
FσXτ ) a.s.

for all m ∈ N , for all σ, τ ∈ T, τ ≥ σ.

Proof For each m,n ∈ N, let us set

ϕm,n(ω) := δ∗(e∗m, Xn(ω)).

Let σ, τ ∈ T, τ ≥ σ and let us set

ϕm,τ (ω) := δ∗(e∗m, Xτ (ω)).

ϕm,σ(ω) := δ∗(e∗m, Xσ(ω)).

From Jensen inequality we have

|EFσϕm,τ (ω)| ≤ EFσ |ϕm,τ |(ω) a.s.

Then for a.s ω ∈ Ω we have that

δ∗(e∗m, Xσ)+ − EFσδ∗(e∗m, Xτ )+ = ϕ+
m,σ − EFσ (ϕ+

m,τ )

=
1

2
[ϕm,σ + |ϕm,σ| − EFσ (ϕm,τ )− EFσ (|ϕm,τ |)]

≤ 1

2
[ϕm,σ − EFσ (ϕm,τ ) + |ϕm,σ| − |EFσ (ϕm,τ )|]

≤ 1

2
[ϕm,σ − EFσ (ϕm,τ ) + |ϕm,σ − EFσ (ϕm,τ )|]

= [ϕm,σ − EFσ (ϕm,τ )]+

= [δ∗(e∗m, Xσ)− δ∗(e∗m, EFσXτ )]+

≤ |δ∗(e∗m, Xσ)− δ∗(e∗m, EFσXτ )| ≤ dH(Xσ, E
FσXτ ).

Similarly

δ∗(e∗m, Xσ)− − EFσδ∗(e∗m, Xτ )− = ϕ−m,σ − EFσ (ϕ−m,τ )

=
1

2
[|ϕm,σ| − ϕm,σ + EFσ (ϕm,τ )− EFσ (|ϕm,τ |)]

≤ 1

2
[|ϕm,σ| − ϕm,σ + EFσ (ϕm,τ )− |EFσ (ϕm,τ )|]

≤ 1

2
[−(ϕm,σ − EFσ (ϕm,τ )) + |ϕm,σ − EFσ (ϕm,τ )|]

= [ϕm,σ − EFσ (ϕm,τ )]− = [δ∗(e∗m, Xσ)− δ∗(e∗m, EFσXτ )]−

≤ |δ∗(e∗m, Xσ)− δ∗(e∗m, EFσXτ )| ≤ dH(Xσ, E
FσXτ ). �

By repeating the techniques of Lemma 6.1 we have the following results.



234 Convergence results for a class of pramarts and superpramarts in Banach spaces

Lemma 5.3 Assume that E∗b is separable and D∗1 := (e∗m)m∈N is a dense sequence
in BE∗ with respect to the Mackey topology. Let x ∈ E and let (Xn,Fn)n∈N be a
pramart in L1

cwk(E)(F). Then the following holds:

(〈e∗m, x〉 − δ∗(e∗m, Xσ))+ − EFσ (〈e∗m, x〉 − δ∗(e∗m, Xτ ))+

≤ [δ∗(e∗m, E
FσXτ )− δ∗(e∗m, Xσ)]+

≤ |δ∗(e∗m, EFσXτ )− δ∗(e∗m, Xσ)| ≤ dH(EFσXτ , Xσ)

a.s. for all m ∈ N, σ, τ ∈ T, τ ≥ σ. Similarly

(〈e∗m, x〉 − δ∗(e∗m, Xσ))− − EFσ (〈e∗m, x〉 − δ∗(e∗m, Xτ ))−

≤ [δ∗(e∗m, E
FσXτ )− δ∗(e∗m, Xσ)]−

≤ |δ∗(e∗m, EFσXτ )− δ∗(e∗m, Xσ)| ≤ dH(EFσXτ , Xσ)

a.s. for all m ∈ N, σ, τ ∈ T, τ ≥ σ.

Lemma 5.4 Assume that E∗b is separable and D∗1 := (e∗m)m∈N is a dense sequence
in BE∗ with respect to the Mackey topology. Let (Xn,Fn)n∈N be a pramart in
L1
cwk(E)(F) and (Yn,Fn)n∈N be a martingale in L1

cwk(E)(F). Then the following
holds:

[δ∗(e∗m, Yσ)− δ∗(e∗mXσ)]+ − EFσ [δ∗(e∗m, Yτ )− δ∗(e∗m, Xτ )]+

≤ [δ∗(e∗m, E
FσXτ )− δ∗(e∗m, Xσ)]+

≤ |δ∗(e∗m, EFσXτ )− δ∗(e∗m, Xσ)| ≤ dH(EFσXτ , Xσ)

a.s. for all m ∈ N, σ, τ ∈ T, τ ≥ σ. Similarly

[δ∗(e∗m, Yσ)− δ∗(e∗mXσ)]− − EFσ [δ∗(e∗m, Yτ )− δ∗(e∗m, Xτ )]−

≤ [δ∗(e∗m, E
FσXτ )− δ∗(e∗m, Xσ)]−

≤ |δ∗(e∗m, EFσXτ )− δ∗(e∗m, Xσ)| ≤ dH(EFσXτ , Xσ)

a.s. for all m ∈ N, σ, τ ∈ T, τ ≥ σ.
Proof Since (Yn,Fn)n∈N is a martingale in L1

cwk(E)(F) we have

Yσ = EFσYτ ∀σ, τ ∈ T, τ ≥ σ.
Hence the result follows by applying again the techniques of Lemma 6.1. �

Remarks. According to this definition, Lemma 6.1-6.2-6.3 show that the sequence

((δ∗(e∗m, Xn)+
n∈N)m∈N, ((δ∗(e∗m, Xn)−n∈N)m∈N

(([〈e∗m, x〉 − δ∗(e∗m, Xn)]+)n∈N)m∈N, (([〈e∗m, x〉 − δ∗(e∗m, Xn)]−)n∈N)m∈N

(([δ∗(e∗m, Yn)− δ∗(e∗m, Xn)]+)n∈N)m∈N, (([δ∗(e∗m, Yn)− δ∗(e∗m, Xn)]−)n∈N)m∈N

are uniform sequence of positive subpramarts.
Now we proceed to convergence results for cwk(E)-valued pramarts.
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Lemma 5.5 Assume that E is separable. Let x ∈ E and (Xn,Fn)n∈N be a pramart
in L1

cwk(E)(F) such that supn∈N
∫

Ω
d(x,Xn)dP < ∞. Then (d(x,Xn))n∈N is a

positive L1-bounded subpramart converging a.s. to an integrable function in L1
R(F).

Proof By ([21], Lemma 4.3) for any sub-σ-algebra B of F and for any X ∈
L1
cwk(E)(F) we have

(6.4.1) d(x,EBX) ≤ EBd(x,X) a.s.

Since (Xn,Fn)n∈N is a pramart, for every ε > 0, there is σε ∈ T such that

(6.4.2) σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([dH(Xσ, E
FσXτ ) > ε]) ≤ ε.

By (6.4.1) for σ, τ ∈ T, τ ≥ σ ≥ σε, we have

(5.4.3) d(x,Xσ)− EFσd(x,Xτ ) ≤ d(x,Xσ)− d(x,EFσXτ ) a.s.

By (6.4.3) and ([4], Lemma 1.5.1, p. 29) we deduce

(6.4.4) d(x,Xσ)− EFσd(x,Xτ ) ≤ sup
x∈E
|d(x,Xσ)− d(x,EFσXτ )|

= dH(Xσ, E
FσXτ ) a.s.

Using (6.4.4) and (6.4.2) and the definition 5.2 (of subpramart) it is easy to conclude
that (d(x,Xn))n∈N is a positive L1-bounded subpramart which converges a.s. to
an integrable function by virtue of Millet-Sucheston theorem, see ([18], Theorem
VIII.1.11). �

Remarks. In particular, Lemma 6.1 and Lemma 6.4 show that if (Xn) is an L1-
bounded real-valued pramart, then (X+

n ), (X−n ) and (|Xn|) are L1-bounded positive
subpramarts.

Here is a useful corollary.

Corollary 5.6 Assume that E is separable, (Xn,Fn)n∈N is a pramart in L1
E(F)

such that supn∈N
∫

Ω
|Xn|dP <∞. Then (|Xn|)n∈N is a positive L1-bounded subpra-

mart converging a.s. to an integrable function in L1
R(F), so that supn∈N |Xn| <∞

a.s.

The following result is new, it generalizes a partial result obtained in ([9], The-
orem 4.1).

Theorem 5.7 Assume that E∗b is separable. Let (Xn,Fn)n∈N be a bounded pramart
in L1

cwk(E)(F) and X∞ ∈ L1
cwk(E)(F) such that

lim
n→∞

δ∗(x∗, Xn) = δ∗(x∗, X∞) a.s. ∀x∗ ∈ BE∗ .

Then the following hold:
(a) limn→∞ dH(EFnX∞, Xn) = 0 a.s.
(b) M - limn→∞Xn = X∞ a.s.
(c) limn→∞ d(x,Xn) = d(x,X∞) a.s. ∀x ∈ E.
(d) supn∈N |Xn| <∞ a.s.
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Proof (a) limn→∞ dH(EFnX∞, Xn) = 0 a.s.
Let D∗1 = (e∗m)m∈N be a dense sequence in the closed unit ball BE∗ with respect to
the Mackey topology τ(E∗, E). We have

dH(EFnX∞, Xn) = sup
m∈N

|δ∗(e∗m, EFnX∞)− δ∗(e∗m, Xn)|.

It is clear that ((δ∗(e∗m, E
FnX∞) − δ∗(e∗m, Xn))n∈N constitutes a real-valued L1-

bounded pramart which converges a.s. to 0. Since (EFnX∞) is a regular martingale,
Lemma 6.3 shows that

(([δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]+)n∈N)m∈N

is a uniform sequence of positive L1-bounded subpramarts and so is the sequence

(([δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]−)n∈N)m∈N.

Note that
|δ∗(e∗m, EFnX∞)− δ∗(e∗m, Xn)| =
[δ∗(e∗m, E

FnX∞)− δ∗(e∗m, Xn)]+

+[δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]−.

Now applying Lemma VIII.1.15 in [18] to both these positive and negative part of
subpramarts yields

sup
m∈N

[δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]+ →

sup
m∈N

lim
n→∞

[δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]+ = 0 a.s.

and

sup
m∈N

[δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]− →

sup
m∈N

lim
n→∞

[δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]− = 0 a.s.

so that
sup
m∈N

|δ∗(e∗m, EFnX∞)− δ∗(e∗m, Xn)| → 0 a.s.

that is
dH(EFnX∞, Xn)→ 0 a.s.

(b) M - limn→∞EFnX∞ = X∞ a.s. See Theorem 3.1 in [1].
(c) By (a), (b) and Proposition 3.1 in [1], we conclude that

M - lim
n→∞

Xn = X∞ a.s.

Further (a), (b) and Proposition 3.2 in [1] imply (c)

lim
n→∞

d(x,Xn(ω)) = d(x,X∞(ω)) a.s. ∀x ∈ E.
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Property (d) follows by using the same lines as those of (a). Lemma 5.1 shows that
both the positive part (δ∗(e∗m, Xn)+)n∈N)m∈N and the negative part
(δ∗(e∗m, Xn)−n∈N)m∈N are positive uniform subpramarts so that by applying Lemma
VIII.1.15 in [18] to these sequences yields

lim
n→∞

sup
x∗∈BE∗

δ∗(x∗, Xn)+ = lim
n→∞

sup
m∈N

δ∗(e∗m, Xn)+

= sup
m∈N

lim
n→∞

δ∗(e∗m, Xn)+ = sup
m∈N

δ∗(e∗m, X∞)+

= sup
x∗∈BE∗

δ∗(x∗, X∞)+ a.s.

and

lim
n→∞

sup
x∗∈BE∗

δ∗(x∗, Xn)− = lim
n→∞

sup
m∈N

δ∗(e∗m, Xn)−

= sup
m∈N

lim
n→∞

δ∗(e∗m, Xn)− = sup
m∈N

δ∗(e∗m, X∞)−

= sup
x∗∈BE∗

δ∗(x∗, X∞)− a.s. �

There is a variant of the Wijsmann convergence result in Theorem 6.1(c).

Theorem 5.8 Assume that E∗b is separable. Let (Xn,Fn)n∈N be a pramart in
L1
cwk(E)(F) satisfying the following condition:

(i) For each x ∈ E, supn∈N
∫

Ω
d(x,Xn)dP <∞

(ii) X∞ ⊂ s-liXn

(iii) limn→∞ δ∗(x∗, Xn) = δ∗(x∗, X∞) a.s. ∀x∗ ∈ BE∗ .
Then the following holds

lim
n→∞

d(x,Xn) = d(x,X∞) a.s. ∀x ∈ E

Proof From (i) and Lemma 6.4, for each x ∈ E, (d(x,Xn))n∈N is a L1-bounded
subpramart which converges a.s. to an integrable function fx. Let D∗1 = {e∗j : j ∈
N} be a dense sequence in BE∗ with respect to the Mackey topology. Then we have

d(x,Xn) = sup
j∈N

[〈e∗j , x〉 − δ∗(e∗j , Xn)]

and
d(x,X∞) = sup

j∈N
[〈e∗j , x〉 − δ∗(e∗j , X∞)].

By (iii) we see that, for each j ∈ N, the sequence (〈e∗j , x〉−δ∗(e∗j , Xn))n∈N converges
a.s. to 〈e∗j , x〉 − δ∗(e∗j , X∞). Passing to the limit when n goes to ∞ in the equality

〈e∗j , x〉 − δ∗(e∗j , Xn) ≤ d(x,Xn)

yields
d(x,X∞) ≤ fx a.s.
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From Tsukada ([30], Theorem 2.2) and (ii) we deduce that

lim sup
n→∞

d(x,Xn) ≤ d(x, s-liXn) ≤ d(x,X∞).

Whence fx ≤ d(x,X∞) a.s. for each x ∈ E, so that

lim
n→∞

d(x,Xn) = d(x,X∞) a.s.

for each x ∈ E. By equicontinuity of the distance function and the sepa rability of
E we conclude that

lim
n→∞

d(x,Xn) = d(x,X∞) a.s.

The aforementioned results show that cwk(E)-valued pramarts enjoy good co-
nvergence properties. We finish this section with an application illustrating this
fact.

Theorem 5.9 Assume that E∗b is separable, E has the Radon-Nikodym property
and (Xn)n∈N is pramart in L1

cwk(E)(F) with the following properties:
(i) |Xn| ≤ g for all n ∈ N where g is a positive integrable,
(ii) For each A ∈ F , the set {

∫
A
XndP : n ∈ N} is relatively weakly compact in E.

Then there exists X ∈ L1
cwk(E)(F) such that

(a) limn→∞ dH(EFnX,Xn) = 0 a.s.
(b) M - limn→∞Xn = X a.s.
(c) limn→∞ d(x,Xn) = d(x,X) a.s. ∀x ∈ E.

Proof Let D∗1 = (e∗m)m∈N be a dense sequence in BE∗ with respect to the Mackey
topology. By virtue of Theorem 6.1 we only need to prove that there exists X ∈
L1
cwk(E)(F) such that

lim
n→∞

δ∗(e∗m, Xn) = δ∗(e∗m, X) a.s.

for all m ∈ N. Since (Xn)n∈N is bounded in L1
cwk(E)(F)

sup
n∈N

∫

Ω

|Xn|dP =

∫

Ω

g|dP <∞

for each x∗ ∈ BE∗ , the L1-bounded pramart (δ∗(x∗, Xn))n∈N converges a.s. to an
integrable function mx∗ ∈ L1

R(F). Taking account of this fact and the condition
(i), we may apply Theorem 4.3 to the bounded sequence (Xn,Fn)n∈N which gives
X ∈ L1

cwk(E)(F) such that

lim
n→∞

δ∗(x∗, Xn) = mx∗ = δ∗(x∗, X) a.s.

for each x∗ ∈ BE∗ . Hence
lim
n→∞

δ∗(e∗m, Xn) = δ∗(e∗m, X) a.s.

for all m ∈ N. Now (a)-(b)-(c) follows as in the proof of Theorem 6.1. �
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Remarks. We guess that Theorem 6.3 is true for uniformly integrable cwk(E)-
valued pramarts.

6. A new class of superpramarts in L1
cwk(E)(F). In this section we intro-

duce a new class of sub-superpramarts including the classical sub-supermartingales,
see [8, 21] and the references therein. Let E be a separable Banach with separable
dual space E∗b . Let us denote by eH(A,B) the Hausdorff excess associated with
the norm of E between two convex weakly compact subsets A,B of E. By ([11],
Theorem II-18) we have that

eH(A,B) = sup
x∗∈BE∗

[δ∗(x∗, A)− δ∗(x∗, B)]

Definition 6.1 An adapted sequence (Xn)n∈N in L1
cwk(E)(F) is a cwk(E)-valued

subpramart if for every ε > 0 there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([eH(Xσ, E
FσXτ ) > ε]) ≤ ε.

(a) If (Xn)n∈N is a cwk(E)-valued subpramart, then, for every x∗ ∈ BE∗ ,
(δ∗(x∗, Xn))n∈N is a subpramart, since

δ∗(x∗, Xσ)− EFσδ∗(x∗, Xτ ) = δ∗(x∗, Xσ)− δ∗(x∗, EFσXτ )

≤ eH(Xσ, E
FσXτ ).

(b) it is clear that a cwk(E)-valued submartingale

Xσ ⊂ EFσXτ ,∀τ ≥ σ
is a cwk(E)-valued subpramart, further, according to Definition 5.2 a real-valued
submartingale: Xσ ≤ EFσXτ ,∀τ ≥ σ is a real-valued subpramart.

Definition 6.2 An adapted sequence (Xn)n∈N in L1
cwk(E)(F) is a cwk(E)-valued

superpramart if for every ε > 0 there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([eH(EFσXτ , Xσ) > ε]) ≤ ε.
(a) If (Xn)n∈N is a cwk(E)-valued superpramart, then, for every x∗ ∈ BE∗ ,
(δ∗(x∗, Xn))n∈N is a superpramart, since

EFσδ∗(x∗, Xτ )− δ∗(x∗, Xσ) = δ∗(x∗, EFσXτ )− δ∗(x∗, Xσ)

≤ eH(EFσXτ , Xσ).

(b) it is clear that a cwk(E)-valued supermartingale

EFσXτ ⊂ Xσ, ∀σ ≤ τ
is a cwk(E)-valued superpramart. A real-valued supermartingale

EFσXτ ≤ Xσ, ∀σ ≤ τ
is a real-valued superpramart.

The following results follow from the definition 7.2 and the techniques developed
in Lemma 6.1–6.3.
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Lemma 6.3 Assume that E∗b is separable and D∗1 := (e∗m)m∈N is a dense sequence
in BE∗ with respect to the Mackey topology. Let x ∈ E and let (Xn,Fn)n∈N be a
bounded superpramart in L1

cwk(E)(F). Then the following holds:

(〈e∗m, x〉 − δ∗(e∗m, Xσ))+ − EFσ (〈e∗m, x〉 − δ∗(e∗m, Xτ ))+

≤ [δ∗(em, E
FσXτ )− δ∗(em, Xσ)]+

≤ eH(EFσXτ , Xσ)

a.s. for all m ∈ N, σ, τ ∈ T, τ ≥ σ. Consequently, the sequence (([〈e∗m, x〉 −
δ∗(e∗m, Xn)]+)n∈N)m∈N is uniform sequence of L1-bounded subpramarts.

Lemma 6.4 Assume that E∗b is separable and D∗1 := (e∗m)m∈N is a dense sequence
in BE∗ with respect to the Mackey topology. Let (Xn,Fn)n∈N be a bounded super-
pramart in L1

cwk(E)(F) and (Yn,Fn)n∈N is a bounded martingale in L1
cwk(E)(F).

Then the following holds:

(δ∗(e∗m, Yσ)− δ∗(e∗m, Xσ))+ − EFσ (δ∗(e∗m, Yτ )− δ∗(e∗m, Xτ ))+

≤ [δ∗(e∗m, E
FσXτ )− δ∗(e∗m, Xσ)]+

≤ eH(EFσXτ , Xσ)

a.s. for all m ∈ N, σ, τ ∈ T, τ ≥ σ. Consequently, the sequence

(([δ∗(e∗m, Yn)− δ∗(e∗m, Xn)]+)n∈N)m∈N

is uniform sequence of L1-bounded subpramarts.
Similarly, let A ∈ cwk(E), then the following holds:

(δ∗(e∗m, A)− δ∗(e∗m, Xσ))+ − EFσ (δ∗(e∗m, A)− δ∗(e∗m, Xτ ))+

≤ [δ∗(e∗m, E
FσXτ )− δ∗(e∗m, Xσ)]+

≤ eH(EFσXτ , Xσ)

a.s. for all m ∈ N, σ, τ ∈ T, τ ≥ σ. Consequently, the sequence

(([δ∗(e∗m, A)− δ∗(e∗m, Xn)]+)n∈N)m∈N

is uniform sequence of L1-bounded subpramarts.

Theorem 6.5 Suppose that E∗b is separable, D∗1 = (e∗m)m∈N is a dense sequence
in BE∗ with respect to the Mackey topology and (Xn) is a bounded superpramart in
L1
cwk(E)(F) satisfying:

(∗)There is a mapping K ∈ L1
cwk(E)(F) such that Xn(ω) ⊂ K(ω) ∀n ∈ N,∀ω ∈ Ω.

Then there exist X∞ ∈ L1
cwk(E)(F) such that

(a) limn→∞ δ∗(e∗m, Xn) = δ∗(e∗m, X∞) a.s. ∀m ∈ N
(b) limn→∞ d(x,Xn) = d(x,X∞) a.s. ∀x ∈ E
(c) limn→∞ eH(EFnX∞, Xn) = 0 a.s.
(d) limn→∞ eH(A,Xn) = e(A,X∞) a.s. for each A ∈ cwk(E).
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Proof Since (Xn)n∈N is bounded in L1
cwk(E)(F), for each x∗ ∈ BE∗ , the L1-

bounded superpramart (δ∗(x∗, Xn))n∈N converges a.s. to an integrable function
ϕx∗ ∈ L1

R(F). Thanks to (∗) and the boundedness assumption: supn
∫

Ω
|Xn|dP <

∞, arguing as in Proposition 5.1 in [21] yields X∞ ∈ L1
cwk(E)(F) such that

lim
n→∞

δ∗(e∗m, Xn) = ϕe∗m = δ∗(e∗m, X∞) a.s. ∀m ∈ N.

(b) By Lemma 7.1, (([〈e∗m, x〉 − δ∗(e∗m, Xn)]+)n∈N)m∈N is uniform sequence of L1-
bounded subpramarts. Applying Lemma VIII.1.15 in [18] to this sequence and using
(a) yields

lim
n→∞

d(x,Xn) = lim
n→∞

sup
x∗∈BE∗

[〈x∗, x〉 − δ∗(x∗, Xn)]+

= lim
n→∞

sup
m∈N

[〈e∗m, x〉 − δ∗(e∗m, Xn)]+

= sup
m∈N

lim
n→∞

[〈e∗m, x〉 − δ∗(e∗m, Xn)]+

= sup
m∈N

[〈e∗m, x〉 − δ∗(e∗m, X∞)]+

= sup
x∗∈BE∗

[〈x∗, x〉 − δ∗(x∗, X∞)]+ = d(x,X∞)

(c) By Lemma 7.2 the sequence

(([δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]+)n∈N)m∈N

is uniform sequence of L1-bounded subpramarts. Applying Lemma VIII.1.15 in [18]
to this sequence and using (a) yields

lim
n→∞

e(EFnX∞, Xn) = lim
n→∞

sup
x∗∈BE∗

[δ∗(x∗, EFnX∞)− δ∗(x∗, Xn)]+

= lim
n→∞

sup
m∈N

[δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]+

= sup
m∈N

lim
n→∞

[δ∗(e∗m, E
FnX∞)− δ∗(e∗m, Xn)]+ = 0 a.s.

(d) Similarly, let A ∈ cwk(E), by Lemma 7.3

(([δ∗(e∗m, A)− δ∗(e∗m, Xn)]+)n∈N)m∈N

is uniform sequence of L1-bounded subpramarts. By Lemma VIII.1.15 in [18], we
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have

lim
n→∞

eH(A,Xn) = lim
n→∞

sup
x∗∈BE∗

[δ∗(x∗, A)− δ∗(x∗, Xn)]+

= lim
n→∞

sup
m∈N

[δ∗(e∗m, A)− δ∗(e∗m, Xn)]+

= sup
m∈N

lim
n→∞

[δ∗(e∗m, A)− δ∗(e∗m, Xn)]+

= sup
m∈N

[δ∗(e∗m, A)− δ∗(e∗m, X∞)]+

= sup
x∗∈BE∗

[δ∗(x∗, A)− δ∗(x∗, X∞)]+

= e(A,X∞) a.s. �

Here is a variant of Theorem 7.1.

Theorem 6.6 Assume that E∗b is separable, E has the Radon-Nikodym property,
D∗1 = (e∗m)m∈N is a dense sequence in BE∗ with respect to the Mackey topology and
(Xn) is a bounded superpramart in L1

cwk(E)(F) with the following properties:
(i) |Xn| ≤ g for all n ∈ N where g is a positive integrable,
(ii) For each A ∈ F , the set {

∫
A
XndP : n ∈ N} is relatively weakly compact in E.

Then there exists X ∈ L1
cwk(E)(F) such that

(a) limn→∞ δ∗(e∗m, Xn) = δ∗(e∗m, X) a.s. ∀m ∈ N
(b) limn→∞ d(x,Xn) = d(x,X) a.s. ∀x ∈ E
(c) limn→∞ eH(EFnX,Xn) = 0 a.s.
(d) limn→∞ eH(A,Xn) = e(A,X) a.s. for each A ∈ cwk(E).

Proof By virtue of Theorem 7.1 we only need to prove that there exists X ∈
L1
cwk(E)(F) such that

lim
n→∞

δ∗(e∗m, Xn) = δ∗(e∗m, X) a.s.

for all m ∈ N. Since (Xn)n∈N is bounded in L1
cwk(E)(F)

sup
n∈N

∫

Ω

|Xn|dP =

∫

Ω

g|dP <∞

for each x∗ ∈ BE∗ , the L1-bounded superpramart (δ∗(x∗, Xn))n∈N converges a.s. to
an integrable function mx∗ ∈ L1

R(F). Taking account of this fact and the condition
(i), we may apply Theorem 4.3 to the bounded sequence (Xn,Fn)n∈N which gives
X ∈ L1

cwk(E)(F) such that

lim
n→∞

δ∗(x∗, Xn) = mx∗ = δ∗(x∗, X) a.s.

for each x∗ ∈ BE∗ . Hence

lim
n→∞

δ∗(e∗m, Xn) = δ∗(e∗m, X) a.s.

for all m ∈ N. Now (a)-(b)-(c)-(d) follows as in the proof of Theorem 7.1. �
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It is possible to introduce a general class of closed convex integrable superpra-
marts taking account into the existence of conditional expectation of cc(E)-valued
integrable mappings, cf. Section 3.

Definition 6.7 Let E be a separable Banach spaces. An adapted sequence (Xn)n∈N
of cc(E)-valued integrable mappings is a cc(E)-valued superpramart if for every
ε > 0 there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([eH(EFσXτ , Xσ) > ε]) ≤ ε

here eH denotes the Hausdorff excess on closed convex subsets. Actually only few
partial results of convergence on these classes of superpramarts are available.
Applications. Assume that E is separable and reflexive.
1) Let Y ∈ L1

cwk(E)(F) and let (Zn) is a bounded superpramart in L1
cwk(E)(F),

then (Xn = EFnY + Zn) is a cwk(E)-valued superpramart.
(2) Let (zn) be an L1-bounded pramart in L1

E(F), and let h ∈ S1
Y where S1

Y is the
set of integrable selections of Y , then (fn = EFnh + zn) is a pramart selection of
(EFnY + zn).
(3) Let X be a closed convex integrable (S1

X 6= ∅) multifunction, then closed convex
valued martingale (Xn = EFnX) is an unbounded superpramart in the sense of the
definition 7.3 because

EFσXτ = Xσ, τ, σ ∈ T, σ ≤ τ.
Now, let f ∈ S1

X and fn = EFnf , then, for each k ∈ N, the truncated multifunction

Xk
n := Xn ∩ [fn + EFn(|f |+ k)BE ]

constitutes a bounded cwk(E)-valued superpramart in L1
cwk(E)(F) satisfying the τL-

convergence in given Theorem 7.1. This allows prove that (Xn) Mosco converges
to a closed convex integrable multifunction X∞. See [8, 21] for details. A closed
convex integrable supermartingale

(Xn,Fn)) : EFnXn+1 ⊂ Xn,∀n ∈ N

is a closed convex integrable superpramart:

EFσXτ ⊂ Xσ; τ, σ ∈ T, σ ≤ τ.

The Mosco convergence for unbounded closed convex integrable superpramart is an
open problem.
(4) If (Xn) is L1-bounded pramart in L1

E(F), then Xn = Yn+Zn where Yn is a L1-
bounded regular martingale in L1

E(F) and Zn is a L1-bounded pramart in L1
E(F)

and where (|Zn|) is a subpramart converging a.s. to 0, see Theorem 5.4. Taking
account of the above decomposition, it is convenient to introduce the following
definition. An L1-bounded adapted sequence in L1

E(F) is a pseudo-pramart in
L1
E(F), if Xn = Yn+Zn where (Yn) is an L1-bounded regular martingale in L1

E(F)
and where (Zn) is a L1-bounded in L1

E(F) such that |Zn| ≤ Tn where Tn is a
positive subpramart converging a.s. to 0.
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(5) In the context of Theorem 7.2 (with E∗b separable and E having the RNP), we
show that the convergence

lim
n→∞

eH(EFnX,Xn) = 0

in Theorem 7.2(c) gives the existence of pseudo-pramart selections for the bounded
cwk(E)-valued superpramart (Xn) in L1

cwk(E)(F) therein. Let f ∈ S1
X . Then

(EFnf) is a regular martingale selection of the cwk(E)-valued martingale EFnX,
further by the definition of the excess eH , we have d(EFnf,Xn) ≤ eH(EFnX,Xn).
By Lemma 7.2 and the Remark VIII.1.16 1 in [18], it is ready shown that the
sequence (eH(EFnX,Xn)) is a subpramart. Take a Fn-measurable selection gn of
Xn such that

||EFnf − gn|| = d(EFnf,Xn) ≤ e(EFnX,Xn).

Let us set hn = gn − EFnf . Then |hn| ≤ eH(EFnX,Xn) → 0 a.s. Consequently,
the above construction shows that (gn = EFnf + hn) is a pseudo-pramart selection
of Xn. The above considerations hold with Theorem 7.1.
(6) Existence of pramart selection for closed convex integrable superpramart in an
open problem. The above result is a pramart variant of the martingale selection
theorem for closed convex integrable supermartingale. See e.g. [12, 21, 22] and the
references therein.

7. Pramarts in the dual space. We present a new pramart convergence
problem in a dual space of a separable Banach space. The following lemma is of
importance in Gelfand integration and will be used in the pramart convergence in
this context. We denote by L1

E∗s
(F) the space of all scalarly integrable (Gelfand-

integrable) mappings X : Ω → E∗s such that ||X||E∗b ∈ L1
R(F), here ||.||E∗b (or ||.||

for simplicity) denotes the norm of E∗b . If E∗b is separable, we denote by L1
E∗b

(F)

the space of all Lebesgue-Bochner-integrable mappings X : Ω→ E∗b .

Lemma 7.1 Assume that E is separable Banach space and (Xn)n∈N is a sequence
in L1

E∗s
(F) satisfying

(i) Xn(ω) ∈ r(ω)BE∗ for all n ∈ N and for all ω ∈ Ω where r is a positive measu-
rable function,
(ii) supn

∫
Ω
||Xn(ω)||dP (ω) <∞.

Then there exist an increasing sequence of measurable sets (Ap)p∈N with
limp→∞ P (Ap) = 1, a subsequence (Zn)n∈N of (Xn)n∈N and a scalarly integrable
mapping X∞ such that, for each p ∈ N, for each g ∈ L∞E (Ap ∩ F)

lim
n→∞

∫

Ap

〈g, Zn〉dP =

∫

Ap

〈g,X∞〉dP.

Proof By (i) there is an increasing sequence of measurable sets (Ap)p∈N with
limp→∞ P (Ap) = 1 such that the restriction of Xn to each Ap is bounded: Xn|Ap ⊂
rpBE∗ for n ∈ N and for all ω ∈ Ap where rp is a positive constant. By ([10],
Corollary 6.5.10), for each p ∈ N, the sequence (Xn|Ap)n∈N is relatively sequentially
σ(L1

E∗s
, L∞E ) compact. By successive applications of this weak compactness result,
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for each p ∈ N, we provide a sequence (Y np )n∈N such that (Y np+1)n∈N is extracted
from (Y np )n∈N and Wp ∈ L1

E∗s
(Ap ∩ F) and that

lim
n→∞

∫

Ap

〈g, Y np 〉dP =

∫

Ap

〈g,Wp〉dP

Let us set Zn = Y nn for all n ∈ N. Then, for each p ∈ N, (Zn|Ap) converges
σ(L1

E∗s
, L∞E ) to Wp ∈ L1

E∗s
(Ap ∩ F). As (Ap)p∈N is increasing Wp = Wp+1 a.s.

on Ap. Let us X∞ = Wp if ω ∈ Ap and X∞ = 0 elsewhere. Clearly X∞ is F
measurable and scalarly integrable. Indeed, for each e ∈ E, we have

(∗)
∫

Ω

|〈e,X∞〉|dP =

∫

∪pAp
|〈e,X∞〉|dP

= sup
p∈N

∫

Ap

|〈e,X∞〉|dP = sup
p∈N

∫

Ap

|〈e,Wp〉|dP

But, for each p ∈ N, Wp is the σ(L1
E∗s
, L∞E )-limit ot the sequence (Zn|Ap)n∈N, in

particular, (〈e, Zn|Ap〉)n∈N converges σ(L1, L∞) to 〈e,Wp〉, it follows that

(∗∗)
∫

Ap

|〈e,Wp〉|dP ≤ lim inf
n

∫

Ap

|〈e, Zn〉|dP

≤ sup
n∈N

∫

Ω

||e||E ||Xn(ω)||dP (ω) <∞

By (∗) − (∗∗) and (ii), we see that X∞ is scalarly integrable with the required
property ∫

Ap

〈g,X∞〉dP =

∫

Ap

〈g,Wp〉dP = lim
n→∞

∫

Ap

〈g, Zn〉dP

for all g ∈ L∞E (Ap ∩ F). �

Thanks to the existence and the properties of conditional expectation for closed
convex Gelfand-integrable mappings (see Theorem 3.1) and the specific properties
of the space L1

E∗s
(F), it is possible to introduce the notions of martingales and

pramarts in this space. See [8, 9] for more details. An adapted sequence (Xn)n∈N
in L1

E∗s
(F) is

- a bounded martingale if supn∈N
∫

Ω
||Xn(ω)||E∗b dP (ω) < ∞ and Xn = EFnXn+1,

∀n ∈ N,
- a bounded pramart if supn

∫
Ω
||Xn(ω)||E∗b dP (ω) <∞ and if, for every ε > 0, there

is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ > σε ⇒ P ([ ||EFσXτ −Xσ||E∗b > ε]) ≤ ε.

Theorem 7.2 Assume that E is separable Banach space and (Xn)n∈N is a bounded
pramart in L1

E∗s
(F), then there exists X∞ ∈ L1

E∗s
(F) such that

(a) limn→∞〈x,Xn〉 = 〈x,X∞〉 a.s. for all x ∈ BE,
(b) limn→∞ ||x∗ −Xn|| = ||x∗ −X∞|| a.s. for each x∗ ∈ E∗,
(c) limn→∞ ||EFnX∞ −Xn|| = 0 a.s.
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Proof The proof is divided in two steps.
Step 1. Arguing as in Lemma 5.1 in ([8] it is not difficult to prove that for any
sub-σ-algebra B of F and for any w∗-closed convex F-measurable and integrable
multifunction Γ : Ω⇒ E∗ and for any x∗ ∈ E∗, we have

dE∗b (x∗, EBΓ) ≤ EBdE∗b (x∗,Γ) a.s.

In particular, if X ∈ L1
E∗s

(F), for any x∗ ∈ E∗, we have

(8.1.1) ||x∗ − EBX|| ≤ EB||x∗ −X|| a.s.

here ||.|| := ||.||E∗b denotes the dual norm of E∗b . Next we deduce that, for every
x∗ ∈ E∗, (||x∗ − Xn||)n∈N is a positive L1-bounded subpramart. Indeed using
(8.1.1) we have

||x∗ −Xσ|| − EFσ ||x∗ −Xτ || ≤ ||x∗ −Xσ|| − ||x∗ − EFσXτ ||
≤ ||EFσXτ −Xσ||.

Therefore (|Xn|)n∈N is a L1-bounded positive subpramart in L1
R(F). So (|Xn|)n∈N

pointwise converges a.s. to an integrable function by Millet-Sucheston theorem, see
([18], Theorem VIII.1.11). Consequently (Xn)n∈N satisfies the pointwise supremum
property: supn∈N |Xn| < ∞ a.s. For simplicity we may assume that Xn(ω) ⊂
r(ω)BE∗ for all n ∈ N and for all ω ∈ Ω where r is a positive measurable mapping.
By Lemma 8.1 there exist an increasing sequence of measurable set (Ap)p∈N with
limp→∞ P (Ap) = 1, a subsequence (Zn)n∈N of (Xn)n∈N and a scalarly integrable
(alias Gelfand-integrable) mapping X∞ such that, for each p ∈ N,

lim
n→∞

∫

Ap

〈g, Zn〉dP =

∫

Ap

〈g,X∞〉dP

for all g ∈ L∞E (Ap ∩ F).
Step 2. For each x ∈ E, (〈x,Xn〉)n∈N is a real-valued L1-bounded pramart, so it
converges a.s. to an integrable function ϕx

lim
n→∞

〈x,Xn〉 = ϕx a.s.

so that using the compactness result given in Step 1 and identifying the limits we
get

lim
n→∞

〈x,Xn〉 = 〈x,X∞〉 a.s.

for each x ∈ BE . Now let (em)m∈N be a dense sequence in the closed unit ball BE
of E. Then we have

lim
n→∞

〈em, Xn〉 = 〈em, X∞〉 a.s. ∀m ∈ N.

Since supn∈N |Xn| <∞ a.s, by density we get (a)

lim
n→∞

〈x,Xn〉 = 〈x,X∞〉 a.s. ∀x ∈ BE .
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For each x∗ ∈ E∗ and for each m ∈ N, we have

〈em, EFσ (x∗ −Xτ )〉 = EFσ 〈em, (x∗ −Xτ )〉
so that

|〈em, EFσ (x∗ −Xτ )〉| = |EFσ 〈em, (x∗ −Xτ )〉| ≤ EFσ |〈em, (x∗ −Xτ )〉|.
We deduce the estimation

(8.1.2) |〈em, (x∗ −Xσ)〉| − EFσ |〈em, (x∗ −Xτ )〉|
≤ |〈em, (x∗ −Xσ)〉| − |〈em, EFσ (x∗ −Xτ )〉|

≤ |〈em, (x∗ −Xσ)− EFσ (x∗ −Xτ )〉|
≤ ||EFσXτ −Xσ||.

Since this estimation holds for all m ∈ N and (Xn)n∈N is a bounded pramart, by
(8.1.2) we see that the sequence

((|〈em, x∗ −Xn〉|)n∈N)m∈N

is a positive L1-bounded uniform subpramart in the sense of the definition 5.3.
Applying Lemma VIII.1.15 in [18] to this sequence yields

lim
n→∞

||x∗ −Xn|| = lim
n→∞

sup
m∈N

|〈em, x∗ −Xn〉|

= sup
m∈N

lim
n→∞

〈em, x∗ −Xn〉|

= sup
m∈N

|〈em, x∗ −X∞〉| = ||x∗ −X∞|| a.s.

which proves (b). In particular, we have that ||Xn|| → ||X∞|| a.s. so that X∞ ∈
L1
E∗s

(F) by Fatou Lemma
∫

Ω

|X∞|dP ≤ lim inf
n

∫

Ω

|Xn|dP ≤ sup
n∈N

Ω|Xn|dP <∞.

We finish the proof as in that of Theorem 5.1. We have

||EFnX∞ −Xn|| = sup
m∈N

|〈em, EFnX∞〉 − 〈em, Xn〉|.

It is clear that (〈em, EFnX∞〉−〈em, Xn〉)n∈N are real-valued L1-bounded pramarts
in L1

R(F) which converges a.s. to 0 when n → ∞. Since (Yn = EFnX∞)n∈N is a
martingale: Yσ = EFσYτ , σ ≤ τ , by similar computation as in (8.1.2) we see that

((|〈em, EFnX∞〉 − 〈em, Xn〉|)n∈N)m∈N

is a uniform sequence of positive L1-bounded subpramarts. Now applying Lemma
VIII.1.15 in [18] to this sequence yields

lim
n→∞

||EFnX∞ −Xn|| = lim
n→∞

sup
m∈N

|〈em, EFnX∞〉 − 〈em, Xn〉|

= sup
m∈N

lim
n→∞

|〈em, EFnX∞〉 − 〈em, Xn〉| = 0 a.s. �
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When E∗b is separable, Theorem 8.1 yields the a.s. norm convergence for bounded
pramarts in L1

E∗b
(F)

Theorem 7.3 Assume that E∗b is separable and (Xn)n∈N is a bounded pramart in
L1
E∗b

(F), then there exists X∞ ∈ L1
E∗b

(F) such that
(a) limn→∞〈x,Xn〉 = 〈x,X∞〉 a.s. for all x ∈ BE,
(b) limn→∞ ||x∗ −Xn|| = ||x∗ −X∞|| a.s. for all x∗ ∈ E∗,
(c) limn→∞ ||EFnX∞ −Xn|| = 0 a.s.

Proof As (Xn)n∈N is a bounded pramart in L1
E∗b

(F) ⊂ L1
E∗s

(F), by Theorem 8.1
there exists X∞ ∈ L1

E∗s
(F) such that

(i) limn→∞〈x,Xn〉 = 〈x,X∞〉 a.s. for all x ∈ BE ,
(ii) limn→∞ ||x∗ −Xn|| = ||x∗ −X∞|| a.s. for each x∗ ∈ E∗,
(iii) limn→∞ ||EFnX∞ −Xn|| = 0 a.s.
Since E∗b is separable Banach space, by equicontinuity and density and (ii) we get

lim
n→∞

||x∗ −Xn|| = ||x∗ −X∞|| a.s. ∀x∗ ∈ E∗b .

It follows that
lim
n→∞

||X∞ −Xn|| = 0 a.s.

Whence we deduce that X∞ ∈ L1
E∗b

(F). �

Here is a martingale variant of Theorem 8.1.

Theorem 7.4 Assume that E is separable Banach space and (Xn)n∈N is a bounded
martingale in L1

E∗s
(F), then there exists X∞ ∈ L1

E∗s
(F) such that

(a) limn→∞〈x,Xn〉 = 〈x,X∞〉 a.s. for all x ∈ BE,
(b) limn→∞ ||x∗ −Xn|| = ||x∗ −X∞|| a.s. for each x∗ ∈ E∗,
(c) limn→∞ ||EFnX∞ −Xn|| = 0 a.s.

Proof Follows the same lines of the proof of Theorem 8.1 using convergence of
submartingales. Note first that (|Xn|)n∈N is a L1-bounded positive submartin-
gale in L1

R(F): ||Xn|| = ||EFnXn+1|| ≤ EFn ||Xn+1||,∀n ∈ N. As (Xn)n∈N is
a L1-bounded martingale, for each x ∈ E, (〈x,Xn〉)n∈N is a scalar L1-bounded
martingale. By Doob’s theorem, (〈x,Xn〉)n∈N converges a.s to an integrable func-
tion ϕx. Also the L1-bounded positive submartingale (|Xn|,Fn)n∈N converges
a.s. to an integrable function so that r(ω) := supn∈N ||Xn(ω)|| < ∞ a.s. Hence
Xn(ω) ⊂ r(ω)BE∗ a.s. By applying Lemma 8.1, and by identifying the limits, we
provide a Gelfand-integrable X∞ satisfying limn→∞〈x,Xn〉 = 〈x,X∞〉 = ϕx a.s.
Now let (em)m∈N be a dense sequence in the closed unit ball BE of E. Then we
have

lim
n→∞

〈em, Xn〉 = 〈em, X∞〉 a.s. ∀m ∈ N.

As supn∈N |Xn| <∞ a.s, by density we get (a)

lim
n→∞

〈x,Xn〉 = 〈x,X∞〉 a.s. ∀x ∈ BE .
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Since (Xn)n∈N is a bounded martingale, the sequence

((|〈em, x∗ −Xn〉|)n∈N)m∈N

is a positive L1-bounded submartingale. Applying Lemma V.2.9 in [26] to this
sequence yields

lim
n→∞

||x∗ −Xn|| = lim
n→∞

sup
m∈N

|〈em, x∗ −Xn〉|

= sup
m∈N

lim
n→∞

〈em, x∗ −Xn〉|

= sup
m∈N

|〈em, x∗ −X∞〉| = ||x∗ −X∞|| a.s.

which proves (b). In particular, we have that ||Xn|| → ||X∞|| a.s. so that X∞ ∈
L1
E∗s

(F) by Fatou Lemma
∫

Ω

|X∞|dP ≤ lim inf
n

∫

Ω

|Xn|dP ≤ sup
n∈N

∫

Ω

|Xn|dP <∞.

It is clear that (〈em, EFnX∞〉 − 〈em, Xn〉)n∈N are real-valued L1-bounded martin-
gale in L1

R(F) which converges a.s. to 0 when n → ∞. Since (Yn = EFnX∞)n∈N
is a L1-bounded martingale in L1

E∗s
(F)

((|〈em, EFnX∞〉 − 〈em, Xn〉|)n∈N)m∈N

is a sequence of positive L1-bounded submartingales. Now applying Lemma V.2.9
in [26] to this sequence yields

lim
n→∞

||EFnX∞ −Xn|| = lim
n→∞

sup
m∈N

|〈em, EFnX∞〉 − 〈em, Xn〉|

= sup
m∈N

lim
n→∞

|〈em, EFnX∞〉 − 〈em, Xn〉| = 0 a.s. �

In this vein we obtain also a martingale variant in a separable dual that is the
martingale convergence result in ([26], Proposition V.2.8).

Theorem 7.5 Assume that E∗b is separable and (Xn)n∈N is a bounded martingale
in L1

E∗b
(F), then there exists X∞ ∈ L1

E∗b
(F) such that

(a) limn→∞〈x,Xn〉 = 〈x,X∞〉 a.s. for all x ∈ BE,
(b) limn→∞ ||x∗ −Xn|| = ||x∗ −X∞|| a.s. for all x∗ ∈ E∗,
(c) limn→∞ ||EFnX∞ −Xn|| = 0 a.s.

Proof As (Xn)n∈N is a bounded martingale in L1
E∗b

(F) ⊂ L1
E∗s

(F), by Theorem
8.2 there exists X∞ ∈ L1

E∗s
(F) such that

(i) limn→∞〈x,Xn〉 = 〈x,X∞〉 a.s. for all x ∈ BE ,
(ii) limn→∞ ||x∗ −Xn|| = ||x∗ −X∞|| a.s. for each x∗ ∈ E∗,
(iii) limn→∞ ||EFnX∞ −Xn|| = 0 a.s.
Since E∗b is separable Banach space, by equicontinuity and density and (ii) we get

lim
n→∞

||x∗ −Xn|| = ||x∗ −X∞|| a.s. ∀x∗ ∈ E∗b .
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It follows that
lim
n→∞

||X∞ −Xn|| = 0 a.s.

Whence we deduce that X∞ ∈ L1
E∗b

(F). �

8. Submartingale in Banach lattice. We finish the paper with an ap-
plication to almost sure convergence of lattice-valued submartingales and subpra-
marts. In the sequel E is a separable order continuous Banach lattice. By Davis-
Ghoussoub-Lindenstrauss renorming theorem [15], there exist an equivalent lattice
norm |||.||| and a countable norming subset D := (f∗m)m∈N of the the positive cone
E∗+ in the dual E∗ of E, i.e. |||x||| = supm∈N〈f∗m, |x|〉, ∀x ∈ E such that xn → x in
E whenever 〈x∗, xn〉 → 〈x∗, x〉 for every x∗ ∈ D and |||xn||| → |||x|||.

Theorem 8.1 Let E be a separable order continuous Banach lattice. Let (Xn)n∈N
be a bounded positive Rwk(E)-tight submartingale:

Xn ≤ EFnXn+1,∀n ∈ N

in L1
E(F). Then there is X∞ ∈ L1

E(F) such that Xn → X∞ strongly a.s.

Proof As (Xn)n∈N is a L1-bounded submartingale, for each
f∗ ∈ E∗+, (〈f∗, Xn〉)n∈N is a scalar L1-bounded submartingale. By Doob’s the-
orem, (〈f∗, Xn〉)n∈N converges a.s to an integrable function ϕf∗ . By our assump-
tion, (Xn)n∈N is a bounded and Rwk(E)-tight sequence in L1

E(F). Applying the
biting compactness Theorem 4.1 to (Xn)n∈N provides X∞ ∈ L1

E(F) such that

(∗) lim
n→∞

〈f∗, Xn〉 = 〈f∗, X∞〉 = ϕf∗ a.s.

Note that (||Xn||,Fn)n∈N is L1-bounded positive submartingale. Applying Lemma
V.2.9 in [26] to the L1-bounded submartingales (〈f∗m, Xn〉)n∈N,m∈N and using the
equivalent norm |||.|||, we get

lim
n→∞

|||Xn||| = lim
n→∞

sup
m∈N
〈f∗m, Xn〉

(∗∗) = sup
m∈N

lim
n→∞

〈f∗m, Xn〉 = sup
m∈N
〈f∗m, X∞〉 = |||X∞||| a.s.

By (∗) and (∗∗) and by the properties of the norm |||.||| we conclude that Xn → X∞
strongly a.s. �

Taking account of the above consideration, we mention the following variant

Theorem 8.2 Let E be a separable order continuous Banach lattice. Let (Xn)n∈N
be a bounded positive Rwk(E)-tight subpramart in L1

E(F). Then there is X∞ ∈
L1
E(F) such that Xn → X∞ strongly a.s.
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Proof The proof follows the same line as that of Theorem 9.1. By Egghe lemma
([18], Lemma VIII.1.12), for each f∗ ∈ E∗+,

(〈f∗, Xn〉)n∈N

is a L1- bounded subpramart in L1
R(F) and so is (||Xn||,Fn)n∈N. By virtue

of Millet-Sucheston subpramart convergence theorem ([18], Theorem VIII.1.11),
(〈f∗, Xn〉)n∈N converges a.s to an integrable function ϕf∗ . Applying the biting
compactness Theorem 4.1 provides X∞ ∈ L1

E(F) such that

(∗) lim
n→∞

〈f∗, Xn〉 = 〈f∗, X∞〉
= ϕf∗ a.s.

As (||Xn||,Fn) is a L1-bounded subpramart, using Lemma VIII. 1.15 in [18] and
the equivalent norm |||.||| we get

lim
n→∞

|||Xn||| = lim
n→∞

sup
m∈N
〈f∗m, Xn〉

(∗∗) = sup
m∈N

lim
n→∞

〈f∗m, Xn〉 = sup
m∈N
〈f∗m, X∞〉 = |||X∞||| a.s.

By (∗) and (∗∗) and by the properties of the norm |||.||| we conclude that Xn → X∞
strongly a.s. �

We refer to [15, 18, 23, 28] where several results on a.s. convergence for sub-
martingales and subpramarts in Banach lattice can be found. In particular, if E is
a separable Banach lattice with the (RNP) and (Xn)n∈N is a L1

E-bounded positive
submartingale, then (Xn)n∈N strongly converges a.s. to an Y∞ ∈ L1

E(F) (Heinich
theorem, [18], Theorem III.2.2). An alternative proof can be given using the biting
compactness theorem 4.2 and again the above Kadec property of the norm.
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