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Covering spaces revisited

1. Introduction. In this paper we formulate a covering space analogue
of the so-called K-theory constructed from vector bundles.

We begin in Section 2 by infroducing sum and product operations
for coverings. Sum is merely disjoint union while product is the wells
known “fiber product”. Since connected coverings of a space correspond
to conjugacy classes of subgroups of its fundamental group, it is natural
to ask for a group theoretic interpretation of product. Very crudely,
product corresponds to intersection of subgroups as we show in Section 3.

Having developed our covering space preliminaries we proceed in
Section 4 to the K-igh-like functor & and compute its structure. Next,
the associated reduced functor % is defined by the usual précess in Section
5 and is shown to be non-representable and non-half-exact. In the next
section we show that it fails to satisfy the wedge axiom as well. Finally,
in Section 7 we introduce the notion of based coverings and modify %
to obtain %', a non-half-exact functor which actually does satisfy the
wedge axiom.

2. Operations on coverings. Let & = {F, p, X} be a covering as
defined in Chapter 2 of [3] with the exception that for convenience we
shall assume (always) that the base space X is pathwige connected. As
a consequence all fibers p~'(x) = E, x¢X, have the same cardinal number
which we will call the rank of &. If rk(&) = n, £ is then an n-fold covering.
We say that & is connecled if the total space F = E(&) is pathwise con-
nected.

If f: Y - X is a (eontinuous) map there iz induced a covering f*&
over Y with rk(f*§) = rk(8), E(f*&) = {(y, e)|f(y) = p(e)} = ¥ X B(&),
and p(f*¢&) the restriction of the projection map onto the first factor.
See p. 98 of [3] for further details.

For i =1,2, let & = {#,, p;, X;} be an n-fold covering and define
their external sum by

£.08 = {B; X X3+ X, X Byy p, X, X X},
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where - denotes disjoint union and. p is either p; X1 or 1 X p, (1 is the
identity map) depending on which portion of the total space we are dealing
with. Then p~!(®, ®,) is homeomorphic to p; " (z,)+ p; ' (®,) and &,DE,
is an (n,-} n,)-fold covering. Haxternal product is defined by

R, = {B X By ps X P2y Xy X Xo}.

The fiber over (z,, @,) is Py () X py ' (®,) and §,®¢&, is an n n,-fold
covering. Notice that if U; < X, is evenly covered by p;, then U, X U,
is evenly covered in both constructions verifying that we indeed have
coverings.

The following arithmetic properties are easily established:

(21) Both & and @ areassociative.

(2.2) Let T:Y XX ~ XX Y be the transposition homeomorphism. If &
is a covering of X and n a covering of Y, then T*(:dn) = ndDE
and analogously for &.

(2.3) If f and g are maps to X and Y respectively, then (fX g)* (£&®n)
=~ f*e&g*y and similarly for .

Of course the distributive laws don’t make sense since the two sides
of the formula have different base space, so we now pass from the external
to the internal operations. In detail, if £ and 5 are coverings of X let
A:X - Xx X be the diagonal map 4(z) = (x, x) and define

EDn = A" (EQn), &@n = 4" (é®n).

The sum operation is very simple indeed: H(&@Pn) ~ E(&)+4 E(y);
thus each covering is uniquely a sum of connected coverings. The product
operation is more interesting and most of this paper is devoted to its
study.

Using the above properties of the external operations one can easily
prove the following result:

PROPOSITION (2.4). The operations of sum and product are associative
and commutative, and the distributive laws hold. The trivial 1-fold covering
0 = {X,1, X} is a multiplicative identity. Moreover, if f is a map to X,
then f* (@) = f*e®f*n and similarily for ®.

3. Relation with the fundamental group. For simplicity assume
that X is a (connected simplicial or CW) complex. Then the set of iso-
morphism classes of connecied coverings of X is in one-one correspon-
dence with the set of conjugacy classes of subgroups of the fundamental
group w(X) of X in the following way: given covering & = {E, p, X},
choose a base point e,eE over the base point x,eX; then £ corresponds
to the conjugacy class of p.w(H,¢,) c n(X,x,). Varying e, in p~'(x,)
produces the various members of the conjugacy class. For a general re-
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ference see, for example, Chapter 5 of [2], Theorems (6.6) and (10.2)
in particular.

Although one could classify coverings of X by using collections of
conjugacy classes in m(X) in the obvious way, little insight would be
obtained. However, the product notion formulates nicely in terms of
7(X) as the next result shows.

THEOREM 3.1. Let & = {H,p, X} and n = {F, q, X} be connected
coverings of a complex X. Now

§®n == ;... D
in a unique way with each {; a connected covering of X. If (x,, €y, fo) e E(EQn)
c XX ExF is base point for E(L;), then ; corresponds to the conjugacy
class of the subgroup p.n{H,e)) N qn(F,f) of =(X,x,) and rk() s
the inder [#(X): pum(H) O qum (F)].

Because of distributivity (3.1) can be used to obtain information
on é®7 even if £ and # are not connected.

Before proving (3.1) we deduce a number of interesting consequences.
Firgt observe that if #(X) is abelian each conjugacy class reduces to a sin-
gle subgroup and the images of p. and ¢. are independent of the choice
of ¢, and f,. Hence all the {; are the same. Also, k(&) = [#(X) : p«m(H)]
(see p. 162 of [2]) and we obtain from (3.1)

THEOREM (3.2). Let X be a compler with 7(X) abelian. If & and 7
are connected coverings of X there ewists a connected covering [ of X
such that

£®n = ki,
where k = rk(Cyrkn/rki. Moreover, if & corresponds to subgroup I of m(X)
and 5 to K < m(X), then { corresponds to H N K and 7k({) = [7(X):
HnNK]

If » =, then H = K and we obtain

COROLLARY (3.3). If  is o connected covering of a complex X with
n(X) abelian, then

{RL = rk(C)C.

Proof of (3.1). We must establish the facts about {,. Write D
= E({®n), r = p(§®@n), dy = (@) €0, fo)y H = pun(E, e)), K = qunu(F, f,)
and M = (D, dy). 1t suffices to show that M = H N K gince £; cor-
responds to the conjugacy class of M and Nc(é ) = [#(X, ) : M] by
[2], p. 162.

First, M <« H n K. To see this restrict the commutative diagram

D

’J/ \I/”"q’
x4, XxX
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where h(x, e, f) = (e, f), to E({;) « D and apply the functor ». Since =
commutes with cartesian product we obtain the commutative diagram

n(E(%), do) —22> w(E, ) X(F, f,)
ni, ¢p.><q,
M HxK

N 4 N
(X, x)) —— 7(X, 1) X w(X, #,)

But 7, Px, g« are monomorphisms (Theorem 4.1, p. 154, of [2]),
are onto M, H, K respectively, and A, is the diagonal homomorphism.
Hence M <« H and M c K.

Finally, we show that M > H NnK. If aeH NnK, let i:8
—E,u:8" — F be base point preserving maps such that a = p,[A]
= gx[p], where [A]en(F,e,) denotes the class of 2. Let G:8' xI - X
be a based homotopy from piA to qu. Applying the covering homotopy
theorem ([3], p. 67) to the commmutative diagram

8t x {0} ——> E
il Lo
Lo,
SixI1—2 x

we obtain a based homotopy G : 8 xI — E such that G'¢ = 1 and pG’
= @. Setting 2’ (2) = G'(z, 1), we have @ as a based homotopy A~ A’
and pA’ = gu. Then ¢: 8" > XX Ex F defined by o(z) = (qu(z), 2 (2),
#(2)) is a based map with ¢(8") = D. Since r is projection onto the first
factor, we have

a = [gu] = [ro] = ru[o] eM
and the proof is complete.

4. The functor k. It will be convenient to introduce a unique 0-fold
covering, namely the emply covering @ whose total space is the empty
set @. Then O is an additive identity for the sum operation.

Let Cov,(X) be the set of isomorphism classes of n-fold coverings
of X, 0<»< oo, and let Cov(X) be their union.

By a semiring we shall mean an algebraic system satisfying the
axioms of a commutative associative ring with identity except for the
existence of additive inverses. Then (2.4) may be reformulated as follows:
(4.1) Cov is a contravariant semiring valued functor from the category

% of connected spaces.

The contravariant functor k: % — % to the category #Z of rings is
defined as the ring completion of Cov (see p. 103 of [1]). In detail, define
E(X) = Cov(X)x Cov(X)/~, where ~ 1is the equivalence relation
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(&, ) ~ (&, 7) iff there exists {eCov(X) such that @y @O ~ & DydL;
since @ is disjoint union, ~ becomes: (&, %) ~ (&', ') iff Dy’ =~ &@y.
Write cls{&, ) for the equivalence class of (£,#%) and define

(4.2) cls(&, 7)-+cls(e, o) = cls(EDe, 1®0),
cls(&, n)cls(o, o) = s {(EQRVENR0, nRIDERG).

Then k(X) becomes a commutative associative ring with identity;
moreover, cls(é&, &) =0 and —cls(&, ) = cls(y, &). As for naturality,
iff: Y — X set frcls(&, ) = cls(f* &, f* %). In this way k becomes a func-
tor.

ExAvPLE (4.3). If X s simply connected, k(X) ~ Z.

The proof is elementary.

Define p: Cov(X) - k(X) be sending # to cls(&, ). Because of
(4.2), v is a semiring homomorphism which is natural in X. Also, y(&)
= p(n) implies that {0 ~ n®Y and we obtain

(4.4) w:Cov >k is an injective natural transformation of semiring
valued functors.

This result allows us to consider Cov(X) as a subsemiring of k(X).
Further,

cls(&, ) = cls(&, O)+dls(D, 9) = cls(&, B)—cls(y, @) = E—1,

80 we may think of k(X) as being obtained from Cov(X) by merely thro-
wing in negatives of coverings.

THEOREM (4.5). If X is a compler with abelian fundamenial group,
then k(X) s additively the free abelian group on the collection of subgroups
of n(X) having finite index. Multiplication of generators is given as follows:
the product of subgroups H and K is

[(X): H)[(X): K] .
[#(X): HN K]

Proof. Now Cov(X) < k(X) and Cov(X) is additively generated
by isomorphism classes of connected coverings, each of which corresponds
to a subgroup of #(X) of finite index. Since there are no additive relations
in Cov(X) the stated additive structure of k(X) follows. As for the mul-
tiplicative structure, simply apply (3.2).

Remark. Using (3.1) instead of (3.2), we can similarly prove a re-
sult for the case =z (X) non-abelian. However, its statement is unduly cum-
bersome.

5. The reduced functor k. The semiring homomorphism rk: Cov(X) - Z
agsigning the rank to each covering extends to a ring homomorphism

rk: k(X)) > Z by Na(cls(&, 17)) = rk&—rky. Its kernel ~k(X) is thus an
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ideal in %(X). Since rk(f*¢) = rk(%), % becomes a contravariant functor
k:% — # with '
k(X) = {cls(&, 5) |k = rln}.

ExampLE (5.1). If X is simply connected, then IE(X) = 0.

Remark. Up to this point our theory is formally identically to
K-theory but now we start observing differences. For example, I~c(X)
is mot isomorphic to the set of stable equivalence classes formed from
Cov(X). To see this notice that the set of stable classes with the usual
addition has additive inverses iff a “Whitney inverse theorem” holds
for coverings; by the definition of addition, the latter is not valid.

For convenience we now restrict the domain category to ¥, the
category of connected pointed finite CW complexes. Recall that a con-
travariant functor F: % — % is representable (on #") if there exists
a based classifying space B such that F is functorially isomorphic to [B],
where [ X, B] is the set of based homotopy classes of maps from X to B.
Although most geometrically constructed contravariant functors are re-
presentable we have

THEOREM (5.2). k is not representable on W,

Actually, we shall prove something stronger. Following A. Dold
we say that a contravariant functor ¥ :#  — 2 is half exact if for every
sequence A cX%X /4 in 4", where X/A is the space obtained from X
by identifying 4 to a point, the induced sequence F'(4) < F(X) <~ F(X/A)
is exact. For example, every representable functor is half exact; this is
a simple exercise with the homotopy extension theorem. Thus (5.2)
follows from

THEOREM (5.3). k is mot half exact.

Proof. Let * = 1e8* be the base point, and set X = 8'x 8,
A = 8 x {*} with (*,) as base point. We shall show that the sequence

E(X]A) S k(X)) S k(4)
is not exact.

Let & be the usual 2-fold cover p: E = 8" — 8 and write &X ¢
in place of EQE. We assert that &x & does not belong to the image of
q* : Cov(X/A) - Cov(X). Suppose instead that &x &~ ¢*f, where ¢
= {F',p, X/A} is a 4-fold covering. Equivalently, we would have a com-
mutative diagram

ExE-">
¢I DXD ip

X =8'x8-% X/4
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in which the map % is bijective on fibers. Restricting the diagram to A

gives 2

E x (2 points) —— (4 points)
i DXD i v’

4 =8 fx}—1s {5}

But ¥ is connected and kb is continuous, so k is not onto contrary
to bijectivity of 2 on fibers.

Returning to our above sequence observe that £x & and &x 0?
are non-isomorphic 4-fold covers of X which restrict to isomorphie covers
of A. Since cls(&X &, £X 0% ek(X) is non-zero but maps by i* to 0 in
IZ(A), it suffices to show that this element is not in the image of ¢*. Suppose
instead that cls(£X &, £x 0%) = ¢*cls(¢, ). Writing ¢ = 5,®...@¢, in
terms of components we obtain

L@ . OCLDEXOD* ~ EXEDI .

Because of our choice of spaces each ¢Z; is connected as is & X &.
It follows that & X & ~ ¢, for some % contrary to the above paragraph,
a contradiction which completes the proof.

6. Behavior on wedges. The wedge sum X v Y of spaces X, Ye#’
is obtained from the disjoint union X+ Y by identifying base points
of X and Y. There is then the natural homomorphism ¥': fc(X v Y‘)
-~ I}(X) @72( Y) defined by sending cls (&, 1) to cls (& X, | X)Pels (&Y, 7| Y).
Moreover,

(6.1) D is an epimorphism.

Proof. Given cls(a, f)ek(X) and ecls(y, 8)ek(Y), with m = rk(a)
= rk(f) and n = rk(y) = rk(d), formx an m-fold cover a v O™ of X v Y
in the evident way. Setting & =a v 0™@®0" v y,n = f v O"QO™ v §,
we find cls(&, n)ek(X v Y) is mapped by @ to

cls (a®0”, FRO™)Dcls (0" Dy, 0"®0) = cls(a, f)@els(y, 9).

(6.2)  Injectivity of @ 4s equivalent to.the following condition: if &, g
eCov(X v Y) are such that &)X ~n|X, E|Y =~ 9|Y, then & ~ .

We assert that @ is is not injective. Indeed, we have

ExAMPLE (6.3). Let ¢ = {8',p, 8'} be the usual 3-fold covering
with p(2) = 2°. The fiber over the base point * = 1<S" is then the set
{a =1,b = exp(2ni/3), ¢ = b?}. Form 3-fold covering & of 8'v 8' by
gluing two copies of ¢ together matching the fibers by the identity func-
tion. To define  we put in a twist in the matching process by identifying
e with a, b with ¢, and ¢ with b. Certainly the restrictions of £ and 7 to
either copy of S' in the wedge are isomorphic but we claim that & and 7
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are not isomorphic. To see this suppose instead the there were a homeo-
morphism f: E(&) ~ E(y) such that p(&) =p(p)f: B(&) — 8 v SL
Restricting to either copy of S! we get an automorphism of {, and these
are clasgified by the elements of

(S, #)pu(§, *) = ZJ3Z =~ Ly

see Corollary 7.4, p. 163, of [2], for example. Thus an automorphism
must induce a cyclic permutation on the fiber {a, b, ¢}, Suppose f in-
duced the identity permutation over the first copy of &' in 8' v 8%
over the second copy f would induce the odd permutation ¢ —> a, b — ¢,
¢ — b, a contradiction. Similar arguments yield contradictions for the
remaining two cases of posible behavior of f on the first copy of {. Thus f
does not exist and the proof is complete.

Remark. It is easily shown ([4], (2.1)) that half exactness implies
that @ is an isomorphism. Hence (6.3) gives an alternate proof of (5.3).
However, the earlier proof of (5.3) is still needed since we will make
reference to it in the next section.

7. Based coverings and %’. Our aim here is to modify the definition
of k 80 as to make @ injective. Reflection on (6.2) and (6.3) leads one
to introduce the following notion. A based n-fold covering of X ¥ is
a pair (&, ¢), where £¢Cov,(X) and ¢ is a bijection of Z, with the fiber
of £ over the bage point of X. Baged »-fold coverings (£, ) and (7, j)
of X are isomorphic if there is an isomorphism f: & ~ 5 such that j = fi.
Using these notions we define functions Cov’, k¥’ and &' in the obvious
way. Moreover, we have

THEOREM (7.1). W > & is a contravariant functor which s not
half exact yet satisfies the wedge awiom @ :k' (X v ¥) =~k (X)Dk (Y).

Since the wedge axiom is such an easy consequence of half exact-
ness, this result is of some interest. As for its validity, a look at the proofs
of (5.3) and (6.1) shows that they also work for %’, so it remains only
to verify the condition of (6.2). But if (&,4) and (n,j) are coverings
of X v Y which are isomorphic when restriced to both X and Y, then
the isomorphisms are compatible over the base point of X v Y and
therefore can be glued together to give (&,¢) =2 (n,j); notice that this
was not the case in example (6.3).

References

[1] D. Husemoller, Fibre bundles, New York 1966.

[2] W. Massey, Algebraic topology, an introduction, New York 1967.

[3] E. Spanier, Algebraic topology, New York 1966,

[4] R. W. West, On the representability of half exact functors over mom-comnecied OW
complexes, Ill. J. Math. 11 (1967), p. 64-70.



