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On symmetric spaces containing isomorphic copies of Orlicz
sequence spaces

Sergey V. Astashkin

Summary. Let an Orlicz function N be (1+ ε)-convex and (2− ε)-concave

at zero for some ε > 0. Fen the function 1/N−1(t), 0 < t ⩽ 1, belongs to

a separable symmetric space X with the Fatou property, which is an inter-

polation space with respect to the couple (L1 , L2), whenever X contains

a strongly embedded subspace isomorphic to the Orlicz sequence space

lN . On the other hand, we find necessary and suÚcient conditions on such

an Orlicz function N under which a sequence of mean zero independent

functions equimeasurable with the function 1/N−1(t), 0 < t ⩽ 1, spans,

in the Marcinkiewicz space M(φ) with φ(t) ∶= t/N−1(t), a strongly

embedded subspace isomorphic to the Orlicz sequence space lN .
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1. Introduction

Whereas the class of all subspaces of L1 = L1(0, 1) is so rich that it still does not have any

reasonable description, far more information is available on subspaces of L1 isomorphic

to Orlicz spaces. First of all, an arbitrary subspace of L1 isomorphic to an Orlicz sequ-

ence space lN ≠ l1 can always be given by the span of appropriate sequence of indepen-

dent identically distributed random variables. Fe latter fact was discovered in the case

N(t) = tq , 1 < q < 2, by Kadec in 1958 [21]. More precisely, he proved that for arbitrary
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1 ⩽ p < q < 2 there exists a symmetrically distributed function f ∈ Lp (a q-stable random

variable) such that the sequence { fk}∞k=1 of independent copies of f spans in Lp a subspace

isomorphic to lq .

Fis direction of study was taken further by Bretagnolle and Dacunha-Castelle (see

[14–16]). In particular, Dacunha-Castelle showed that for every mean zero f ∈ Lp =
Lp(0, 1) the sequence { fk}∞k=1 of its independent copies is equivalent in Lp , 1 ⩽ p < 2, to

the unit vector basis of some Orlicz sequence space lN [16, Feorem 1, p.X.8]. Moreover,

Bretagnolle and Dacunha-Castelle proved that an Orlicz function space LN = LN[0, 1]
can be isomorphically embedded into the space Lp , 1 ⩽ p < 2, if and only if N is equ-

ivalent to an Orlicz function that is p-convex and 2-concave at zero [15, Feorem IV.3].

It should be mentioned that later some of these results were independently rediscovered

by Braverman [11, 12].

Fe papers [11,12,14–16] exploitmethodswhich depend heavily on techniques related

to the theory of random processes. In contrast to that, in more recent papers [6] and [8],

an approach based on methods and ideas from the interpolation theory of operators was

used. In particular, [6, Feorem 9] and [8, Feorem 1.1] imply the following: Let 1 ⩽ p < 2

and let the Orlicz function N be (p + ε)-convex and (2 − ε)-concave at zero for some ε > 0.

If Lp contains a subspace isomorphic to the Orlicz sequence space lN , then the function

1/N−1(t), 0 < t ⩽ 1, belongs to Lp. Fe main aim of the present paper is to extend the

above result from Lp-spaces to the more general class of interpolation symmetric spaces

with respect to the couple (L1 , L2) (Feorem 3.1). Note that in the case when N(t) = t1/q ,

1 < q < 2, a similar result was proved by Raynaud [29] for every separable symmetric space,

by using a completely di×erent approach based on the profound theorem of Dacuncha-

-Castelle and Krivine on structure of lq-subspaces of L1 from [17].

In the final part of the paper, a result, which in a sense is converse of Feorem 3.1,

is obtained. We find necessary and suÚcient conditions on an Orlicz function N , (1 +
ε)-convex and (2−ε)-concave at zero for some ε > 0, underwhich a sequence ofmean zero

independent functions equimeasurable with the function 1/N−1(t), 0 < t ⩽ 1, spans the

Orlicz sequence space lN in every symmetric space X such that X ⊃ M(φ) (M(φ) being
the Marcinkiewicz space generated by the function φ(t) ∶= t/N−1(t)) (Feorem 3.8).

2. Preliminaries

Recall the basic definitions from the theory of symmetric spaces (its detailed exposition

can be found in the books [9, 23, 24]).

Let I = [0, 1] or [0,∞). By x∗(s) we denote the non-increasing leý-continuous rear-

rangement of the absolute value of the measurable function x = x(t), t ∈ I, i.e.,

x∗(s) ∶= inf{τ > 0 ∶ m{t ∈ I ∶ ∣x(t)∣ > τ} < s},
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where m is the Lebesgue measure. Two measurable functions x(t) and y(t), t ∈ I, are

called equimeasurable if x∗(s) = y∗(s), s ∈ I.
A Banach function space X on I is said to be symmetric if from y = y(t) ∈ X and

x∗(t) ⩽ y∗(t), t ∈ I, it follows that x = x(t) ∈ X and ∥x∥X ⩽ ∥y∥X .
We begin with defining some classes of symmetric spaces. Let 1 < p < ∞, 1 ⩽ q ⩽ ∞.

Fen the space Lp,q is defined as the set of all measurable functions on I for which the

following quasi-norm is finite:

∥x∥p ,q ∶= ( q

p
∫
I

(t1/px∗(t))q dt
t
)
1/q

, 1 ⩽ q < ∞,

and

∥x∥p ,∞ ∶= sup

t∈I ,t≠0
t1/px∗(t).

Replacing in the preceding formulas x∗(t) with x∗∗(t) ∶= 1

t ∫
t
0
x∗(s) ds, we get an equ-

ivalent symmetric norm in Lp ,q , for every 1 < p < ∞, 1 ⩽ q ⩽ ∞. We have Lp = Lp ,p and

Lp ,q1 ⊂ Lp ,q2 if 1 ⩽ q1 ⩽ q2 ⩽ ∞.

Another natural generalization of Lp-spaces areOrlicz spaces (see [22,24]). Let N(u)
be anOrlicz function, that is, an increasing convex function on [0,∞) such that N(0) = 0.

Fe Orlicz space LN consists of all measurable functions x(t) on I such that the function

N (∣x(t)∣/ρ) ∈ L1 for some ρ > 0. It is equipped with the Luxemburg norm

∥x∥LN
∶= inf{ρ > 0 ∶ ∫

I

N(∣x(t)∣
ρ

) dt ⩽ 1}.

In particular, if N(u) = up
, 1 ⩽ p < ∞, we obtain usual Lp-spaces.

Let φ be an increasing concave function on I with φ(0) = 0.FeMarcinkiewicz space

M(φ) consists of all measurable functions x(t) on I such that

∥x∥M(φ) ∶= sup

s∈I
s≠0

1

φ(s)

s

∫
0

x∗(t)dt < ∞.

In particular, Lp ,∞ = M(t1/p), 1 < p < ∞.

For a symmetric space X on I, the Köthe dual space (or associated space) X′
consists

of all measurable functions y such that

∥y∥X′ ∶= sup

x∈X
∥x∥X⩽1

∫
I
∣x(t)y(t)∣ dt

is finite. Fen, X′
equipped with the norm ∥ ⋅ ∥X′ is a symmetric space. Moreover, X ⊂

X′′
continuously with constant 1, and the isometric equality X = X′′

holds if and only
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if the norm in X has the Fatou property, that is, if the conditions 0 ⩽ xn ↗ x a.e. on I

and supn∈N ∥xn∥ < ∞ imply that x ∈ X and ∥xn∥ ↗ ∥x∥. In particular, all Orlicz and

Marcinkiewicz spaces have the Fatou property.

Next, we will mainly consider symmetric spaces on [0, 1]. In this case, L∞ is the smal-

lest and L1 the largest symmetric space [23, Feorem II.4.1].

Fe dilation operator στx(t) ∶= x(t/τ) ⋅ χ[0,min(1,τ)](t), τ > 0, is bounded in any

symmetric space X on [0, 1] (throughout the paper, χE is the characteristic function of

a set E). Moreover, ∥στ∥X→X ⩽ max(1, τ) (see [23,Feorem 2.4.5]).Fe function ∥στ∥X→X

is semi-multiplicative, and hence one may define the upper and lower Boyd indices of X:

αX = lim
τ→0+

ln ∥στ∥X→X
ln τ

and βX = lim
τ→+∞

ln ∥στ∥X→X
ln τ

.

Note that 0 ⩽ αX ⩽ βX ⩽ 1 [23, § 2.1] and αLp
= βLp

= 1/p, 1 ⩽ p ⩽ ∞.

Suppose X is a symmetric space on [0, 1]. A closed subspace B of X is said to be

strongly embedded in X if, in B, convergence in the L1-norm is equivalent to convergence

in the X-norm (cf. [1, Definition 6.4.4]).

Let (X0 , X1) be a Banach couple (i.e., X0 and X1 are Banach spaces linearly and conti-

nuously embedded into a common Hausdor× topological vector space). A Banach space

X is called an interpolation space with respect to (X0 , X1) (in short, X ∈ I(X0 , X1)) if
X0 ∩ X1 ⊂ X ⊂ X0 + X1 and every linear operator bounded in X0 + X1 and in X i , i = 0, 1,

acts boundedly in X.

Given Banach couple (X0 , X1) the Peetre K-functional K(t, x;X0 , X1) is defined for
x ∈ X0 + X1 and t > 0 by

K(t, x;X0 , X1) = inf{∥x0∥X0 + t∥x1∥X1 ∶ x = x0 + x1 , x0 ∈ X0 , x1 ∈ X1}.

In particular, K(1, x;X0 , X1) is the norm in the Banach space X0 + X1.

Interpolation in the Banach couple (X0 , X1) is described by the real K-method of in-

terpolation if from x , y ∈ X0 + X1 and the inequality

K(t, y;X0 , X1) ⩽ K(t, x;X0 , X1) for all t > 0

it follows that there exists a linear operator T ∶X0 + X1 → X0 + X1 such that Tx = y. For

a detailed exposition of the interpolation theory of operators, see [9, 10, 24].

As in the function case, to any Orlicz function N we associate the Orlicz sequence

space lN of all sequences of scalars a = (an)∞n=1 such that

∞

∑
n=1

N(∣an ∣
ρ

) < ∞

for some ρ > 0. When equipped with the norm

∥a∥lN ∶= inf{ρ > 0 ∶
∞

∑
n=1

N(∣an ∣
ρ

) ⩽ 1},
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lN is a Banach space. Clearly, if N(t) = tp , p ⩾ 1, then the Orlicz space lN is the familiar

space lp . Moreover, the sequence {en}∞n=1 given by

en = (0, . . . , 0,
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n − 1 times

1, 0, . . . )

is a Schauder basis in every Orlicz space lN , provided that N satisfies the ∆2-condition at

zero, i.e., there are u0 > 0 and C > 0 such that N(2u) ⩽ CN(u) for all 0 < u < u0 .

Let 1 ⩽ p < q < ∞. Given an Orlicz function N , we say that N is p-convex (resp.

q-concave) at zero if the map t ↦ N(t1/p) (resp. t ↦ N(t1/q)) is convex (resp. concave).
In what follows, without loss of generality, we assume that N(1) = 1 and that N ∶ [0,∞) →
[0,∞) is a bijection.

For a fixed f ∈ L1(0, 1), every k ∈ N, and t > 0 we set

f k(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

f (t − k + 1), t ∈ [k − 1, k),
0, otherwise.

Finally, positive functions (quasi-norms) f and g are said to be equivalent (wewrite f ≍ g)
if there exists a positive finite constant C such that C−1 f ⩽ g ⩽ C f .

3. Results

Femain goal of this paper is to prove the following result.

3.1. Feorem. Let X be a separable symmetric space on [0, 1] such that X + L2 ∈ I(L1 , L2)
and let theOrlicz function N be (1+ε)-convex and (2−ε)-concave at zero for some ε > 0. If X

contains a strongly embedded subspace isomorphic to the Orlicz space lN , then the function

1/N−1 belongs to the space X′′.

For the proof of this theorem we need an auxiliary assertion.

Let 1 ⩽ p < 2, and let N and Q be Orlicz functions that are p-convex and 2-concave

at zero and satisfy the following conditions:

lim
u→0+

Q(u)u−p = 0

and for some K > 0

N(u) ⩽ KQ(u), 0 < u ⩽ 1. (1)

By [16, Feorem 1, p.X.8] (see also [6, Feorem 9]), there exist sequences { fn} and {gn}
of mean zero independent identically distributed functions which in Lp are equivalent to

the unit vector bases of lN and lQ , respectively. We set f ∶= f ∗i and g ∶= g∗i , i = 1, 2, . . .

3.2. Proposition. Let 1 ⩽ p < 2, and let the functions N, Q, f , and g satisfy the above

conditions.
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(i) If Y is a symmetric space such that Y ∈ I(Lp , L2), then from g ∈ Y it follows that f ∈ Y.
(ii) If the function N is (p + ε)-convex and (2 − ε)-concave at zero for some ε > 0 and X

is a symmetric space such that X + L2 ∈ I(Lp , L2), then g ∈ X implies f ∈ X.

Proof. As said above, we assume that N(1) = Q(1) = 1.

First, by [8, Proposition 2.4], we have

1

N−1(t)
≍ ( 1

t
∫

t

0

f (s)pds)
1/p

+ ( 1
t
∫

1

t
f (s)2ds)

1/2

, 0 < t ⩽ 1, (2)

and

1

Q−1(t)
≍ ( 1

t
∫

t

0

g(s)pds)
1/p

+ ( 1
t
∫

1

t
g(s)2ds)

1/2

, 0 < t ⩽ 1. (3)

Moreover, by the well-known Holmstedt formula [20], the K-functional for the couple

(Lp[0, 1], L2[0, 1]), 1 ⩽ p < 2, satisfies the following:

K(t, x; Lp , L2) ≍ (∫
t

2p
2−p

0

x∗(u)pdu)
1/p

+ t (∫
1

t
2p

2−p
x∗(u)2du)

1/2

, 0 < t ⩽ 1,

with constants independent of x ∈ Lp and 0 < t ⩽ 1.Ferefore, (2) and (3) can be rewritten

as follows

t1/p

N−1(t)
≍ K(t

2p
2−p , f ; Lp , L2), 0 < t ⩽ 1,

and

t1/p

Q−1(t)
≍ K(t

2p
2−p , g; Lp , L2), 0 < t ⩽ 1.

Since inequality (1) and concavity of the inverse function N−1
imply that

Q−1(u) ⩽ N−1(Ku) ⩽ KN−1(u), 0 < u ⩽ 1,

for some C > 0 we obtain

K(s, f ; Lp , L2) ⩽ CK(s, g; Lp , L2), 0 < s ⩽ 1.

Clearly, the latter inequality holds for all s > 0. So, since interpolation in the Banach couple

(Lp , L2) is described by the real K-method of interpolation [28], from Y ∈ I(Lp , L2) and
g ∈ Y , we infer f ∈ Y , and part (i) is proved.

Now, let us prove (ii). First of all, as above, we have f ∈ X + L2. Furthermore, by the

hypothesis concerning to the function N and by [8, Feorem 1.1], for suÚciently small

t > 0,

f (t) ≍ 1

N−1(t)
. (4)
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We will show that

N(t) ⩾ tr , 0 < t ⩽ 1, (5)

where r = 2−ε. Indeed, sinceN is r-concave, it follows that the functionN(t1/r) is concave,
and therefore

N((us)1/r) ⩾ uN(s1/r), 0 < u ⩽ 1,

whence

N(tv) ⩾ trN(v), 0 < t, v ⩽ 1.

Since N(1) = 1, we obtain (5).

From (4) and (5), for some c > 0 and suÚciently small t > 0, we have

f (t) ⩾ ct−1/r. (6)

On the other hand, f ∈ X + L2 implies f = h1 + h2, where h1 ∈ X , h2 ∈ L2. In view of the

inclusion L2 ⊂ Lq ,∞ valid for every q < 2, choosing q ∈ (r, 2), we obtain

h∗
2
(t) ⩽ Ct−1/q , 0 < t ⩽ 1.

Hence, from [23, § II.2, Inequality (2.23), p. 67] it follows that

f (t) ⩽ h∗
1
(t/2) + 2

1/qCt−1/q , 0 < t ⩽ 1,

and so, by (6),

h∗
1
(t/2) ⩾ f (t) − 2

1/qCt−1/q = f (t)(1 − 2
1/qC

t−1/q

f (t)
) ⩾ f (t)(1 − 2

1/qCc−1t1/r−1/q).

Fis and the inequality q > r imply that

h∗
1
(t/2) ⩾ 1

2

f (t)

for suÚciently small t > 0. Since h1 ∈ X, we obtain f ∈ X .

Proof of Feorem 3.1. By hypothesis, there is a sequence {hk}∞k=1 ⊂ X, which in the spa-

ces X and L1 is equivalent to the unit vector basis {en}∞n=1 in lN . Fus, with constants

independent of (ck) ∈ lN , we have

∥
∞

∑
k=1
ckhk∥

1

≍ ∥
∞

∑
k=1
ckhk∥

X
≍ ∥(ck)∥lN . (7)

Clearly, since the function N is (1+ ε)-convex and (2− ε)-concave at zero for some ε > 0,

{en} is a weakly null sequence in lN . Ferefore, from (7) it follows that hk
wÐ→ 0 in X.
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Further, by a version of the (so-called) subsequence splitting property, proved in [5, Lem-

ma 3.6], passing to a subsequence (but preserving the notation), we obtain

hn = un + vn +wn , n ∈ N,

where {un}, {vn}, {wn} are sequences in X such that u∗n ⩽ g , g = g∗ ∈ X′′
, vn are pairwise

disjoint, limn→∞ ∥wn∥X = 0, un
wÐ→ 0, vn

wÐ→ 0. It is clear that vn
wÐ→ 0 in L1 and, therefo-

re, by disjointness, ∥vn∥1 → 0. Hence, the stability property of a basic sequence (see, for

instance, [1, Feorem 1.3.9]) allows us to claim, passing again to some subsequence, that,

in view of (7),

∥
∞

∑
k=1
ckuk∥

1

≍ ∥(ck)∥lN . (8)

Moreover, by the proof of [27, Feorem 4.5] (see also [3, Proposition 2.1]), there is a sub-

sequence of {un} (again we keep the notation) such that

un = xn + yn ,

where {xn} is the sequence of martingale di×erences, xn
wÐ→ 0 in L1, and ∥yn∥1 → 0.

By [5, Lemma 5] (for results on comparison of norms of sums of martingale di×erences

and their disjoint copies in general symmetric spaces, see [7]), we obtain

∥
n
∑
i=1

x i∥
1

⩽ C1∥
n
∑
i=1

x i∥
(L1+L2)(0,∞)

, n ∈ N,

where x i are pairwise disjoint copies of the functions x i , i = 1, 2, . . . (see Preliminaries).

Since u i = x i + y i and m(supp y i) ⩽ 1,

∥u i − x i∥(L1+L2)(0,∞) = ∥y i∥(L1+L2)(0,∞) = ∥y i∥1 .

Hence, taking into account that ∥yn∥1 → 0 and u∗i ⩽ g, in the same manner as above

(passing to a subsequence, if necessary), we get

∥
n
∑
i=1

u i∥
1

⩽ C2∥
n
∑
i=1

u i∥
(L1+L2)(0,∞)

⩽ C2∥
n
∑
i=1
g i∥

(L1+L2)(0,∞)
.

Fus, by (8), the equation

∥
n
∑
k=1
ek∥

lN
= 1

N−1(1/n)

and definition of the norm in (L1 + L2)(0,∞), we have

1

N−1(1/n)
⩽ C3(n∫

1/n

0

g(s)ds + (n∫
1

1/n
g(s)2ds)

1/2

), n ∈ N,
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or, by convexity of N ,

1

N−1(t)
⩽ C( 1

t
∫

t

0

g(s)ds + ( 1
t
∫

1

t
g(s)2ds)

1/2

), 0 < t ⩽ 1, (9)

for some C > 0.

Let {gk} be a sequence ofmean zero independent functions on [0, 1] such that g∗k = g,
k = 1, 2, . . . In L1[0, 1] it is equivalent to the unit vector basis of the Orlicz space lQ , where

Q is the 2-concave Orlicz function satisfying the condition ([16, Feorem 1, p.X.8])

lim
t→0+

Q(t)
t

= 0.

Ferefore, by [8, Proposition 2.4] it follows that

1

Q−1(t)
≍ 1

t
∫

t

0

g(s)ds + ( 1
t
∫

1

t
g(s)2ds)

1/2

, 0 < t ⩽ 1. (10)

Moreover, since N is (1 + ε)-convex and (2 − ε)-concave at zero for some ε > 0, by [8,

Feorem 3.3], we have

1

N−1(t)
≍ 1

t
∫

t

0

f (s) ds + ( 1
t
∫

1

t
f (s)2 ds)

1/2

, 0 < t ⩽ 1, (11)

where f (s) ∶= 1/N−1(s). Let us show that the remaining conditions of Proposition 3.2 (ii)

also hold.

First, (9) and (10) imply inequality (1). Moreover, (X + L2)′′ = X′′ + L2 [25, Fe-

orem 3.1].Ferefore, by [26, Corollary 4.2] the fact that X+L2 ∈ I(L1 , L2) implies X′′+L2 ∈
I(L1 , L2). Fus, since g ∈ X′′

, by Proposition 3.2 (ii) and (11), we obtain that 1/N−1 ∈
X′′

.

Recall that αX is the lower Boyd index of a symmetric space X (see Preliminaries).

3.3. Corollary. Let X be a separable symmetric space on [0, 1], αX > 1/2, and let N be an

Orlicz function which is (1 + ε)-convex and (2 − ε)-concave at zero for some ε > 0. If X

contains a strongly embedded subspace isomorphic to lN , then 1/N−1 ∈ X′′.

Proof. By [4,Feorem 1], X ∈ I(L1 , L2).Fen, obviously, X+L2 ∈ I(L1 , L2), and it remains
to apply Feorem 3.1.

3.4. Remark. In the case when N(t) = t1/q , 1 < q < 2, the result ofFeorem 3.1 was proved

byRaynaud in [29] for every separable symmetric space by a completely di×erent approach

based on the profound theorem of Dacuncha-Castelle and Krivine on the structure of

lq-subspaces of L1 from [17]. So it is natural to ask whetherFeorem 3.1 holds without the

interpolation condition imposed on the space X.
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We will show that a similar result is valid, without any extra interpolation condition,

if a separable symmetric space X is contained in the Marcinkiewicz space M(φ) with

φ(t) ∶= t/N−1(t). More precisely, we have then X′′ = M(φ).

3.5. Feorem. Suppose the Orlicz function N is (1 + ε)-convex and (2 − ε)-concave at zero
for some ε > 0, and X is a separable symmetric space on [0, 1] such that X ⊂ M(φ), φ(t) ∶=
t/N−1(t). Fen if X contains a strongly embedded subspace isomorphic to the Orlicz space

lN , we have X
′′ = M(φ).

Let us begin with the following simple lemma.

3.6. Lemma. If an Orlicz function N is (1 + ε)-convex at zero for some ε > 0, and φ(t) =
t/N−1(t), then

∥x∥M(φ) ≍ sup

0<t⩽1
x∗(t)N−1(t).

Proof. Let us estimate from above the dilation functionMφ(t) defined by

Mφ(t) ∶= sup

0<s⩽1

φ(st)
φ(s)

for 0 < t ⩽ 1.

Since the function N(t1/(1+ε)), 0 < t ⩽ 1, is convex, we have

N((st)1/(1+ε)) ⩽ tN(s1/(1+ε)), 0 < s, t ⩽ 1,

or

N(uv) ⩽ v1+εN(u), 0 < u, v ⩽ 1,

Hence

N−1(s) ⋅ t1/(1+ε) ⩽ N−1(st),

and so

φ(st) = st

N−1(st)
⩽ stε/(1+ε)

N−1(s)
.

As a result, we obtain

Mφ(t) ⩽ tε/(1+ε), 0 < t ⩽ 1,

whenceMφ(t) → 0 as t → 0 + . Fus, applying [23, Feorem II.5.3], we have

∥x∥M(φ) ≍ sup

0<t⩽1

1

φ(t)
x∗(t) = sup

0<t⩽1
x∗(t)N−1(t).
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Proof of Feorem 3.5. Since X ⊂ M(φ), we have X′′ ⊂ M(φ)′′ = M(φ). Combining this

with Lemma 3.6, we obtain that for all x ∈ X′′

sup

0<t⩽1
x∗(t)N−1(t) < ∞. (12)

Further, in the same way as in the proof of Feorem 3.1, we can find a function

g = g∗ ∈ X′′
and an Orlicz function Q satisfying relations (9) and (10). Fen, from (12)

it follows that

g(t) ⩽ C′

N−1(t)
, 0 < t ⩽ 1,

and therefore, by (10),

1

Q−1(t)
≍ 1

t
∫

t

0

g(s) ds + ( 1
t
∫

1

t
g(s)2 ds)

1/2

⩽ C′′ ( 1
t
∫

t

0

ds

N−1(s)
+ ( 1

t
∫

1

t

ds

(N−1(s))2
)
1/2

).

On the other hand, since the function N is (1+ ε)-convex and (2− ε)-concave at zero for
some ε > 0, by [8, Feorem 3.3], we have (11) with f (s) = 1/N−1(s). Ferefore, from the

preceding inequality it follows that

1

Q−1(t)
⩽ C

N−1(t)
, 0 < t ⩽ 1.

Fis inequality combined with (9) and (10) yields

1

N−1(t)
≍ 1

t
∫

t

0

g(s)ds + ( 1
t
∫

1

t
g(s)2ds)

1/2

, 0 < t ⩽ 1.

Hence, again taking into account the properties of N , by [8, Feorem 1.1 and Proposi-

tion 2.4], we infer that

g(t) ≍ 1

N−1(t)
for all suÚciently small t > 0. As a result, the function 1/N−1

belongs to X′′
, which, in view

of Lemma 3.6, is equivalent to the inclusionM(φ) ⊂ X′′
. Since the reverse embedding also

holds, the proof is complete.

If a symmetric space is situated very “close” to L2, it may be a non-interpolation space

with respect to the couple (L1 , L2). However, for some such spaces we have the following

result.

3.7. Corollary. Let an Orlicz function N satisfy the conditions of Feorem 3.5. If a sym-

metric space X is such that X ⊂ Lr ,∞ for every r < 2, then X does not contain a strongly

embedded subspace isomorphic to theOrlicz space lN . In particular, this holds for the Lorentz

spaces L2,q , 1 ⩽ q ⩽ ∞.
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Proof. As above, φ(t) ∶= t/N−1(t), 0 < t ⩽ 1.

Since the function N(t1/(2−ε)), 0 < t ⩽ 1, is concave, we have

N((st)1/(2−ε)) ⩾ tN(s1/(2−ε)), 0 < s, t ⩽ 1,

or

N(uv) ⩾ v2−εN(u), 0 < u, v ⩽ 1,

Ferefore,

N−1(s) ⋅ t1/(2−ε) ⩾ N−1(st),

and since N(1) = 1, we obtain

N−1(t) ⩽ t1/(2−ε).

Fus, by Lemma 3.6 it follows that M(φ) ⊃ Lr1 ,∞, where r1 ∶= 2 − ε < 2. Now, choosing

any r2 from the interval (r1 , 2) and taking into account the conditions of the corollary, we

infer that M(φ) ⫌ Lr2 ,∞ ⊃ X. Ferefore, passing twice to dual spaces, we obtain M(φ) ⫌
Lr2 ,∞ ⊃ X′′

, and the result follows from Feorem 3.5.

Let 1 < p < 2 and let {g pn} be a sequence of mean zero independent functions on

[0, 1] equimeasurable with the function g(u) = u−1/p , 0 < u ⩽ 1. Fen if X is a symmetric

space such that X ⊃ Lp ,∞, we have

∥
∞

∑
n=1
an g

p
n∥

X
≍ ∥(an)∥lp

with constants independent of (an) ∈ lp [13,Feorem III.3].Fe following theorem, being

in a sense converse toFeorem 3.1, gives necessary and suÚcient conditions under which

an analogous result holds for the arbitrary Orlicz function N(t) situated suÚciently “far”

from the extreme functions t and t2. As above, M(φ) is the Marcinkiewicz space with

φ(t) ∶= t/N−1(t).

3.8. Feorem. Suppose the Orlicz function N is (1 + ε)-convex and (2 − ε)-concave at zero
for some ε > 0, and let {gNn } be a sequence of mean zero independent functions on [0, 1] equ-
imeasurable with the function 1/N−1(t), 0 < t ⩽ 1. Fe following conditions are equivalent.

(i) For every symmetric space X such that X ⊃ M(φ), we have, with constants independent

of (an) ∈ lN ,

∥
∞

∑
n=1
an g

N
n ∥

X
≍ ∥(an)∥lN .

(ii) For every symmetric space X such that X ⊃ M(φ), with constants independent of

n ∈ N,
∥

n
∑
k=1
gNn ∥

X
≍ 1

N−1(1/n)
.
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(iii) Fere exists a constant K > 0 such that for all 0 < u, v ⩽ 1 we have

N(uv) ⩽ KN(u)N(v). (13)

Proof. As above, without loss of generality, we may (and will) assume that N is strictly

increasing and N(1) = 1. Let us begin by proving the implication (iii)⇒ (i). Since, by [8,

Proposition 2.4 andFeorem 3.3],

∥
∞

∑
n=1
an g

N
n ∥

X
⩾ c∥

∞

∑
n=1
an g

N
n ∥

1

≍ ∥(an)∥lN ,

it is suÚcient to prove that for some C > 0 and every (an) ∈ lN

∥
∞

∑
n=1
an g

N
n ∥

X
⩽ C∥(an)∥lN . (14)

First, from the embedding X ⊃ M(φ) and [18, Feorem 1] it follows that

∥
∞

∑
n=1
an g

N
n ∥

X
⩽ ∥

∞

∑
n=1
an g

N
n ∥

M(φ)
≍ ∥Ga∥(M(φ)+L2)(0,∞), (15)

where Ga(u) ∶= ∑∞n=1 an ¯gNn (u), u > 0. Since the function N is (2 − ε)-concave at zero,
then by the definition of the norm in the space (M(φ) + L2)(0,∞)

∥Ga∥(M(φ)+L2)(0,∞) ≍ ∥G∗a χ[0,1]∥M(φ) + ∥G∗a χ(1,∞)∥2 .

Noting that in view of [18, Feorem 1] and [8, Proposition 2.4 andFeorem 3.3],

∥G∗a χ(1,∞)∥2 ⩽ C′∥Ga∥(L1+L2)(0,∞) ≍ ∥
∞

∑
n=1
an g

N
n ∥

1

≍ ∥(an)∥lN ,

we see that to prove (14) it is suÚcient to verify the estimate

∥G∗a χ[0,1]∥M(φ) ⩽ C∥(an)∥lN (16)

with some C > 0.

Let ∥(an)∥lN = 1. Fen ∑∞n=1 N(∣an ∣) = 1, and since N increases and N(1) = 1, we

have ∣an ∣ ⩽ 1 for all n ∈ N. Moreover, for every τ > 0,

m{u > 0 ∶ ∣Ga(u)∣ > τ} =
∞

∑
n=1

m{t ∈ [0, 1] ∶ ∣an gNn (t)∣ > τ}

=
∞

∑
n=1

m{t ∈ [0, 1] ∶ 1

N−1(t)
> τ

∣an ∣
}

=
∞

∑
n=1

N(∣an ∣
τ

).
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In particular, since N strictly increases, this implies that

m{u > 0 ∶ ∣Ga(u)∣ > τ} > 1 if τ < 1.

Ferefore, from Lemma 3.6, inequality (13), and concavity of the function N−1
it follows

that

∥G∗a χ[0,1]∥M(φ) ≍ sup

0<t⩽1
G∗a(t)N−1(t) = sup

τ⩾1
τN−1 (m{u > 0 ∶ ∣Ga(u)∣ > τ})

= sup

τ⩾1
τN−1(

∞

∑
n=1

N (∣an ∣
τ

))

⩽ sup

τ⩾1
τN−1(K

∞

∑
n=1

N(∣an ∣)N ( 1
τ
))

= sup

τ⩾1
τN−1 (KN ( 1

τ
)) ⩽ K .

Fus inequality (16) is proved.

Since implication (i)⇒ (ii) is obvious, it remains to show that (ii) implies (iii).

Combining the hypothesis with the equivalence from (15), we obtain

∥
∞

∑
n=1

¯gNn ∥
(M(φ)+L2)(0,∞)

⩽ C′

N−1(1/n)
, n ∈ N.

Hence, again by the definition of the norm in (M(φ) + L2)(0,∞),

∥ 1

N−1(⋅/n)
∥
M(φ)

⩽ C′′

N−1(1/n)
, n ∈ N.

Since, by Lemma 3.6,

∥ 1

N−1(⋅/n)
∥
M(φ)

≍ sup

0<t⩽1

N−1(t)
N−1(t/n)

,

we infer that

N−1(t)
N−1(t/n)

⩽ C

N−1(1/n)
, n ∈ N,

or

N−1(1/n)N−1(t) ⩽ CN−1(t/n)

for all t ∈ (0, 1] and n ∈ N. Ferefore, in view of 2 − ε-concavity of N we obtain

N(N−1(1/n)N−1(t)) ⩽ N(CN−1(t/n)) ⩽ C2−ε t/n,

which combined with convexity of N implies (13).
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3.9. Remark. Up to this point, we did not consider the case when N(t) = t2. As follows

from [29, Proposition 1], if a separable symmetric space X contains l2 as a strongly embed-

ded subspace, then its second dual X′′
contains the standard Gaussian random variable.

It turns out that the same assertion holds even under a weaker condition, that does not

specify the strongly embedded subspace of X. Indeed, if X contains a strongly embedded

infinite dimensional subspace B, then the norms on X and L1 are equivalent on B. Hence

the canonical inclusion I∶X → L1 is not strictly singular and by [19, Feorem 1] (see al-

so [2]) X ⊃ G, where G is the closure of L∞ in the Orlicz space generated by the function

e t2 − 1, t > 0. It remains to note that the latter embedding is equivalent to the fact that the

Gaussian random variable belongs to X′′
.
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