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The primary decomposition of differential modules

1. Introduction. In [8] A. Seidenberg proved the following theorem: 
for any noetherian Ritt algebra each differential ideal A has an irredundant 
primary decomposition A = A 1 n ... n  As, where A 1, . . . , AS are differential 
ideals.

A more general case is presented in [1]. In [7] the above theorem was 
proved by S. Sato for arbitrary noetherian differential rings.

In this paper, using methods similar to those of S. Sato, we prove that: 
if R is a noetherian differential ring and M is a differential R-module finitely 
generated over R, then any differential submodule N of M has an irredundant 
primary decomposition N = N x n ... n  Ns, where all jVf are differential sub- 
modules.

From this fact a number of interesting conclusions follow concerning 
differential modules over a noetherian d - M P - ring.

In the last section we show an example of a differential ring for which 
the Differential Nakayama Lemma does not hold and a particular version 
of this lemma is given.

The author wishes to thank Professor S. Balcerzyk for many valuable 
discussions and criticism which helped to improve the text. 2

2. Preliminary notions. A differential ring (shortly: a d-ring) is a pair 
(R ,d ), where I? is a commutative ring with unit and d: R-*R is a mapping, 
called derivation, which satisfies the conditions:

d(r+s) = *d(r) + d(s), d(rs) = rd{s) + sd(r) for arbitrary r , s e R .

A differential module (shortly : a d-module) over a d-ring (R, d) is a pair 
(M, 5), where M is a R-module i.nd <5: M-*M is a mapping which satisfies 
the conditions: ô{m + n) = ô(m)+ô{n), ô(rm) = rô(m) + d(r)m for arbitrary 
m, n eM , re  R.

Let (R,d)  be a d-ring and (M,ô)  a d-module over (R , d ). An ideal A 
in R is called a d-ideal if d(A) c= A. Similarly a submodule N  of M is 
called a d-submodule if 0(N) a  N.
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If A is a d-ideal in R,  then AM  is a d-submodule of M.  If N  and P 
are d-submodules of M,  then (N: P) = {r s R ; rP cz N}  is a d-ideal in R. 
Similary, if A is a d-ideal and N  a d-submodule, then (N: A) = {me M ; 
Л т c= N} is a d-submodule.

For an arbitrary subset T  of R(M)  by [T] we denote the smallest 
d-ideal (d-submodule) containing T.

We say that a d-module M is d-finitely generated if there is a finite 
number of elements mx, . . . ,mne M  such that M = [ml5 ..., m j. The d-ring 
(R,d)  is called d — MP ring if a radical of an arbitrary d-ideal in R is 
a d-ideal. Equivalent definitions of d — MP ring may be found in [3]. If 
the d-ring (R ,d ) contains the field of rational numbers Q, then we call 
it a Ritt algebra. Every Ritt algebra is a d — MP ring. A d-ideal A is 
d-maximal if it is maximal among all d-ideals in R different from R.  If 
R is a d—MP  ring, then d-maximal ideals are prime (see [3]).

With every d-ring (R , d ) we associate some ring (non-commutative in 
general) D = D(R,d ) (see [4], [5]) which is a left free R-module having 
basis {1, t, t2, with the multiplication defined by: r ■ t = rt, tn ■ tm = tn+m, 
t ■ r = d{r) + rt. If (M,ô)  is a d-module over (R , d ), then M together with 
the multiplication (г„гл+ ... +r0)m = r„3n(m)+ ... +r0 -m is a left D-module. 
If M  is a D-module, then the mapping Ô: M-*M,  3(m) = tm, makes (M, Ô) 
a d-module over (R , d ). Any d-module over (R , d ) is d-finitely generated iff 
it is finitely generated as D (R, démodule.

For a R-module M  by AssR(M) we denote the set of all prime ideals 
in R associated with M  (see [5]).

3. Primary decomposition. Let (R,d) be a noetherian d-ring, (M,ô)  
a d-module finitely generated over R,  and N  a d-submodule of M.

Lemma 1. For any x e R  there is a natural number к such that (N: xk) 
is a d-submodule of M and (N : xn) = (N : xk) for any n ^  k.

00

Proof. For any m e U  = (J (N: xs) we have xsm e N  for some s and
s = 0

then the element ô{xsm) = xsô(m) + sxs~1 d(x)m is in N,  thus xs+l 3(m)eN,  
i.e. 3{m)eU.  It means that U is a d-submodule of M. It suffices now 
to consider the sequence (AT: x1) c= (N: x2) c= ...

Definition 2. A d-submodule N  of M  is d-primary if for any d-ideal 
A and any d-submodule P of M, from AP cr. N  it follows that either 
P c  N  or ,4" c  (N: M) for some natural number n.

Definition 3. A d-submodule N  of M is d-irreducible if it is not an 
intersection of two d-submodules different from N.

Lemma 4. I f  N is a d-primary d-submodule, then it is a primary submodule.
Proof. Let for given r e R , m e M ,  the element rm be in N.  We must
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show that either m e  N  or re  y/(N: M).  By Lemma 1 there is a natural 
number к such that (N: rk) is a d-submodule of M. r me N  implies 
m e ( N : rk) since rkm e N ;  hence [m] c  (N: rk) and therefore rke ( N : [m]).

Now, (N:  [m]) is a d-ideal in R,  thus [rk] c: (N: [m]), i.e. [rk] [m] 
<= N.  Since N  is d-primary, we have either [m] a  N or [r*]" c: (N: M),
i.e. m e  N  or re y/(N: M).

Lemma 5. I f  N  is d-irreducible d-submodule of M, then N is a d-primary 
d-submodule.

Proof. Assume that for a d-ideal A and a d-submodule P we have 
AP c  N and А ф  y/(N: M).  Let N = n  ... n  N k be a primary decom-

k

position of N. Since А ф  yJ(N: M ) = f] ^(Np.  M), we have А ф  y/iNp. M)
i = 1

for some i. Assume that А ф  y/iNp. M)  for i 1 ,2 ,..., s and A a  y/ (Nу M) 
for j  =  s + l , .... k.

If s = k, then, for any i = 1 ,2 ,..., k, (Np A) = Nt and therefore
к к

P cz (N: A) = f) (Np. A) = f ]  Ni = N.  Assume that s < k. Since R is
i= 1 i= 1

noetherian, there is a natural number n such that An a  (Np M) for 
j  = s + l , . . . , k .  In this case (Np A") = iV, for i = 1,2, . .. ,s  and (Np. An) 
= M  for j  = s + l , . . . , k .  Thus we have

s к

N c= (N: An) n ( N  +AnM) c z  f )  N t n  f )  N j  =  N ,
1=1 j = s + l

i.e. N = (N: A")n(N + An: M).

Since АР о  N , we have An P a  N  and N + P a  (N: An). Therefore

N z z  (N +  P)r\(N +  A"M) c z  (N: An) n ( N +AnM) =  N ,

i.e. N = (N + P)n (N + AnM).

By d-irreducibility of N Ф N + AnM  we have that N = N + P, i.e. P cz N.
Theorem 6. Let (R , d ) be a noetherian d-ring and (M,ô) a d-module 

finitely generated over R. Then any d-submodule N of M has an irredundant 
primary decomposition N  = N l n  ... n  Nn such that iV, are d-submodules of M. 

P roof. Using Lemmas 4 and 5 the argument is standard.

4. Conclusions from Theorem 6 for noetherian d — MP rings. We assume 
now that R is a noetherian d — MP ring and M  is a d-module finitely 
generated over R.

From Theorem 6 we have an immediate
Corollary 7. Any prime ideal associated with a d-module M is a d-ideal. 
Lemma 8. For anv m eM  if (o: m) is a d-ideal. then (o: m) = (o: [m]).
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Proof. See [2], Lemma 2.
L em m a  9. I f  M Ф 0, then there exists a d-submodule N Ф 0 and a prime 

d-ideal P such that N  is a torsion-free d-submodule over R/P.
Proof. Let P be a maximal ideal in the family {(o: m); о Ф m eM }. 

It is known that (o : x) — P is a prime ideal. By Corollary 7, P is a d-ideal.
Put N =  [jc] . Clearly, N  is a non-zero d-submodule and, by Lemma 8, 

P = (o\ x) = (o: [x]) =  (O: N), thus PN = 0, i.e. N  is a d-module over the 
d-ring R/P.

Now assume that rn = o, r e R \ P , о Ф n e N .  Then re(o: n), гф 
ф{о: x) = P, which gives (о: x) £  (o: n), contrary to the maximality 
of (o: x).

Corollary 10. I f  M  Ф 0, then there exist a sequence of d-submodules
0 = M 0 g= M x 3= ... M k = M and a sequence of prime d-ideals Px, ..., Pk 
in R such that Mi/ Mi^ x is a torsion-free d-module over the d-ring R/Px,
1 = 1 ,..., k.

Proof. Let N  and P be as in Lemma 9. We put M x = N  and 
Px = P. Then M x/ M 0 = N is a torsion-free d-module over R/Px. If 
Mj = M, then there is nothing more to do. If M x Ш M, then we apply 
Lemma 9 to the d-module M / M x Ф 0. Thus there exist a d-submodule 
N x Ф 0 of M / M x and a prime d-ideal P2 such that N 1 is a torsion-free 
d-module over R/P2■ We take M 2 = (p~l (Nx), where (p: M -> M / M x is can
onical. So we have 0 M x M 2 and M 2/ M x = N x is torsion-free d-module 
over R/P2- Since M is noetherian, this procedure ends.

Corollary 11. Assume that M Ф 0 is a d-simple d-module (i.e. M is 
without any proper d-submodels). Then

(1) (О: M) is a prime d-ideal,
(2) M is a torsion-free d-module over R/ (0: M),
(3) for any о Ф m e M ,  we have (o: m) = (О: M).
Proof. (1) Since M  Ф 0, the set AssR(M) is non-empty. Let P = (o: m)e 

eAssR(M). By Corollary 7, P is a d-ideal. Thus Lemma 8 implies that 
(О: M) = (O: [m]) = (о: m) = P is a prime d-ideal;

(2) Follows from (1) and from the proof of Lemma 9;
(3) For such m, since [m] = M, we have (О: M) =  (O: [m]) <= (o: m). 

Assume that (О: M)  £  (o: m) and take xe(o : m) such that х ф ( 0 : M).  
Since M  is d-simple, О is a d-primary d-submodule, and by Lemma 4 it is
a primary submodule of M. But xm = o; hence m = о or xEyJ(0\  M)  
= (О: M), a contradiction.

Corollary 12. I f  for all d-maximal d-ideals 59Î in R, Мш = 0, then 
M = 0.

Proof. Assume that M Ф 0. Then there is a prime d-ideal P of the 
form P =  (o: x ), for some x g M ,  x  Ф o, since AssR(M) Ф 0 . Let SDI be
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a ^-maximal d-ideal containing P. Then Mm = 0, thus x/1 = о in Mm. 
It follows now that, for some aERfffl, ax = 0, hence s e (o : x ) = P ci SJJÎ, 
a contadiction.

5. The Differential Nakayama Lemma. Let Jd(R) denote the intersection 
of all d-maximal d-ideals of the d-ring (R , d ). We call Jd(R) the Jacobson 
d-radical.

Definition 13. We say that d-ring (R, d) satisfies the Differential Nakaya
ma Lemma if for any d-ideal A a  Jd (R) and any d-finitely generated d-module 
M  the condition AM = M  implies M = 0.

Now we give an example of a d-ring which does not satisfy the Dif
ferential Nakayama Lemma.

Example 14. Let к be a field of characteristics zero, R — к [x] a ring 
of polynomials in one variable x over к and let d(x) = x, d(k) = 0. 
Since the only ^-maximal d-ideal in the d-ring (R , d ) is (x), we have 
Jd(R) = (x).

Note that for any w e D = D(R,d ) there is w' e D such that wx = xw'. 
Indeed,

(a) if w e R,  then wx = xw,
(b) since tx =  d(x)+xt = x + xt  = x(l + t), we have tn-x — x (l + f)",
(c) if w = r0 + rxt+ ... +rnf  is an arbitrary element of D, then

wx = ( Z  Г< Ф  = Z  n x i l  + ty = x ( £  r .d  + r)').
i =  0 i =  0 i= 0

Let / :  fc[x]->/c be such a homomorphism of rings that /  (x) = 1 and 
f  (к) = к for any /сек. The homomorphism /  induces on к a structure 
of К-module given wk = /  (w) к .

Put M  = D (x ) r  k. Since M  is a left D-module generated by the element 
1 ® R 1, M  is a d-module d-finitely generated over (R , d ). We show now 
that (x)M =  M. Take m eM . Then m =  w(l 0  1) for some w e D.  Thus 
we have:

m = w(l(x)l) = w(1® 1 - 1) = w (l0 /(x )  • 1) = w (l0 x • 1)
= w(l -X 0 1 )  = w x (l0 l)  = xw '(l® l), i.e. me(x)M .

This proves that the d-ring (R, d) does not satisfy the Differential Nakayama 
Lemma.

With some limitations on d-ring R and d-module M one may prove 
the following version of the Differential Nakayama Lemma, different from 
previous one.

Proposition 15. Let (R , d ) be a noetherian d-MP ring and (M , 3 ) 
a d-module finitely generated over R. I f  A is d-ideal such that A <= Jd(R) 
and AM = M, then M = 0.
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Proof. I f  Ш is an arbitrary ^-maximal d-ideal in R, then А c =  Jd(R )  

с  $Ji, Aw Msjui = Mw and Aw <= From the Nakayama Lemma,
Mw = 0; hence by Corollary 12, M  =  0.
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