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The primary decomposition of differential modules

1. Introduction. In [8] A. Seidenberg proved the following theorem:
for any noetherian Ritt algebra each differential ideal A has an irredundant
primary decomposition A = A;N...N A, where A,y,..., A; are differential
ideals.

A more general case is presented in [1]. In [7] the above theorem was
proved by S. Sato for arbitrary noetherian differential rings.

In this paper, using methods similar to those of S. Sato, we prove that:
if R is a noetherian differential ring and M is a differential R-module finitely
generated over R, then any differential submodule N of M has an irredundant
primary decomposition N = N, n...n Ny, where all N; are differential sub-
modules.

From this fact a number of interesting conclusions follow concerning
differential modules over a noetherian d— M P-ring,

In the last section we show an example of a differential ring for which
the Differential Nakayama Lemma does not hold and a particular version
of this lemma is given. '

The author wishes to thank Professor S. Balcerzyk for many valuable
discussions and criticism which helped to improve the text.

2. Preliminary notions. A differential ring (shortly: a d-ring) is a pair
(R, d), where R is a commutative ring with unit and d: R—R is a mapping,
called derivation, which satisfies the conditions:

d(r+s) =‘d(r)+d(s), d(rs) = rd(s)+sd(r) for arbitrary r,seR.

A differential module (shortly: a d-module) over a d-ring (R, d) is a pair
(M, J), where M is a R-module c.nd 6: M—M is a mapping which satisfies
the conditions: d(m+n) = §(m)+d(n), 6 (rm) = ré(m)+d(rym for arbitrary
m,neM,reR.

Let (R, d) be a d-ring and (M, J) a d-module over (R,d). An ideal A
in R is called a d-ideal if d(4) = A. Similarly a submodule N of M is
called a d-submodule if 6(N) = N.
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If Ais a d-ideal in R, then AM is a d-submodule of M. If N and P
are d-submodules of M, then (N: P) = {reR; rP < N} is a d-ideal in R.
Similary, if A is a d-ideal and N a d-submodule, then (N: A) = {meM;
Am < N} is a d-submodule.

For an arbitrary subset T of R(M) by [T] we denote the smallest
d-ideal (d-submodule) containing T.

We say that a d-module M is d-finitely generated if there is a finite
number of elements m, ..., m,e M such that M = [my, ..., m,]. The d-ring
(R,d) is called d—MP ring if a radical of an arbitrary d-ideal in R is
a d-ideal. Equivalent definitions of d— MP ring may be found in [3]. If
the d-ring (R, d) contains the field of rational numbers Q, then we call
it a Ritt algebra. Every Ritt algebra is a d—MP ring. A d-ideal A4 is
d-maximal if it is maximal among all d-ideals in R different from R. If
R is a d— MP ring, then d-maximal ideals are prime (see [3]).

With every d-ring (R, d) we associate some ring (non-commutative in
general) D = D(R,d) (see [4], [5]) which is a left free R-module having
basis {1, ¢, t?,...}, with the multiplication defined by: r-t = rt, "- t™ = "*™,
t-r=d(r)+rt. If (M, ) is a d-module over (R, d), then M together with
the multiplication (r,t"+ ... +ro)m = r,0"(m)+ ... +ro-m is a left D-module.
If M is a D-module, then the mapping 6: M—>M, é(m) = tm, makes (M, J)
a d-module over (R, d). Any d-module over (R, d) is d-finitely generated iff
it is finttely generated as D (R, d)-module.

For a R-module M by Assg(M) we denote the set of all prime ideals
in R associated with M (see [5]).

3. Primary decomposition. Let (R,d) be a noetherian d-ring, (M, 9)
a d-module finitely generated over R, and N a d-submodule of M.

LEMMA 1. For any x€R there is a natural number k such that (N: x¥)
is a d-submodule of M and (N: x") = (N: x*) for any n > k.

0

Proof. For any meU = () (N: x’) we have x*me N for some s and
s=0

then the element & (x*m) = x*6 (m)+sx*"1d(x)m is in N, thus x***d(m)eN,
ie. 6(m)eU. It means that U is a d-submodule of M. It sufhces now
to consider the sequence (N: x') = (N: x?) < ...

DErFINITION 2. A d-submodule N of M is d-primary if for any d-ideal
A and any d-submodule P of M, from AP < N it follows that either
P < N or A" = (N: M) for some natural number n.

DEerFINITION 3. A d-submodule N of M is d-irreducible if it is not an
intersection of two d-submodules different from N.

LemMMA 4. If N is a d-primary d-submodule, then it is a primary submodule.
Proof. Let for given reR, me M, the element rm be in N. We must
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show that either me N or re /(N: M). By Lemma 1 there is a natural
number k such that (N:r¥) is a d-submodule of M. rmeN implies
me(N: r¥) since *meN; hence [m] = (N: r*) and therefore r*e(N: [m]).

Now, (N: [m]) is a d-ideal in R, thus [r¥] = (N: [m]), ie. [*][m]
< N. Since N is d-primary, we have either [m] = N or [r¥]" < (N: M),

ie. meN or re /(N: M).

LEMMA 5. If N is d-irreducible d-submodule of M, then N is a d-primary
d-submodule.

Proof. Assume that for a d-ideal A and a d-submodule P we have
AP = N and A 4 /(N: M). Let N = N,n...nN, be a primary decom-

k
position of N. Since A ¢ ,/(N: M) = () \/(N;: M), we have 4 ¢ /(N;: M)
i=1
for some i. Assume that A ¢ \/(N;: M) for i=1,2,...,s and A < /(N;» M)

for j=s+1,... k.
If s=k, then, for any i=1,2,....,k, (N;: A)= N; and therefore
k k

Pc (N: Ay= () (N;: A)= () N; = N. Assume that s < k. Since R is
i=1 i=1

noctherian, there is a natural number n such that A" < (N it M) for
J=s+1,..,k. In this case (N;: A") = N, for i=1,2,...,s and (N;: 4"
=M for j =s+1,...,k. Thus we have

s k
N c(N: AYN(N+A"M) c N,n [} N;=N,
i=1 Jj=s+1
ie. N=(N: A)n(N+A4" M).
Since AP = N, we have A"P < N and N+P c (N: 4"). Therefore

Nc(N+PIn(N+A"M) < (N: AYn(N+A"M) = N,
ie. N =(N+P)n(N+A"M).

By d-irreducibility of N # N+A"M we have that N = N+P, ie. P < N.

THEOREM 6. Let (R,d) be a noetherian d-ring and (M, ) a d-module
finitely generated over R. Then any d-submodule N of M has an irredundant
primary decomposition N = Ny ...n N, such that N; are d-submodules of M.

Proof. Using Lemmas 4 and 5 the argument is standard.

4. Conclusions from Theorem 6 for noetherian d — MP rings. We assume
now that R is a noetherian d—MP ring and M is a d-module finitely
generated over R.

From Theorem 6 we have an immediate

COROLLARY 7. Any prime ideal associated with a d-module M is a d-ideal.
LeEmMA 8. For any meM if (o2 m) is « d-ideal, then (0: m) = (o: [m]).
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Proof. See [2], Lemma 2.

LEMMA 9. If M # O, then there exists a d-submodule N # 0 and a prime
d-ideal P such that N is a torsion-free d-submodule over R/P.

Proof. Let P be a maximal ideal in the family {(o: m); o # me M}.
It is known that (0: x) = P is a prime ideal. By Corollary 7, P is a d-ideal.

Put N = [x]. Clearly, N is a non-zero d-submodule and, by Lemma 8,
P = (0: x) = (0:[x]) = (O:N), thus PN = 0, ie. N is a d-module over the
d-ring R/P.

Now assume that rm =0, reR\P, o0# neN. Then re(o: n), r¢
¢(0: x) = P, which gives (o: x) & (0: n), contrary to the maximality
of (o: x).

CoROLLARY 10. If M # 0, then there exist a sequence of d-submodules
0=My,E M, €...€ M, =M and a sequence of prime d-ideals P, ..., P,
in R such that M;/M;_, is a torsion-free d-module over the d-ring R/P;,
i=1,...,k.

Proof. Let N and P be as in Lemma 9. We put M; = N and
P, =P. Then M;/M, =N is a torsion-free d-module over R/P,. If
M, = M, then there is nothing more to do. If M; € M, then we apply
Lemma 9 to the d-module M/M; # 0. Thus there exist a d-submodule
N, # 0 of M/M, and a prime d-ideal P, such that N, is a torsion-free
d-module over R/P,. We take M, = ¢~ '(N,), where ¢: M — M/M, is can-
onical. So we have 0 € M; € M, and M,/M, = N, is torsion-free d-module
over R/P,. Since M is noetherian, this procedure ends.

COROLLARY 11. Assume that M # 0 is a d-simple d-module (i.e. M is
without any proper d-submodels). Then

(1) (O: M) is a prime d-ideal,

(2) M is a torsion-free d-module over R/(O: M),

(3) for any o # me M, we have (0: m) = (0: M).

Proof. (1) Since M # 0, the set Assg (M) is non-empty. Let P = (0: m)e
€ Assg(M). By Corollary 7, P is a d-ideal. Thus Lemma 8 implies that
(0: M) = (0: [m]) = (0: m) = P is a prime d-ideal;

(2) Follows from (1) and from the proof of Lemma 9;

(3) For such m, since [m] = M, we have (0: M) = (0: [m]) < (o: m).
Assume that (0: M) € (0: m) and take xe(o: m) such that x¢(0: M).
Since M is d-simple, O is a d-primary d-submodule, and by Lemma 4 it is
a primary submodule of M. But xm = o; hence m = o0 or xe,/(0: M)
= (0: M), a contradiction.

CoroLLARY 12. If for all d-maximal d-ideals MM in R, My = 0, then
M =0,

Proof. Assume that M # 0. Then there is a prime d-ideal P of the
form P = (0:x), for some xeM, x # o, since Assgp(M) # @. Let M be
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a d-maximal d-ideal containing P. Then My, = 0, thus x/1 = 0 in M,.
It follows now that, for some ae R\, ax = 0, hence se(o:x) = P < M,
a contadiction.

5. The Differential Nakayama Lemma. Let Jd(R) denote the intersection
of all d-maximal d-ideals of the d-ring (R, d). We call Jd(R) the Jacobson
d-radical.

DerFINITION 13. We say that d-ring (R, d) satisfies the Differential Nakaya-
ma Lemma if for any d-ideal A — Jd(R) and any d-finitely generated d-module
M the condition AM = M implies M = 0.

Now we give an example of a d-ring which does not satisfy the Dif-
ferential Nakayama Lemma.

ExampLE 14. Let k be a field of characteristics zero, R = k[x] a ring
of polynomials in one variable x over k and let d(x) = x, d(k) = 0.
Since the only d-maximal d-ideal in the d-ring (R,d) is (x), we have
Jd(R) = (x).

Note that for any we D = D(R, d) there is w’ e D such that wx = xw'.
Indeed,

(a) if weR, then wx = xw,

(b) since tx = d(x)+xt = x+xt = x(1+¢), we have *-x = x(1+1¢),

(© if w=ro+rit+ ... +r,t" is an arbitrary element of D, then

we = (Y nithx = ¥ rix(1+0 = x( ¥ ri(1+0)).
i=0 i=0 i=0

Let f: k[x]J—k be such a homomorphism of rings that f(x) = 1 and
f (k) = k for any kek. The homomorphism f induces on k a structure
of R-module given wk = f (w)k.

Put M = D ®p k. Since M is a left D-module generated by the element
1 ®x1, M is a d-module d-finitely generated over (R,d). We show now
that (x)M = M. Take meM. Then m = w(l ® 1) for some we D. Thus
we have:

m=w(l®l)=wl®l-1) =w(l®f(x)-1) = w(l®x-1)
=w(l-x®1) =wx(I®1l) = xw'(1®1), ie. me(x)M.

This proves that the d-ring (R, d) does not satisfy the Differential Nakayama
Lemma.

With some limitations on d-ring R and d-module M one may prove
the following version of the Differential Nakayama Lemma, different from
previous one.

ProposiTiON 15. Let (R,d) be a noetherian d-MP ring and (M, )
a d-module finitely generated over R. If A is d-ideal such that A < Jd(R)
and AM = M, then M = 0.
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Proof. If M is an arbitrary d-maximal d-ideal in R, then 4 = Jd(R)
c M, Aw My = My, and Aw < MRy. From the Nakayama Lemma,
My, = 0; hence by Corollary 12, M = 0.
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