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The problems of separability, duality, reflexivity
and of comparison for generalized Orlicz-Sobolev spaces W;%(Q)

Abstract. We shall prove the theorem on representation of bounded linear functionals
on generalized Orlicz-Sobolev space Wi () generated by a class of N-functions M (t, u) with
parameter t. We shall give some sufficient conditions in order W (2) be separable and some
sufficient conditions in order that Wy () be a reflexive space. Moreover, we shall prove that
if WA';I(Q) is a dense subspace of W,{;Z(Q), then M, < M,.

0. Introduction. R" denotes the n-dimensional real Euclidean space,
u = Lebesgue measure on R",Q is an arbitrary non-void open set in
R", R, = [0, o). A function M(-,-): @x R,—R,, which satisfies the con-
ditions:

There exists a set 4 of measure zero such that:

(i) M(t,u) = 0 if and only if u = O for every te Q\A4;
(i) M(t, 0y uy+azuy) < ag M(t, uy)+o, M(t,uy) for every te Q\A,u,,
Uy, oy, 00 €R, oy 4+0a, =1; :

(i) M (¢, u) is a measurable function of ¢ for every fixed u > 0;
is called a @-function of the variable u with parameter t.

A ¢-function M (t,u) with parameter ¢, which satisfies the condition:

(iv) there exists a set A of measure zero such that

Mt
MEw) o w0 and MEW
u u

—00 as u—oo for every te Q\A,

is called an N-function with parameter t.

The following conditions for ¢-functions M (t, u) with parameter ¢ will
be used:

(v) there exists a number u, > 0 such that | M (t,u)dt < oo for every
B

compact set B « Q and for every 0 < u < uy;

(vi) for every corhpact set B < Q there exist a set Ag, u(dp) =0,
a constant Cyz > 0, and a function h > 0 belonging to L,(B) such that

u< CgM(t,u)+hg(t) for every u > 0,te B\Ag;
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.. M(t,u) . )
(vin) ——T—>oo as u—oo uniformly with respect to t on every com-
pact set B c Q;
(4,) there exist a constant K > 0, a set A ¢ Q of measure zero, and
a non-negative function h,eL,(Q) such that for every teQ\4 and for
every u >0

M (t, 2u) < KM(t, u)+hy (t).

Obviously, we may assume that the sets A in the conditions above
are the same.

By F we denote the real space of all complex-valued and Lebesgue
measurable functions defined on Q with equality almost everywhere on Q.
For every ¢-function M (t,u) with parameter t, we define the functional
(convex modular)

em(f) = !)M(t,!f(t)l)dt,erF,

and the Orlicz-Musielak space (see [11])
Ly(@) = {feF:31>0, gy (¥) < 0}.

For every ¢-function M (t,u), Ly () is a real vector space with usual
scalar multiplication and addition of functions. The functional |- |, de-
fined by

IS Ly = inf {& > 0: oy (fe) < 1}

is a norm on Ly (). | - |, is called the Luxemburg norm (see [8]). Further,
for any fixed non-negative integer k we define

Wi(@ = {feLy(@): Ve < k ID*f e Ly, ()},
where D*f = %I f/ot5 ... 06, a = (ay,...,®,) is a multiindex with a; > 0,
le] = oy + ... +0a,, denote the distributional derivatives of the function f
of order |a|. The space W (Q) is called the generalized Orlicz—Sobolev space
(see [2]). Let
oau(f) = lIZkQM(Daf) and ”f”w’,‘" = inf {e > 0: gy (f/e) < 1}

for fe Wk (Q). These functionals are a convex modular and a norm on
W (), respectively. If M is a ¢-function with parameter satisfying condition
(vi), then the pair (W (Q), |- |lw%> is a Banach space (see [2]).

If a p-function M (t, u) satisfies condition (v), then the inclusion

©.1) CT(Q) = Wi (Q)

holds for every non-negative integer k, where Cg () denotes the space of
all infinitely differentiable functions on Q with compact support in Q.
If a ¢@-function M (t,u) with parameter ¢ satisfies condition (vi), then
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there holds the inclusion L, () = llff (). Condition (vi) is also necessary
in order that the inclusion L, (Q) < l‘f’f () hold (see [8]). Thus, if condi-
tion (vi) is satisfied, then for every function fe L, (Q) the functional Tj
defined by

T (o) = {fr o) = gf(t)qo(t)dt, VoeCq(9Q),

is a regular distribution and so Wg(Q) = L, (Q) if k = 0.
If M(t,u) is an N-function with parameter t, then we deﬁne the
complementary N-function N (t, u) to M (¢, u) by

N(t,u) =sup {uw—M(t,v)}; VieQ, u=0.
v>0

Henceforth, M (¢, u) and N (¢, u) denote a pair of complementary N-functions.
There holds the following Young’s inequality

0.2) uw < M@, uy+N(t,v); VYVieQA,u, veR,.

Moreover, if p(¢t,u) and q(t,u) denote the right-hand derivatives of
N-functions M (t,u) and N (¢, u) with respect to the variable u for fixed t,
respectively, then there hold the following Young’s equalities:

03) up(t,u) = M(t,u)+N(t,p(t,u), VieQA, uz>0,
B vq(t,v) = M(t,q(t,0))+N(t,v), VieQAd,v>0.

1
Now, let = ) 1 and let Ly (Q) = [] Ly(Q), ie. L4 (Q) is the
. i=1

J2) S k
I-tuple Cartesian product of Ly (€2). Then every element felly(2) is of
the form f = (f,,..., f;), where fieLy(Q), i = 1,...,1. We define

1
om(f) = =Zl em(f) and [ fli, = inf{e > 0: gy (f/e) < 1}

for every f e I}, (). Obviously these functionals are a convex modular and
a norm on L), (), respectively, and the pair (L\ (), || - | L) is a Banach
space. We define also on Ly, (Q) the Orlicz norm *||- |1 by

1
Al =sup | Y [fi@g@dt]: gl < 1.

i=10
There hold the following inequalities (see [6])
Iy, < Miflle, < 2000, YSfeLy(Q).

Let us suppose that the ! multiindices o satisfying |a| < k are linearly
ordered in a convenient fashion so that with each fe W (Q) we may
associate a well-defined vector Pf in L\ (Q) given by

(0.4) Pf = (D*f ) <i-
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We have || f llwe, = | Pf I, so P is an isometric isomorphism of W (Q)
onto a subspace PW{(Q) = W of the L\ (). If k > 0, then PW(Q) is
a closed proper subspace of I (€). '

Let X’ denote the dual space of X for any Banach space. It is easily
seen that if M (t, u) satisfies condition (v), then the Lebesgue measure and
the open set Q — R” satisfy conditions A and B from [8] with the sequence
{T,} of compact subsets of Q. Thus, there holds the following (see [8]):

0.1. LemMA. If f*e[Ly (2)]', where M (t,u) is an N-function with par-
ameter t satisfying condition (V) and (A4,), then there exists a unique function
fe€Ly(€) such that for every ge Ly (L)

f*@) =<f.9> = [fOg@dt and | f*] = "ISllL,-

1. The separability of Wy (Q). We shall prove the following

1.1. TueoreM. If M(t,u) is a @-function with parameter t continuous
with respect to t for every fixed u > O and satisfying conditions (vi) and (4,),
then the space Wy (Q) is separable.

Proof. The space L, (Q2) is separable. This follows from density of
C®(Q) in L, () (see [3]). Hence also I')(R2) is separable. Since the
operator P defined by (0.4) is an isometry between W () and PWj;(Q)
c Iy (Q) and WE(Q) is complete, W= PWk(Q) is a closed subspace of
L'\ (2). Thus, Wand W) (Q) = P~! W are separable spaces.

2. Duality, the space W,;*(Q). First, we shall wriie the following lemma
which immediately follows from Lemma O0.1.

2.1. LemMma. If an N-function M (t, u) with parameter t satisfies conditions
(v) and (4,), then to every f*e[L\(R2)) there corresponds a unique
feLy(Q) such that

1
(2.0) f*g = .; {fi9, VgeLy(Q).

Moreover, || f*|| = || fll,-
There holds the following Holder’s inequality

1
| X <foadl <17l Ml VS eL(@), g Ly(@.

Thus each element f e I'y(Q2) defines a bounded linear functional f* on
Wi (©) by

(2.1 f*@) = ) D'g.f>,

o <k

where the element f € Ly (Q) is rewritten in the form f = (f)<s-
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We define on the space Ly(2) a relation of equivalence R by:
fiRf; for fy, f,eLly(Q) if and only if f; and f, define by formula (2.1)
the same bounded linear functional on W ().

2.2. THEOREM. Let M (t,u) be an N-function with parameter t satisfying
conditions (v), (Vi), (4,) and let f*e[W¥X(Q)]'. Then there exists an element
fe Ly (Q) such that, writing the element f in the form ( Sda<x>» we have

22) f*@ = ) Dy,

Ja| < k
for all geW%(Q). Moreover, |f*| = inf{‘]lf”Lk} = min{IHfIIL;v}, the
infimum being taken over (and attained), on the set of all fe L'y (Q), which
define the functional f*, i.e. (22) holds for every ge W¥(Q). Thus, the space
[Wk(Q)Y is isometrically isomorphic to the quotient space L\ (Q)/R with the
norm

ALy = i N s fELAT).

Proof Using Lemma 2.1, the proof is analogous to the proof of the
respective theorem for the space W)(Q) (Theorem 3.8 in [1]).

2.3. Some remarks. Let us denote by Wk () the closure in W (Q)
of the set C3(€2) with respect to the norm | -|4%, and by R, a relation
of equivalence on L, () defined as follows: f; R, f, for f;, f, € Ly (Q) iff
f, and f, define the same linear bounded functional on Wi (Q). Then the
dual space [Wy(Q)] is isometrically isomorphic to I (2)/R, with norm

ILfJoll = inf {MI fll4: felf 1o},

where [f], denotes the equivalence class of the element f with respect
to the relation R,.

- If M(t,u) is an N-function with parameter ¢ satisfying conditions (v),
" (vi) and (4,), then every element f* e [W{(Q)]’ is an extension of a distri-
bution T € 2’ (Q) to Wk (Q), with T of the form

(2.3) T = Y (-D)D*T,(p), VeoeCP®),
lej<k

where f = (f,)u<x is an element of L, () determining the functional f*.
Obviously, for every f €[ f] the distribution T defined by (2.3) is the same,
but if T is any element of 2'(Q2) having the form (2.3) for some f € I'y(Q),
then the continuous extension of T to Wj:(2) may be not unique. However
T possesses a unique extension to WM (€2).

We denote by W, *(2) the Banach space consisting of distributions
T € 2 (Q) satisfying (2.3) for some f € I'y(£2), normed by

IT| = inf {*|| fll,4: f satisfies (2.3)}.
By the above remarks, W, *(Q) is isometrically isomorphic to [W(Q)]
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(so also to Ly(R2)/R,), provided the N-function M (¢, u) with parameter ¢
satisfies conditions (v), (vi) and (4,).

3. Reflexivity of Wik (Q). First, we shall prove two lemmas.

3.1. LemMaA. If M(t,u) and N (t,u) are complementary N-functions with
parameter t and M satisfies conditions (V) for every u > 0 and (vii), then
N satisfies condition (v) for every u = 0.

Proof. We have (see (0.3))
N(t,u) = uq(t,u)—M(t, q(t, u)).

Obviously, M (t, q(t,u)) < uq(t,u), because N(f,u) is non-negative. Hence
M(t,q(t,u))/q(t,u) < u. Let B< Q be a compact set and u > 0 an arbi-
trary fixed number. Then by condition (vii) there exists a v, such that

M@, v)fv >u, VYvzv, VteB.
Hence we obtain that q(t, u) < v, for every t € B. Thus we have
<

[N, wdt < [uv,dt+ [ M(t,v)dt < 0.
B B B

3.2. LemMA. If M(t,u) and N (t,u) satisfy condition (4,) and if M
satisfies conditions (v) and (vii), then the space L, (Q) is reflexive for every
positive integer 1.

Proof. The N-functions M (t,u) and N (t,u) satisfy the assumptions

of Lemma 2.1. It suffices to prove that (see [1]) the natural isometry
ALy (Q)s fi f** e[ Ly ()] given by

> =1*(), Vf*elly @Y
maps L), (Q) onto [L (€2)]” uniquely. From Lemma 2.1 it follows that exists

onto

amr isometry T: L'y (Q) — [ ()] given by (2.0). Thus, if f**e[L) (Q)]",
then there exists a unique z* e [y ()] such that

(¥ =22(T7f%), Vf*elly(@)].
It suffices to put z* =f**oT. Let us assume that the functionals

z*e[Ly ()] and f*e[L4y(2)]) are determined by the elements ze Iy ()
and f e L\ (), respectively. So we obtain

1
I = ; i fy =f*@), Vf*e[Ly(@Q].

Thus, the element f**e[L),(€2)]” is uniquely determined by the element
zeLly (@) and || f**] = Mliz|,,. )

.~ 3.3. THEOREM. If M(t,u) and N(t,u) satisfy conditions (vi), (4,) and
if M(t, u) satisfies conditions (v) and (vii), then for every non-negative integer
k the space Wi (Q) is reflexive.
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Proof. Let I = ) 1. Since, by Lemma 32, the space L (Q) is reflex-

la] <k
ive and W (Q) is isometric to the closed subspace W = PWy(Q) of L, (),
so Wk () is reflexive.

4. The space H*(22) and duality. Let M(t,u) and N(t,u) satisfy the
assumptions of Theorem 3.3. Then the space Wy (Q) is reflexive. Each
element ge Ly(f2) determines an element T, of [Wk(Q)] by means of
T,(f) = {f,g)>. Moreover,

@) TN = KA < I flIwk gy,  where gl = lgll.4-
We define the (—k, N)-norm of ge Ly(€2) to be the norm of T, that is,

gl - = sup {I<L g1 1wk < 1}
Obviously, ‘
lgl-xn < 'lgly and equality holds for k = 0.

Moreover, there holds the following Holder’s inequality

(it %)
1w,

V={T,: geLy(Q)}.

Obviously, V is a linear subspace of the space [W(2)]. We shall show
that V is dense in [W(Q)]. This is easily seen by showing that if
Fe[Wy(Q)]" satisfies F(T,) = 0 for every T,eV, then F(T) = 0 for every
Te[WE(Q)]. Since Wk (Q) is reflexive, there exists f e Wk(£2) such that

(4.2) L9 =T(f)=F(T) =0, Vgely(Q).

1K 01 = 1 fllwt,

< N fwk gl -in-

Let

Since N (t,u) satisfies condition (v), C¥(Q) is contained in Ly (£2); hence
from (42) it follows that f = 0 in Wy (). Hence |[F|| = || fy* = HPfy L,
= 0. Thus F = 0.

Let Hy*(Q) denote the completion of Ly(Q2) with respect to the
norm | -||-xn. Then we have

4.1. THEOREM. If M(t,u) and N (t,u) satisfy conditions (vi), (4,) and
if M(t,u) satisfies conditions (v) and (vii), then the space [W%(Q)] is iso-
morphic to the space Hy*(Q).

Proof. We denote by H the closure of Ly(2) with respect to the
norm || - | _,y. Obviously, the spaces V; = {T,: ge H} and Hy*(Q) are iso-
morphic. From the density of V in [W(Q)] it follows that V; = [Wk(Q)Y
and thus Hy*(Q) and [W)(Q)] are isomorphic.
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5. Comparison of the generalized Orlicz—Sobolev spaces.

5.1. LemMA. If M, (t,u) and M, (t,u) are ¢@-functions with parameter
t and Wk (Q) c Wk, (Q), where k is a non-negative integer number, then
there exists a positive constant K > O such that

(5.1) I lws,, < KN fllwt, > VS € Wi, ().

Proof. It is sufficient to prove that the embedding operation from
Wi, (Q) into Wi, (Q) is closed, ie. the conditions |f,~flly* — 0 and
It f— g||W — 0 as n—> oo imply f= g almost everywhere on Q.

From’ the first condition follows that Jaxa—0 with respect to the
measure for every measurable set A of finite measure (see [5]). Since
the Lebesgue measure on R" is o-finite, we may find a subsequence {z,}
of the sequence {f,} such that z,(t) =2 f(¢) for ae. teQ. We have also
1z, —gllw — 0 as n— . Now, we may find a subsequence {h,} of the
sequence 1z } such that h, (¢) ;=2 g (¢) for a.e. te Q. Thus we have h,(t) =2 f(¢)
and h,(t) =2 ¢(t) for ae. teQ. Hence f = g almost everywhere on .

5.2. COROLLARY. If Wik () = WE,(Q), then [W,(Q)) <= [Wy, ().

Proof. If f*e[Wgk, (@)Y, fie Wi, (Q), n=1,2,... and I fllwe, — 0 as
n — oo, then ||ﬁ,||wk — 0 as n— oo, and thus f*(ﬁ,)—+0 as n— ob.

5.3. THEOREM. If M, (t,u), M,(t,u) are N-functions with parameter sat-
isfying conditions (v), (vi), (4,) and if WA';‘(Q) c M’;Z(Q), where W&I(Q)
is dense in Wy, () with respect to the norm ||-||W§42, then M, < M,,
i.e. there exist a set A of measure zero, a constant K > 0, and a non-
negative function he'L,(Q) such that

M,(@t,u) < M (t, Ku)+h(t) for every te QA, u> 0.

Proof. We define the relations ~; and ~, on spaces Ly, (2) and

Ly, (Q), where I = Y 1 and N,(t,u), N (¢, u) are complementary N-func-
lel<k

tions to M, (t,u) and M, (t,u), respectively, as follows: f; ~, f, for fi,
f> € L'y, (Q) iff these elements determine the same bounded linear functionals
on Wy (Q); fi ~2f2 for fi, f,€Ly,(Q) iff these elements determine the
same bounded linear functionals on Wj,(2). Now we shall prove that
under assumptions of the theorem the relations ~; and ~, coincide.
Obviously, if f*e[Wy,(Q)), then f*e[Wy, (2)]. Moreover, if f*(f) =0
for every f € W¥,(Q), then also f*(f) = 0 for every f € Wy, (©2). Conversely,
if f*e[We, ()] and f*(f) = 0 for every f e W, (Q), then by density of
Wik, (Q) in Wik, (Q) we have f*(f) = O for every f e Wi, ().

Thus, we may take I'y,/~ and I'y,/~ instead of ILy,/~, and
L'y,/~,, respectively. Hence, by Corollary 5.2, we have I'y,/~ < Ly,/~.
Thus Ly, (Q) = Ly, (2) and further Ly,(Q) = Ly, (22). By [8], Theorem 1.8,
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we obtain that there exist a set 4 of measure zero, a constant K > 0,
and a non-negative function he L, () such that

Ni(t,u) < N,(t, Ku)+h(t) for every te A, u > 0.

Hence, we obtain

M,(t,u) = sgg {uw—N,(t,v)} = sug {uv—N, (¢, v/K)+h(t)}

v>0

< sup {Ku %—Nl(t, v/K)}+h(t) = M, (t, Ku)+h(t).

Thus the proof is complete.

54. Remark. If the assumptions of Theorem 5.3 are satisfied, 2 = R".
Now let f; denote the modification of f, M, (-, u) is a continuous function
on Q for every fixed u > 0 and Hf‘;IILM2 <K, IIfllLM2 for 0 < 0 < 9y, feLy,(Q),
then Wy, (R") is dense in Wk, (R").

Proof. By assumptions, Cg(R") is dense in W, (R") and CQ(R")
= Wi, (R") (see [4]).

5.5. Remark. If condition (v) is satisfied, then for every compact set
B < Q,[”(B) = Ly (B). Conversely, if [*(B) = Ly (B) for every compact
set B < Q, then the N-function M (t,u) with parameter ¢ satisfies condi-
tion (v).

Proof. [*(B) is the Orlicz space generated by the ¢-function without

parameter
wo {0 i<t
PYW=Y0  if > 1.

The function ¢(u) has infinite values for |ul > 1 and does not satisfy
condition: ¢(u) = 0 implies u = 0. But such ¢-functions were also con-
sidered by ‘A. Kozek in [7] and [8]. By Theorem 1.8 from [8], we have

(52) M(t,u) < o(Kw+h(t), VYu=0,VteBA, u(d) =0

with an K > 0 and a non-negative function heL,(B). If Ku <1, ie.
u < 1/K, then by (5.2), we obtain

(5.3) M(t,u) < h(t), VteB\A4, u(4) =0,

ie. condition (v) holds with u, = 1/K. The first part of the remark is
obvious.

I am much indebted to Professor J. Musielak for his kind remarks
during preparation of this paper.



324 H. Hudzik

References

[11 R.A. Adams, Sobolev spaces, Academic Press, New York-San Francisco-London 1975.

[2] H. Hudzik, A generalization of Sobolev space (I), Functiones et Approximatio 2
(1976), p. 67-73.

[3]1 —. A generalization of Sobolev space (II), ibidem 3 (1976), p. 77-85.

[4] —, Density of Cy(R") in generalized Orlicz—Sobolev space Wy (R"), ibidem 7, p. 15-21.

[5] = and A. Kaminska. Some remarks on convergence in Orlicz spaces, Comm. Math.
21 (1979), p. 81-88.

(6] —, —, Equivalence of the Orlicz and Luxemburg norms in generalized Orlicz spaces
4, (T), Functiones et Approximatio 9, in print.

[71 A. Kozek, Orlicz spaces of functions with values in Banach spaces, Comm. Math. 19 (1977),
p. 259-288.

[8] —. Convex integral functionals on Orlicz spaces, ibidem 21 (1979), p. 109-135.

[9] M.A. Krasnosel'skif and Ya.B. Rutickii, Convex functions and Orlicz spaces
(translated from the first Russian edition), P. Noordhoff-Groningen-The Netherlands, 1961.

[10] W.A. Luxemburg, Banach function spaces, Thesis, Technische Hogeschool te Delft,
1955.

[11] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), p. 49-65.

INSTYTUT MATEMATYKI UNIWERSYTETU IM. A. MICKIEWICZA
INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIWERSITY, POZNAN



