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An approximation theorem in
Musielak-Orlicz-Sobolev spaces

Abstract. In this paper we prove the uniform boundedness of the operators of co-
nvolution in the Musielak-Orlicz spaces and the density of C∞0 (Rn) in the Musielak-
Orlicz-Sobolev spaces by assuming a condition of Log-Hölder type of continuity.
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1. Introduction. Let Ω be an open set in Rn and let ϕ be a real-valued func-
tion defined in Ω×R+ and satisfying the following conditions :
a) ϕ(x, .) is an N-function [convex, increasing, continuous, ϕ(x, 0) = 0, ϕ(x, t) > 0
for all t > 0,ϕ(x,t)

t → 0 as t→ 0, ϕ(x,t)
t →∞ as t→∞ ]

b) ϕ(., t) is a measurable function for any t ∈ R+.
A function ϕ(x, t) which satisfies the conditions a) and b) is called a Musielak-Orlicz
function.

We define the functional

%ϕ,Ω(u) =
∫

Ω
ϕ(x, |u(x)|)dx,

where u : Ω 7→ R is a Lebesgue measurable function. In the following the measura-
bility of a function u : Ω 7→ R means the Lebesgue measurability.

The set
Kϕ(Ω) = {u : Ω→ R mesurable /%ϕ,Ω(u) < +∞}

is called the generalized Orlicz class.
The Musielak-Orlicz space (the generalized Orlicz spaces) Lϕ(Ω) is the vector

space generated by Kϕ(Ω), that is, Lϕ(Ω) is the smallest linear space containing
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the set Kϕ(Ω).
Equivelently:

Lϕ(Ω) =
{
u : Ω→ R mesurable /%ϕ,Ω(

|u(x)|
λ

) < +∞, for some λ > 0
}

Let
ψ(x, s) = sup

t0
{st− ϕ(x, t)},

that is, ψ is the Musielak-Orlicz function complementary to ϕ(x, t) in the sense of
Young with respect to the variable s.

In the space Lϕ(Ω) we define the following two norms:

||u||ϕ,Ω = inf{λ > 0/
∫

Ω
ϕ(x,

|u(x)|
λ

)dx,¬ 1}.

which is called the Luxemburg norm and the so-called Orlicz norm by :

|||u|||ϕ,Ω = sup
||v||ψ¬1

∫

Ω
|u(x)v(x)|dx.

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are
equivalent [19].

We say that a sequence of functions un ∈ Lϕ(Ω) is modular convergent to
u ∈ Lϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

%ϕ,Ω(
un − u
k

) = 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω) : ∀|α| ¬ m Dαu ∈ Lϕ(Ω)}

where α = (α1, α2, ..., αn) with nonnegative integers αi |α| = |α1|+ |α2|+ ...+ |αn|
and Dαu denote the distributional derivatives. The space WmLϕ(Ω) is called the
Musielak-Orlicz-Sobolev space.

Let

%ϕ,Ω(u) =
∑

|α|¬m
%ϕ,Ω(Dαu) and ||u||mϕ,Ω = inf{λ > 0 : %ϕ,Ω(

u

λ
) ¬ 1}

for u ∈WmLϕ(Ω). These functionals are a convex modular and a norm onWmLϕ(Ω),
respectively, and the pair < WmLϕ(Ω), ||u||mϕ,Ω > is a Banach space if ϕ satisfies
the following condition [19]:

there exist a constant c > 0 such that inf
x∈Ω

ϕ(x, 1)  c.(1)
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We say that a sequence of functions un ∈ WmLϕ(Ω) is modular convergent to
u ∈WmLϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

%ϕ,Ω(
un − u
k

) = 0.

For two Musielak-Orlicz functions ϕ and ψ the following inequality is called the
young inequality [19]:

t.s ¬ ϕ(x, t) + ψ(x, s) for t, s  0, x ∈ Ω(2)

This inequality implies the inequality

|||u|||ϕ,Ω ¬ %ϕ,Ω(u) + 1.(3)

In Lϕ(Ω) we have the relation between the norm and the modular :

||u||ϕ,Ω ¬ %ϕ,Ω(u) if ||u||ϕ,Ω > 1(4)

||u||ϕ,Ω  %ϕ,Ω(u) if ||u||ϕ,Ω ¬ 1(5)

For two complementary Musielak-Orlicz functions ϕ and ψ let u ∈ Lϕ(Ω) and
v ∈ Lψ(Ω) we have the Hölder inequality [19]:

|
∫

Ω
u(x)v(x) dx| ¬ ||u||ϕ,Ω|||v|||ψ,Ω.(6)

In this paper we assume that there exists a constant A > 0 such that for all
x, y ∈ Ω : |x− y| ¬ 1

2 we have :

ϕ(x, t)
ϕ(y, t)

¬ t
A

log( 1
|x−y| )(7)

for all t  1.

For examples of Musielak-Orlicz functions which verify (7 ) see §Examples.

The aim of this paper is to prove the density of space of class C∞ functions
with compact supports in Rn C∞0 (Rn) in the space WmLϕ(Rn) for the modular
convergence, under the assumption (7).

Our result generalizes that of Gossez in [14] in the case of classical Orlicz spaces
and that of Samko [21] in the case of variable exponent Sobolev spaces Wm,p(x)(Rn).

A similar result has been proved by Hudzik in [16] and [17] by assuming the
following condition:

∫
M(x, |fε(x)|)dx ¬ K

∫
M(x, |f(x)|)dx(8)
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for all function f ∈ LM (Rn),where fε is a regularized function of f . In our paper
we don’t assume any condition of type(8).

For others approximations results in Musielak-Orlicz-Sobolev spaces and some
applications to nonlinear partial differential equations see [9].

And for nonlinear equations in classical Orlicz spaces see [1], [2], [3], [5], [6], [8],
[10], [13], [11], [15], [12] and references within.

2. Main results. Let K(x) be a measurable function with support in the ball
BR = B(0, R) and let

Kε(x) =
1
εn
K(

x

ε
).

We consider the family of operators

Kεf(x) =
∫

Ω
Kε(x− y)f(y) dy.(9)

We define

ΩR = {x ∈ Rn : dist(x,Ω) ¬ R} ⊇ Ω, 0 < R <∞.

Theorem 2.1 Let K(x) ∈ L∞(BR) and let ϕ and ψ be two complementary Musielak-
Orlicz functions such that ϕ satisfies the conditions (1), (7) and

if D ⊂ Ω is a bounded measurable set, then
∫

D

ϕ(x, 1)dx <∞.(10)

And ψ satisfies the following condition:

ψ(x, 1) ¬ C a.e in Ω.(11)

Then the operators Kε are uniformly bounded from Lϕ(Ω) into Lϕ(ΩR), namely

||Kεf ||ϕ,ΩR ¬ C||f ||ϕ,Ω ∀f ∈ Lϕ(Ω),(12)

where C > 0 does not depend on ε.

Remark 2.2 For any Musielak-Orlicz function ϕ we can replace it by a Musielak-
Orlicz function ϕ which is globally equivalent to ϕ such that ϕ(x, 1) + ψ(x, 1) = 1,
where ψ is the Musielak-Orlicz function complementary to ϕ (see [20], §2.4). Hence
by (1) we may assume without loss of generality that the condition (11) is always
satisfied.
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Theorem 2.3 Let ϕ and K(x) satisfy the assumptions of theorem 1 and
∫

BR

K(y) dy = 1.(13)

Then (9) is an identity approximation in Lϕ(Ω), that is,

∃λ > 0 : lim
ε→0

%ϕ,ΩR(
Kεf − f

λ
) = 0, f ∈ Lϕ(Ω).(14)

Let

fε(x) =
1

εn|B(0, 1)|

∫

y∈Ω,|y−x|<ε
f(y) dy(15)

Corollary 2.4 Under the assumptions of Theorem 2.1 ,

lim
ε→0

%ϕ,Ω(
fε − f
λ

) = 0 for some λ > 0.(16)

Remark 2.5 . The statement (16) is an analogue of mean continuity property for
Musielak-Orlicz spaces, but with respect to the averaged śhiftóperator (15).

Corollary 2.6 Under the assumptions of Theorem 2.1 with Ω = Rn, C∞0 (Rn) is
dense in Lϕ(Rn) with respect to the modular topology.

Theorem 2.7 Let ϕ be a Musielak-Orlicz function which satisfies the assumptions
of Theorem 2.1 with Ω = Rn. Then C∞0 (Rn) is dense in WmLϕ(Rn) with respect
to the modular topology.

Examples. Let p : Ω 7→ [1,∞) be a measurable function such that there exist
a constant c > 0 such that for all points x, y ∈ Ω with |x − y| < 1

2 , we have the
inequality

|p(x)− p(y)| ¬ c

log( 1
|x−y| )

.

Then the following Musielak-Orlicz functions satisfy the conditions of Theorem 2.1
:

1. ϕ(x, t) = tp(x) such that supx∈Ω p(x) <∞,

2. ϕ(x, t) = tp(x) log(1 + t),

3. ϕ(x, t) = t(log(t+ 1))p(x),
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4. ϕ(x, t) = (et)p(x) − 1.

3. Proofs.

Proof (of Theorem 2.1) .
We assume that

||f ||ϕ,Ω ¬ 1.(17)

It suffices to show that

%ϕ,ΩR(Kεf) =
∫

ΩR
ϕ(x, |Kεf(x)|)dx ¬ c(18)

for some ε such that 0 < ε ¬ ε0 ¬ 1, and c > 0 independent of f .

Let
ΩR = ∪Nk=1ω

k
R

be any partition of ΩR into small parts ωkR comparable with the given ε:

diam ωkR ¬ ε, k = 1, 2, 3..., N = N(ε).

We represent the integral in (18) as

%ϕ,ΩR(Kεf) =
N∑

k=1

∫

ωk
R

ϕ(x, |
∫

Ω
Kε(x− y)f(y) dy|)dx.(19)

We put

ϕk(t) = inf{ϕ(x, t), x ∈ ΩkR} ¬ inf{ϕ(x, t), x ∈ ωkR}(20)

where some larger partition ΩkR ⊃ ωkR will be chosen later comparable with ε :

diam ΩkR ¬ mε ,m > 1.(21)

Hence :

%ϕ,ΩR(Kεf) =
N∑

k=1

∫

ωk
R

Ak(x, ε) ϕk(|
∫

Ω
Kε(x− y)f(y) dy|) dx .(22)

where

Ak(x, ε) :=
ϕ(x, |

∫
ΩKε(x− y)f(y) dy|)

ϕk(|
∫

ΩKε(x− y)f(y) dy|)
We shall prove the uniform estimate

Ak(x, ε) ¬ c, x ∈ ωkR(23)

where c > 0 does not depend on x ∈ ωkR, k and ε ∈ (0, ε0) with some ε0 > 0.
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By (6) we have

α(x, ε) := |
∫

Ω
Kε(x− y)f(y) dy| ¬ M

εn

∫

Ω
|χBεR(y)f(y)|dy

¬ M

εn
||f ||ϕ |||χBεR |||ψ

where M = supBR |K(y)|.

By (3) and the condition (11) we obtain

|||χBεR |||ψ ¬ c2|BεR|+ 1 ¬ c2 + 1(24)

for 0 < ε ¬ |B(0, 1)|− 1n := ε0
1 .

Hence

α(x, ε) ¬ c1
εn
.(25)

We observe now that by (7) and (20) we have

ϕ(x, t)
ϕk(t)

=
ϕ(x, t)
ϕ(ξk, t)

¬ t
A

log( 1
|x−ξk|

)
(26)

where x ∈ ωkR, ξk ∈ ΩkR. Evidently |x− ξk| ¬ diam ΩkR ¬ mε .
Therefore,

Ak(x, ε) =
ϕ(x, α(x, ε))
ϕ(ξk, α(x, ε))

¬ (α(x, ε))
A

log( 1
mε
)

¬ (c1ε−n)
A

log( 1
mε
) ¬ (c1)

A

log( 1
m
) (ε−n)

A

log( 1
mε
)(27)

under the assumption that 0 < ε ¬ 1
2m := ε0

2.

Then from (27)

Ak(x, ε) ¬ c4 := c3e
2nA, c3 = (c1)

A

log( 1
m
)(28)

for x ∈ ωkR and

0 < ε ¬ 1
m2 := ε0

3.(29)

Therefore, we have the uniform estimate (23) with c = c3e
2nA and 0 < ε ¬

ε0, ε0 = min1¬k¬3 ε
0
k, ε

0
k being given above.
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Using the estimate (23) we obtain from (22)

%ϕ,ΩR(Kεf) = c

N∑

k=1

∫

ωk
R

ϕk(|
∫

Ω
Kε(x− y)f(y) dy|)dx .(30)

So by the Jensen integral inequality we obtain

%ϕ,ΩR(Kεf) ¬ c∑N
k=1

∫
|y|<εR |Kε(y)|dy

∫
ωk
R
ϕk(f(x− y))dx

= c
∑N
k=1

∫
|y|<R |K(y)|dy

∫
x+εy∈ωk

R
ϕk(f(x))dx

(31)

Obviously, the domain of integration in x in the last integral is embedded into
the domain

⋃

y∈BεR
{x : x+ y ∈ ωkR}(32)

which does not depend on y. Now, we choose the sets ΩkR in (20), which were not
determined until now, as the sets (32). Then, evidently, ΩkR ⊃ ωkR, and it is easily
seen that

diam ΩkR ¬ (1 + 2R)ε(33)

so the requirement (21) is satisfied with m = 1 + 2R .

From (32) we have

%ϕ,ΩR(Kεf) ¬ c∑N
k=1

∫
|y|<R |K(y)|dy

∫
Ωk
R
ϕk(f(x))dx

¬ c
∫
|y|<R |K(y)|dy∑N

k=1

∫
Ωk
R
∩Ω ϕk(f(x))dx

(34)

In view of (33), the covering {ωk = ΩkR ∩ Ω}Nk=1 has a finite multiplicity (that
is, each point x ∈ Ω belongs simultaneously to not more than a finite number n0 of
the sets wk, n0 ¬ 1 + (1 + 2R)n in this case ) .
Therefore,

%ϕ,ΩR(Kεf) ¬ c5
∫

Ω
ϕ̃(x, f(x)) dx,(35)

where
ϕ̃(x, t) = max

i
ϕi(t),

the maximum being taken with respect to all the sets ωk containing x. Evidently,
ϕ̃(x, t) ¬ ϕ(x, t) ∀x ∈ Ω.
Then from (35) and (17) we arrive at the final estimate

%ϕ,ΩR(Kεf) ¬ c5
∫

Ω
ϕ(x, f(x)) dx ¬ c5.(36) ■
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Proof (of Theorem 2.3) .
To prove (14), we use the Theorem 2.1, which provides the uniform boundedness of
the operators Kε from Lϕ(Ω) into Lϕ(ΩR). Then by the Banach-Steinhaus theorem
it suffices to verify that (14) holds for some dense set in Lϕ(Ω). So, it is sufficient
to prove (14) for the characteristic function χE(x) of any bounded measurable set
E ⊂ Ω [19]. We have

Kε(χE)(x)− χE(x) =
∫

BR

k(y)[χE(x− εy)− χE(x)]dy,

Hence for λ > 0

%ϕ,ΩR(
Kε(χE)− χE

λ
) =

∫

ΩR
ϕ(x,

1
λ

∫

BR

k(y)[χE(x− εy)− χE(x)]dy)dx

¬
∫

BR

k(y)(
∫

ΩR
ϕ(x,

1
λ

[χE(x− εy)− χE(x)])dx)dy ■

by the Fubini theorem and the Jensen inequality. Hence by the condition (10) and
the Lebesgue dominated convergence theorem we obtain (14) for some λ > 0.

Proof (of Corollary 2.4) .
To obtain Corollary 2.4 from Theorem 2.1, it suffices to chooseK(y) = 1

|B(0,1)|χB(0,1)(y)
.

Proof (of Corollary 2.6) .
Let χN (x) = χB(0,N)(x). Then the functions fN (x) = χN (x)f(x) have compact
supports and for the approximate of f(x) ∈ Lϕ(Rn) by fN , we have :

%ϕ,Rn(
f − fN
λ

) =
∫

Rn
ϕ(x, (

f − fN
λ

)(x))dx =
∫

|x|>N
ϕ(x,

f(x)
λ

)dx→ 0

as N →∞.
Therefore, we may consider f(x) with a compact support in the ball BN from the

very beginning. To approximate the f(x) by C∞0 , we use the identity approximation

fε(x) =
∫

Rn
Kε(x− t)f(t)dt =

∫

|y|<1
K(y)f(x− εy)dy(37)

where k(y) ∈ C∞0 (Rn) has its support in the ball B1 and satisfies
∫

|y|<1
K(y)dy = 1.



118 An approximation theorem in Musielak-Orlicz-Sobolev spaces

Then, evidently, fε(x) ∈ C∞(Rn) and has a compact support because fε ≡ 0 if
|x| > N + ε.

Therefore, for ε < 1, there exist some λ > 0 such that

%ϕ,Rn(
fε − f
λ

) = %ϕ,BN+1(
Kεf − f

λ
)→ 0(38) ■

as ε→ 0, by Theorem 2.3.

Proof (of Theorem 2.7) .
The proof follows from Theorem 2.3 and Corollary 2.6 in two steps.

1. Let f(x) ∈ WmLϕ(Rn) and let µ(r), 0 ¬ r ¬ ∞, be a smooth step-function
: µ(x) ≡ 1 for 0 ¬ |x| ¬ 1, µ(x) ≡ 0 for |x|  2, µ(x) ∈ C∞0 (Rn) and
0 ¬ µ(x) ¬ 1. Then

fN (x) := µ(
x

N
)f(x) ∈WmLϕ(Rn)(39)

for every N ∈ R+ and fN has compact support in B2N .

The function (39) approximate f(x) in WmLϕ(Rn). Indeed, denoting νN (x) =
1−µ( xN ), we know that νN (x) ≡ 0 for |x| < N , so using the Leibnitz formula
for differentiation, we have for λ > 0

%ϕ,Rn(
f − fN
λ

) =
∑

|j|¬m
%ϕ,Rn(

Dj(νNf)
λ

)

=
∑

|j|¬m
%ϕ,Rn(

∑

0¬k¬j
ckj
Dk(νN )Dj−kf

λ
)

¬
∑

|j|¬m

∑

0¬k¬j
ckj %ϕ,Rn(

Dk(νN )Dj−kf
λ

)

¬
∑

|j|¬m
%ϕ,Rn(

νND
j(f)
λ

)

+ c
∑

|j|¬m

∑

1¬k¬j
%ϕ,Rn(

Dk(νN )Dj−kf
λ

)

¬
∑

|j|¬m
%ϕ,Rn(

νND
j(f)
λ

)

+ c
∑

|j|¬m

∑

1¬k¬j

1
N |k|

%ϕ,Rn(
Dj−kf
λ

).
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Hence there exist a λ > 0 which depend to m,n such that each term on the last
hand side goes to Zero as N → ∞, the first one by the Lebesgue dominated
convergence theorem and the second one by direct examination.

2. By step 1 we may consider f(x) ∈ WmLϕ(Rn) with compact support. Then
we arrange the approximation (37), evidently, fε ∈ C∞0 (Rn). Indeed, for any
j we have

Djfε(x) =
1

εn+|j|

∫

|y|<1
(DjK)(

x− t
ε

)f(t)dt ∈ C∞(Rn)(40)

and fε(x) has compact support because fε(x) ≡ 0 if |x| > 1 + β, where
β = supx∈suppf |x|.

We have

%ϕ,Rn(
f − fε
λ

) ¬
∑

|j|¬m
%ϕ,Rn(

Djf −Kε(Djf)
λ

)

=
∑

|j|¬m
%ϕ,Ω1(

Djf −Kε(Djf)
λ

)

where Ω1 = {x : dist(x,Ω) ¬ 1}, Ω = suppf(x). It suffices to apply Theorem
2.3. ■
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