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A note on generalized modular spaces. I

Abstract. This note is a continuation o f note [4]. Here, concepts of locally s-convex 
(0 <  s ^  1) and locally bounded premodular bases and semi-premodulars in a linear lattice are 
introduced. We study describing o f premodular bases by semi-premodulars o f adequate types.

This note is a continuation of note [4]. The results on modular bases 
contained in [2] and [3] are generalized here, with their adjustment to a real 
linear lattice S. Through the whole note by s we shall denote a real number 
such that 0 < s < 1.

1.1. Each filtrating base В in S composed of normal and s-convex sets is an 
s-premodular base. We shall call such base a locally s-convex premodular base.

This immediately follows from the equality r s(N (U)) = r s(U) = U 
which holds in this case for each U eB (cf. [4], 4.2).

1.2. I f  В is a locally s-convex premodular base, then the pretopological 
bases ВТ and В are also locally s-convex.

The local s-convexity of the base В immediately follows from the fact 
that the base fiv is a family of sets of the form V = aU, where UeB  and 
a^O. Now, let {Un} be any sequence of sets of B. Let us observe that

00 00
(I/, + ...+!/„))= U g o /.+ .-.+ i/j

n=1 n= 1
00 00

<= и (гд < у ,)+ .. .+ г , (£/„))= и (С ,+ ...+ [/ „)=  W({U.})
п= 1 п= 1

and

J V (T K ({ t /„ } ) )  == JV( (J (V l + . . .  + £/„))= U N (U ,+  . . . + U п)
п= 1 п= 1

00 оо
с U (N(£/,)+...+JV(l/J)= (J (С ,+ ... + [/„)

п= 1 п= 1

= W{{UH}).

That means that each set of the base /Г is normal and s-convex, so the base 
В is also locally s-convex.
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13. A filtrating functional g defined on S is called a locally s-convex 
semi-premodular if it satisfies the conditions: (ii) (see [4], 3.1), and

(iii/lcs) g(oix +  Py) ^  sup {q (x ), g(y)} for any numbers a, ^  0 such that 
as +  /?s < 1 and for arbitrary x, yeS.

A semi-prenorm which satisfies conditions (ii) and (iii/lc*) is also called 
locally s-convex. Here, it is obvious that each locally s-convex semi- 
premodular is also a semi-s-premodular (cf. [4], 4.4). The condition of the 
local s-convexity (iii/lcs) was introduced for the first time for the case s = 1 in
[3].

I f  q is a locally s-convex semi-premodular on S, then the hase B (q), i.e., 
the family of sets of the form U(g, e) = jxeS: g(x) < e), where £ > 0, is locally 
s-convex.

It suffices only to show the s-convexity of U (g, e). So, let x, ye U(g, e) 
and a, ft be non-negative numbers such that as + /?s^ 1. Then there holds 
@(x) < e and g(y) < £, and by virtue of condition (iii/lcs) we get g(oLxA-fy)
< £. So a.x + fiyeU (g, e), and it proves that the set U{g,e) is s-convex.

Reversely, if the base B(g) of the filtrating functional g is locally s-convex, 
then g is a locally s-convex semi-premodular.

Let us take arbitrary x, yeS and any numbers a, f  ^ 0 such that 
qls + Ps ^ 1. If g(x) — oo or g(y) = oo, then condition (iii/lcs) for g is obvious. 
So let £(x) < oo and g(y) < oo. We select any £ such that sup{^(x), @ ( y ) J
< £. Then x, yeU (g, e). Since the set U(g, e) is by the assumption s-convex, 
so we get ocx + fiye U(g, e). Hence g{ax + fiy) < e. This way we get condition 
(iii/lcs) for g. Moreover, let x and y be such that |xj ^ |y|. If £>(y) = oo, then 
condition (ii) for g is obvious. So let g(y) < oo. We take any number e such 
that e(T) < £. Then there holds yeU (g, £). Since by the assumption the set 
U(g, e) is normal, we have xeU(g,E ). Then £>(x)<£, and hence we get 
condition (ii) for g.

1.4. A premodular base В can be described by a locally s-convex semi- 
premodular if and only if it is equivalent to some at most countable locally s- 
convex premodular base.

If the premodular base В is describable by the locally s-convex semi- 
premodular g, then we can observe that the family B'(g) of sets of the form 
U(g, 2~"), where и = 1,2,..., is at most countable locally s-convex 
premodular base equivalent to the base B(g), so it is also equivalent to B. 
Conversely, let В be a premodular base equivalent to some at most 
countable locally s-convex premodular base Bt = {£/„}. We may assume that 
the sequence of sets {Un\ is descending; in the other case by virtue of 
condition (a) we could select a subsequence {U„k} from the sequence {Un} 
such that Uni = Ux and U„k+l a U„kn U k for к -  1, 2, ..., and then we
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could get a base equivalent to Bt which had already this property. We define 
the functional g on S by the formula

p(x) =
if x e U n\Un+l (n = 0, 1, ...), 

if xe П Un,
n= 1

where U0 = S. From 3.3 in [4] we know that g is a semi-premodular on 
S that describes the base В. So it suffices only to show that g is locally 
s-convex. We take any elements x, yeS and any numbers * ,P >  0 such that
as + /?s ^ 1. Let us observe that sup{p(x), e(y)} = 0 or is equal to 2~n, where00
n is some non-negative integer. In the first case there holds x, ye f) U„, in

n= 1
the other one x, yeU„. Since the sets U„ and f) U„ are s-convex, in the first

n= 1
case we get txx + fye  f) Un and next g(<xx + fy) = 0, while in the second one

n — 1

ctx + pye Un which gives g(ccx + py) ^ 2_". Hence we conclude that q satisfies 
the condition of the local s-convexity (iii/lcs).

1.5. I f  g is a locally s-convex semi-premodular, then the semi-prenorm 
defined by the formula (cf. 5.6 in [4])

e~(x) =
inf {e > 0 : g(x/e1/s) ^ e} if £)(Ax) < oo for some À > 0,
oo otherwise (xeS),

is also locally s-convex.
We take any elements x, yeS and any numbers a, P ^ 0 such that 

as + /P^l. If (T(x) = oo or д~(у) =  oo, then condition (iii/lcs) for o ' is 
obvious. In the other case we take any e such that sup({T(x), < e.
Then we have p(x/e1/s)< e  and g{y/el/s) ^ s. Hence, by virtue of condition 
(iii/lcs) for g, we get

Q ((ax 4- py)/e1/s) = g (a (x/s1/s) + p (y/e1/s))

< sup |̂ (x/£1/s), e(y/e1/s)} < e.

Therefore (T(ax + py) ^ e. Hence we conclude that in this case o ' also 
satisfies condition (iii/lcs).

2.1. Let U be any set in S. We shall denote by Ncs(U ) the smallest 
normal and s-convex set in S containing the set U.

Now let В be a filtrating base in S. We shall denote by Ncs(B) the 
family of all sets Ncs(U), where UeB. From the properties of the filtrating 
bases we conclude that the family Ncs(B) is also a filtrating base. Since, in 
addition to this, the family Ncs(B) is composed of normal and s-convex sets,
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so it is a locally s-convex premodular base. For this reason we shall call the 
family Ncs(B) the locally s-convex premodular base generated by the filtrating 
base B.

2.2. The locally s-convex premodular base Ncs(B) generated by the 
filtrating base В has the following properties:

1° Ncs (B) -3 B,
2° if B, is a locally s-convex premodular base such that Bt -3 B, then 

fij -3 Ncs{B).
Property 1° follows from the obvious inclusion U cz Ncs(U) for arbitrary 

U cz S. The predecessor of implication 2° while written in the split form 
looks as follows: there exists a number a # 0  such that for every U1e B1 
there exists U e В  such that olU cz и г . Since U1 is a normal and s-convex set, 
so it must also hold otN(f(U) c  . Hence we get the consequent of 
implication 2°.

2.3. I f  Bt and B2 are filtrating bases such that Bx -3B2> then also 
Nca(B1)-3N cs(B2).

One can easy conclude it from 2.2.

2.4. I f  В is a pretopological base, then Ncs(B) is also such a base.
Let us observe that if the base В satisfies condition {Af)\ “for every UeB

there exists U 'eB  such that 2U' cz U”, then also 2Ncs(U ’) c: Ncs(U), so the 
base Ncs(B) satisfies this condition as well. The result from 2.2 in paper [4] 
completes the rest of the proof.

2.5. I f  В is a premodular base, then

(Ncs(B)Y =  N cfB '') and (iVcs(B )f -  Ncs{B~).

For any set UeB  and for any number а Ф 0 there holds the obvious 
equality Ncs(txU) — ocNcs(U). So Ncs(B ) =  (Ncs(B))\ By virtue of results 1.2,
2.2, 2.3, 2.4 and results 5.2 and 5.3 in paper [4] on the one hand we have 
В -3 В, further Ncs(B ) -3Ncs(B), and finally Ncs{B ) -3(Ncs(B)) , while on 
the other hand: Ncs(B)-^B, further (Ncs(B ))-3B^, and finally
(Ncs{B)y -3Ncs{B~). So (Ncs{B)y -  iVcs(B~).

2.6. Let g be a filtrating functional on S. We define a functional N(fg  on 
S by the formula

m m
(Ncsg)(x) = inf { sup p(xk): |x| < £  a*|x*|, a* ^ 0, £  a£ ^ 1, xkeS}.

k= 1 k= 1
The functional N csq is a locally s-convex semi-premodular such that 

B(N<?q) = N cs(B (q)) for any filtrating functional q.
By virtue of 1.3 and 2.1 it suffices only to show that B(Ncsq) 

=  Ncs(B(g)). To this end we take x e U (iVc*q, s), where e > 0, i.e., (N csq) (x)
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<£. Then there exist elements xu ..., xm in S and numbers a1? am ^ 0 
such that

sup g{xk) <£, \x\ ^ X akl*kl, and
l ^ k ^ m  k =  1 k =  1

Hence we get x,, ..., xmeU(g, e), and further xeNcs(U (g , £)). So we obtain 
U(Ncsg, e) cz Ncs(U(g, e)). Taking xeNcs(U(g, e)) let us observe that 
then there exist elements x1, xmeU(g, e) and numbers , ..., am ^ 0 such 
that

w ^ Z  ak w  and Z  a* < 1 •
k=i k=i

Since sup e(xk) <£, we get (Ncsg)(x) < e, and hence xeU (N csg, e). This

proves that the inclusion U{Ncsg, e) => Ncs(U(g, £)) holds, too. So, for any 
£ > 0 the equality U (Ncsg, e) = Ncs(U(g, £)) holds.

2.7. I f  g is a locally s-convex semi-premodular, then Nc5 g = g.
In this case we have iVcs(C/ (g, £)) = U (g, £) for every £ > 0. By this and 

the proof of 2.6 we get U (Ncs g, e) — U (g, £) for every e > 0. The above 
implies that (iVcs@)(x) = @(x) for every xeS.

2.8. The equality Nc^g") = (Ncs дУ holds for any semi-s-premodular.
Let x e S be such that (Nes(£T))(x) <  oo . We take any number e such

that (iVcs(^''))(x) < £. Then there exist elements x1? ..., xmeS and numbers 
al5 ..., am ^ 0 such that

m m

sup e~(xk)< £ , |xK Z  aklXkl, and Z  «U 1 -
l«k«m k= 1 k= 1

Hence we get
m m

(*) sup ^(xfc/£1/s) < £, |(x/£1/s)K  Z  akl(W£l/S)l5 Z ak ^ l-
k=1 k=l

So (Ncs )̂(x/£1/s) < £, and further (Ate® g)~ (x )<  £. That way we get the 
inequality (Ncsg f  {x) ^ (Nc^g^ix). Now, let xeS be such that (Ncsg)''(x) 
< oo . We take any number £ with the property (A/cs e)~ (x) < e. Then there 
holds (Ncs g)(x/£1/s) < e. Further, there exist elements x1, . . . ,x meS and 
numbers al5 ..., am ^ 0 such that (*) holds. Hence we get sup e~(xk) ^ e1 <k<m̂
and next (N c^g^ ix ) ^  e. So the inequality (1Ус*((Г))(х) < (iVcsg)~(x) is also 
satisfied.

3.1. We shall call a premodular base В in S almost locally bounded if it 
satisfies the following condition:

(lb*) there exists a set U0eB such that for every set UeB  there exists a 
number а Ф 0 such that ocU0 a U,
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while we shall call it locally bounded if it satisfies the condition:
(lb) for any sets Ulf U2eB there exists a number a^O  such that 

aUi c  U2.
We shall call a semi-premodular g defined on S almost locally bounded if 

the base B(q) is almost locally bounded and we shall call it locally bounded if 
its base B(g) is locally bounded. Conditions (lb*) and (lb) for a semi- 
premodular have the form:

(lb*) there exists Ô >  0 such that for every e > 0 there exists a > 0 such 
that for any xeS  there holds the implication: if @(x) < <5, then g (ax) < e,

(lb) for any numbers e, Ô > 0 there exists a number a > 0  such that
there holds the implication: if @(x) < Ô, then @(ax) < e.

3.2. Let Bt and B2 be two premodular bases in S. If  Bj ~ B2 and the base
Bj is almost locally bounded, then the base B2 has the same property.

3.3. A premodular base В in S is almost locally bounded if and only if the 
base В is almost locally bounded and В is locally bounded if and only if B~ 
is locally bounded.

3.4. For every almost locally bounded premodular base В in S there is an 
equivalent locally bounded premodular base Bt in S. It can be assumed that 
Bt c:B.

Proofs of 3.2, 3.3, and 3.4 are analogous to the proofs of results 8.2, 8.3, 
and 8.4 in paper [2], so are omitted here.

3.5. For every almost locally bounded semi-premodular g there exists a 
locally bounded semi-premodular g' equivalent to it.

Proof is similar to the proof of result 4.2 in paper [3], so is omitted
here.

3.6. I f  a semi-s-premodular g is locally bounded, then a semi-prenorm g" 
is also locally bounded.

We take numbers e, <5 > 0. From the assumption it follows the existence 
of a > 0 such that @(x) < <5 implies @(ax) < ^ e for every xeS. Since £T(x) 
< <5 implies g(x/ôlls) < Ô, so £T(x)< < 5 implies g(txx/ôl,s) < \ e, and further 

((j£)llsotx/0lls) ^ js  < e. That proves the semi-prenorm gT is also locally 
bounded.

4.1. We call a filtrating functional g defined on S an s-convex semi- 
premodular if it satisfies the conditions: (ii) and

(iii/cs) q(a.x + fly) ^ a.s g(x) + f s g(y) for any numbers a, /? ^ 0 such that 
of + f5s ^ 1 and for any x, yeS. Under this condition let us assume 0- oo = 0.

In particular, we call also a semi-prenorm that satisfies condition (iii/cs) 
an s-convex semi-prenorm. The condition of s-convexity (iii/cs) was introduced 
by W. Or liez (cf. [1], [ 6]).
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4.2. Each s-convex semi-premodular g is locally s-convex and locally 
bounded.

Let us observe that from condition (iii/cs) for g it follows condition 
(iii/lcs) for g. For any numbers £, 6 > 0 we take a = inf [1, (e/t>)1 /s} and from 
condition (iii/cs) we get the implication: if g(x) < 6, then g(ocx) < as^(x) <e.

43. I f  g is an s-convex semi-premodular, then the functional

 ̂ ( inf {e > 0: g(x/vi,s) ^ 1] if @(Ax) < go for some A > 0,
I oo otherwise (xe S),

is an s-homogeneous semi-prenorm equivalent to the semi-prenorm g~ defined 
as in 1.5.

The functional g° is an s-homogeneous semi-prenorm, because it is the 
proper Minkowski functional of the normal and s-convex set 
{xeS: g(x) ^ 1}. Now let us observe that if {T(x) < £ < 1, then g(x/E1,s) ^ e 
< 1, and further £>°(x) ^ £. It follows from the above that £°(x) < p~(x) for 
any xeS such that ^T(x) < 1. Let us also observe that if g°(x) < e2 < 1 then 
by virtue of condition (iii/cs) there holds g(x/slls) ^ Eg(x/s2ls) < e, and further 
(T(x) ^ £. Hence we get g~(x) ^ (é>°(x))1/2 for every xeS  such that g°(x) < 1. 
We conclude from these two inequalities that the semi-prenorms g° and g~ 
are equivalent.

4.4. A locally s-convex and locally bounded base В can be described by an 
s-convex semi-premodular if and only if it is equivalent to some at most 
countable premodular base.

If a locally s-convex and locally bounded base В is describable by a 
semi-premodular (in particular, by an s-convex semi-premodular), then by 
virtue of result 3.3 in paper [4] this base* is equivalent to some premodular at 
most countable base. Now assume that the locally s-convex and locally 
bounded premodular base В is equivalent to some at most countable 
premodular base. Then, as one can easy observe, there exists at most 
countable premodular base Bt == {L/„}, equivalent to the base B, composed 
of the sets of the base В and such that Un+i c  U„ for n =  1, 2, ... Since the 
base B1 is composed of the sets which belong to the base В it is also locally 
s-convex and locally bounded. Now we take the proper Minkowski 
functionals of the normal and s-convex sets Un, i.e., functionals

Pn(x) =
inf {e > 0: (x/£1/s)e Un}
00

if Axe U„ for some А Ф 0, 
otherwise (xeS),

for и = 1, 2, ... It is obvious that these functionals are s-convex semi­
prenorms on S. Further we take the functionals

e„(x) = sup{0, p „(x )- l) (xeS, и = 1,2,...).
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The functionals g„ are s-convex semi-premodulars on S. In fact for any 
jc, yeS and any numbers a, /? ^ 0 such that as-f-/is ^ 1  we have

Pn (ax + /?у) -1  ^ as pn (x) + p  pn (y) -  (as + 0s)

= a" (P» (*) ~ 1 ) + F  {Pn (У) ~ 1 )’
and hence we get condition (iii/cs) for gn. Condition (ii) for gn is obvious. 
Since the base Br — {Un} is locally bounded, for each positive integer n there 
exists a number ol„ >  0 such that (/„ c: a„ C/„+1, the inequality 
pn+l (x) ^ as„p„(x) so is satisfied. Here we can assume a„ ^ 1 for n = 1, 2, ... 
and take a0 = 1. Now we define the functional

GO

£ (* )=  Z  2~"(a0ai . . .а ^ Н е Л * )  (xeS).
л= 1

Since the functionals gn are s-convex semi-premodulars one can easily 
conclude that the functional q  is also s-convex semi-premodular on S. It 
suffices to show that B(q) ~ Bl . For any number £ > 0 we select a positive 
integer m such that 2~m < £. Let x e U m. Let us observe that g„(x) = 0 for n 
= 1, ..., m and pm(x) ^  1. The above and the inequalities pn+1(x) ^  a.snp„(x) 
for n =  1, 2,... imply

Q(x) <  Z  2_и(а0а1 •••a«-1)~sPn(x) <  2~mpm(x) Z  2~" < 2~m <£.
n— m + 1 n= 1

So UmczU(g,e). Thus we have B(g)-JiB l . On the other hand, for any 
positive integer m we take 6 =  2“ '”(а0а1 ...am_ 1)~s, and let xeU (g , â), so let 
g(x) < S. Then we have pm(x) < 1 and next pm(x) < 2. Hence we get 
U(g, <5) c  21/s(/m, and this proves that -3 B{g).

5.1. Let \ф„} be a sequence of non-negative and convex functions for и 
^ 0 and equal to 0 for и =  0, and let S denote the linear lattice of real 
functions measurable on an interval (a, b). Let us define

b
Qn{x) = $il/„(\x{t)\s)dt, n =  1, 2,...

a
and further

g(x) = sup
П n(l+g„(x))

for xeS.

If g„(x) =  oo, then we assume here g„(x)/(l +g„(x)) = 1.
The functional g is a locally s-convex semi-premodular on S. It is clear 

that g satisfies conditions (i) and (ii). So it suffices only to show that g 
satisfies condition (iii/lc*). We take any elements x, yeS and any numbers
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a, ^ ^ 0 such that as + ps ^ 1. Since the functions tj/„ are non-decreasing and 
convex for и ^ 0, we have

b

Qn{xx +  py) <  j > „ ( aA|X ( 0 r  +  i?A' | y ( t ) r ) ^
a

^  as j ФД1* (01s)dt + P* f фп (|y (01s) dt
a a

=  a*Qn(x) + Psen(y) ^ sup {^„(x), e«(y)}-

Further, since the function <р(и) = м/(1 + и) and (p(oo) = 1 is non-decreasing 
for 0 ^ и ^  oo, we get

Q (<** + £>’) = sup i  (p ( q„ (ax -f #y))
И W

^ sup— <p (sup (^n(x), e„O0})
n И

= sup sup I i  <p (ft, (x)),  ̂<p (gn (y)) j

=  s u p is u p — <p(on(x)), sup ~ ( р ( в „ M ) f =  su p fe(x), g(y)}.

5.2. The functionals g„ given in 5.1 constitute an example of s-convex 
semi-premodulars on the lattice S of real measurable functions on an interval
(a, b).

53. There exist locally convex and locally bounded bases in linear 
lattices, which are not describable by a semi-premodular. An example is the 
base given in 6.3 in paper [4].
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