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A note on generalized modular spaces. I

Abstract. This note is a continuation of note [4]. Here, concepts of locally s-convex
(0 < s < 1) and locally bounded premodular bases and semi-premodulars in a linear lattice are
introduced. We study describing of premodular bases by semi-premodulars of adequate types.

This note is a continuation of note [4]. The results on modular bases
contained in [2] and [3] are generalized here, with their adjustment to a real
linear lattice S. Through the whole note by s we shall denote a real number
such that 0 <s < 1.

1.1. Each filtrating base B in S composed of normal and s-convex sets is an
s-premodular base. We shall call such base a locally s-convex premodular base.

This immediately follows from the equality I'\(N(U))=TI,(U)=U
which holds in this case for each UeB (cf. [4], 4.2).

1.2. If B is a locally s-convex premodular base, then the pretopological
bases B~ and B~ are also locally s-convex.

The local s-convexity of the base B~ immediately follows from the fact
that the base B~ is a family of sets of the form V = aU, where Ue B and
a # 0. Now, let {U,} be any sequence of sets of B. Let us observe that

FWUD) =Ty(U (Uy+ . +Up) = U T (U +... +Uy)
= n=1
e U MUY+ ... +TUY) = U U+ ...+ Uy = W(U,Y
=1 n=1

and

N(W({U,}) = N(nle(U1 .. +UY) = U N+ .. +U,)

S C) (N(Up)+...+NU,) =

That means that each set of the base B~ is normal and s-convex, so the base
B is also locally s-convex.
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1.3. A filtrating functional ¢ defined on S is called a locally s-convex
semi-premodular if it satisfies the conditions: (ii) (see [4], 3.1), and

(iii/1c) g (ax+ By) < sup{g(x), o(y)} for any numbers a, f > 0 such that
a*+B° <1 and for arbitrary x, yeS.

A semi-prenorm which satisfies conditions (ii) and (iii/Ic®) is also called
locally s-convex. Here, it is obvious that each locally s-convex semi-
premodular is also a semi-s-premodular (cf. [4], 4.4). The condition of the
local s-convexity (iii/lc®) was introduced for the first time for the case s = 1 in
[31.

If ¢ is a locally s-convex semi-premodular on S, then the base B(g). i.e.,
the family of sets of the form U(gp, &) = [xeS: ¢(x) < ¢}, where ¢ > 0, is locally
s-convex.

It suffices only to show the s-convexity of U (g, ¢). So, let x, ye U (g, &)
and a«, § be non-negative numbers such that of+f° < 1. Then there holds
o(x) <& and ¢(y) <e¢, and by virtue of condition (iii/lc®) we get g(ax+ fy)
<e So ax+ByeU(p, €), and it proves that the set U(g, &) is s-convex.

Reversely, if the base B(g) of the filtrating functional ¢ is locally s-convex,
then ¢ is a locally s-convex semi-premodular.

Let us take arbitrary x, yeS and any numbers «, f > 0 such that
of+f° < 1. If o(x) = o0 or g(y) = o0, then condition (iii/lc®) for ¢ is obvious.
So let ¢g(x) < oo and g(y) < ov. We select any ¢ such that sup {o(x), o(»)}
< ¢ Then x, ye U(g, ¢). Since the set U(g, ¢) is by the assumption s-convex,
so we get ax+ fye U(g, ¢). Hence g(xx+ fy) < & This way we get condition
(1ii/Ic®) for . Moreover, let x and y be such that |x] < |y|. If o(y) = o0, then
condition (ii) for ¢ is obvious. So let g(y) < co. We take any number ¢ such
that o(y) <& Then there holds ye U(g, ¢). Since by the assumption the set
U(p, ¢) is normal, we have xeU(g, ¢). Then g(x) <e¢ and hence we get
condition (ii) for p.

14. A premodular base B can be described by a locally s-convex semi-
premodular if and only if it is equivalent to some at most countable locally s-
convex premodular base.

If the premodular base B is describable by the locally s-convex semi-
premodular g, then we can observe that the family B'(g) of sets of the form
Ue,2™", where n=1,2,..., is at most countable locally s-convex
premodular base equivalent to the base B(g), so it is also equivalent to B.
Conversely, let B be a premodular base equivalent to some at most
countable locally s-convex premodular base B; = {U,}. We may assume that
the sequence of sets {U,} is descending; in the other case by virtue of
condition (a) we could select a subsequence { U, from the sequence (U,}

such that U, = U; and U fod U,,kmU,‘ for k=1,2,..., and then we
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could get a base equivalent to B, which had already this property. We define
the functional ¢ on § by the formula

27" if xeU,\U,yy (n=0,1,..),
o(x) {0 if xe N Uy,

n=1
where Uy = S. From 3.3 in [4] we know that ¢ is a semi-premodular on
S that describes the base B. So it suffices only to show that g is locally
s-convex. We take any elements x, ye S and any numbers a, B > 0 such that
a*+f° < 1. Let us observe that sup {g(x), ¢(y)} = 0 or is equal to 27", where
ao
n is some non-negative integer. In the first case there holds x, ye () U,, in
n=1
the other one x, ye U,. Since the sets U, and () U, are s-convex, in the first
n=1

case we get ax+ fye ﬂ U, and next ¢g(ax+ fy) = 0, while in the second one

ax+ fye U, which glves ¢(ax+pBy) < 27" Hence we conclude that ¢ satisfies
the condition of the local s-convexity (iii/Ic®).

1L5. If ¢ is a locally s-convex semi-premodular, then the semi-prenorm
defined by the formula (cf. 5.6 in [4])

(%) {inf{e > 0: o(x/e') <&} if 0(Ax) < oo for some i > 0,
0" (x) =
e

otherwise (xeS),

is also locally s-convex.

We take "any elements x, yeS and any numbers «, f > 0 such that
C+FE <L If o7(x) =00 or ¢7(y) = o0, then condition (iii/lc’) for o~ is
obvious. In the other case we take any ¢ such that sup{¢7(x), ¢~ ())} <e.
Then we have g(x/e!) <& and ¢(y/e'”) <e. Hence, by virtue of condition
(iii/Ic®) for o, we get

o ((ax+ By)/e'’*) = e (x (x/e') + B (y/e'"))
< sup {o(x/e'"), e(v/e'?)} <e.

Therefore ¢~ (ax+ By) <e. Hence we conclude that in this case ¢~ also
satisfies condition (iii/Ic®).

21. Let U be any set in S. We shall denote by Nc*(U) the smallest
normal and s-convex set in S containing the set U.

Now let B be a filtrating base in S. We shall denote by Nc*(B) the
family of all sets Nc$(U), where Ue B. From the properties of the filtrating

bases we conclude that the family Nc*(B) is also a filtrating base. Since, in
addition to this, the family Nc¢*(B) is composed of normal and s-convex sets,
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so it is a locally s-convex premodular base. For this reason we shall call the
family Nc¢*(B) the locally s-convex premodular base generated by the filtrating
base B.

2.2, The locally s-convex premodular base Nc*(B) generated by the
filtrating base B has the following properties:

1° Nc¢*(B) 3 B,

2 if B, is a locally s-convex premodular base such that B; 3 B, then
B, 3 Nc¢*(B).

Property 1° follows from the obvious inclusion U = Nc*(U) for arbitrary
U < S. The predecessor of implication 2° while written in the split form
looks as follows: there exists a number a # 0 such that for every U,e B,
there exists U e B such that aU < U, . Since U, is a normal and s-convex set,
so it must also hold aNc*(U) < U;. Hence we get the consequent of
implication 2°.

23. If B, and B, are filtrating bases such that B, 3 B,, then also
Nc*(By) 3 Nc*(B,).

One can easy conclude it from 2.2.

24. If B is a pretopological base, then Nc*(B) is also such a base.

Let us observe that if the base B satisfies condition (4,): “for every Ue B
there exists U'e B such that 2U’ < U”, then also 2Nc*(U’) = Nc*(U), so the
base Nc*(B) satisfies this condition as well. The result from 2.2 in paper [4]
completes the rest of the proof.

2.5. If B is a premodular base, then
(Ne*(B) = Nc*(B')  and  (Nc¢*(B))” ~ Nc*(B').

For any set UeB and for any number a # 0 there holds the obvious
equality Nc*(aU) = aNc*(U). So Nc*(B") = (Nc*(B))". By virtue of results 1.2,
2.2, 2.3, 24 and results 5.2 and 5.3 in paper [4] on the one hand we have
B™ 3B, further Nc¢*(B") 3 Nc*(B), and finally Nc*(B”) -3(Nc*(B)), while on
the other hand: Nc¢*(B) 3B, further (Ncs(B))A 3B, and finally
(Nc*(B))” 3Nc¢*(B)). So (N¢*(B))” ~ Ne*(B").

2.6. Let ¢ be a filtrating functional on S. We define a functional Nc¢*g on
S by the formula

(Nt o) (x) =inf{ sup o(x): IX| < Y alx), 4, =0, Y o <1, x,e8}.
1<k€<m k=1 k=1
The functional Nc*g is a locally s-convex semi-premodular such that
B(Nc¢* g) = Nc*(B(g)) for any filtrating functional g.
By virtue of 1.3 and 2.1 it suffices only to show that B(Nc¢'g)
= Nc*(B(g)). To this end we take xe U(Nc'g, ¢), where ¢ > 0, i.e.,, (Nc*g)(x)
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<e&. Then there exist elements x,, ..., x,, in § and numbers «;, ..., a, >0
such that
m m
sup o(x) <&, X< Y alxl, and Y g <1
1<ksm k=1 k=1

Hence we get x;, ..., x,e U(g, ¢), and further xe Nc*(U (g, ¢)). So we obtain
U(Nc*g, ¢) = Nc*(U (g, ¢)). Taking xeNc*(U(g, ¢)) let us observe that
then there exist elements x,, ..., x,,€ U (g, ¢) and numbers «,, ..., o, = 0 such
that

m

m
X< Y alx) and Y <1
k=1 k=1

Since sup g(x) <e& we get (Nc*g)(x) <¢, and hence xe U(Nc*g, ¢). This

1€k<m
proves that the inclusion U(Nc*g, &) > Nc*(U (o, ¢€)) holds, too. So, for any
¢ > 0 the equality U(Nc*g, &) = N¢*(U (g, ¢€)) holds.

27. If ¢ is a locally s-convex semi-premodular, then Nc*o = p.

In this case we have Nc*(U (g, €)) = U (g, ¢) for every ¢ > 0. By this and
the proof of 2.6 we get U(Nc*g, &) = U(g, €) for every ¢ > 0. The above
implies that (Nc*g)(x) = o(x) for every xeS.

2.8. The equality Nc*(¢”) = (Nc*@)~ holds for any semi-s-premodular.

Let xeS be such that (Nc*(¢7))(x) < oo. We take any number ¢ such
that (Nc*(¢7))(x) <& Then there exist elements X, ..., X,,€S and numbers
&y, .eey Ay = 0 such that

m

sup Qv (xk) <g, le S Z fxk|xk|9 and Z (X';( S 1.

I1<ksm k=1 k=1

Hence we get

(%) sup g(x/e'f) <&, xS Y /e, Y s <1
1<k<m k=1 k=1

So (Nc'g)(x/e'®) <e, and further (Nc®g) (x) <e. That way we get the

inequality (N¢* ) (x) < (Nc*(¢7))(x). Now, let xeS be such that (Nc* 0) (x)

< o0. We take any number ¢ with the property (Nc*g) (x) <e. Then there

holds (Nc*g)(x/e') < e. Further, there exist elements xi,..., x,eS and

numbers a, ..., a, = 0 such that (x) holds. Hence we get sup ¢ (x) <e

1<k<m
and next (Nc*(¢7))(x) < & So the inequality (Nc*(e))(x) < (Nc¢* 0) (x) is also
satisfied.
3.1. We shall call a premodular base B in S almost locally bounded if it
satisfies the following condition:
(1b*) there exists a set Uge B such that for every set U e B there exists a
number a # 0 such that aUy < U,
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while we shall call it locally bounded if it satisfies the condition:

(1b) for any sets U,, U,e B there exists a number a s 0 such that
alU,; < U,.

We shall call a semi-premodular ¢ defined on S almost locally bounded if
the base B(p) is almost locally bounded and we shall call it locally bounded if
its base B(g) is locally bounded. Conditions (1b*) and (1b) for a semi-
premodular have the form:

(1b*) there exists 6 > 0 such that for every ¢ > 0 there exists a > 0 such
that for any xe S there holds the implication: if g(x) < J, then g(ax) <e,

(1b) for any numbers ¢, 6 > O there exists a number a > 0 such that
there holds the implication: if g(x) <, then g(ax) <e.

3.2. Let B, and B, be two premodular bases in S. If B, ~ B, and the base
B, is almost locally bounded, then the base B, has the same property.

3.3. A premodular base B in S is almost locally bounded if and only if the
base B is almost locally bounded and B is locally bounded if and only if B~
is locally bounded.

3.4. For every almost locally bounded premodular base B in S there is an
equivalent locally bounded premodular base B, in S. It can be assumed that
B, < B.

Proofs of 3.2, 3.3, and 3.4 are analogous to the proofs of results 8.2, 8.3,
and 8.4 in paper [2], so are omitted here.

3.5. For every almost locally bounded semi-premodular ¢ there exists a
locally bounded semi-premodular ¢’ equivalent to it.

Proof is similar to the proof of result 4.2 in paper [3], so is omitted
here.

3.6. If a semi-s-premodular ¢ is locally bounded, then a semi-prenorm g~
is also locally bounded.

We take numbers ¢, 6 > 0. From the assumption it follows the existence
of « > 0 such that g(x) < implies g(xx) < ¢ for every xeS. Since ¢~ (x)
< 6 implies o(x/3'%) < 6, so @7 (x) < & implies g(xx/6'%) < }¢, and further
0" (Ge)*ax/6'%) < Le <& That proves the semi-prenorm g~ is also locally
bounded.

4.1. We call a filtrating functional ¢ defined on S an s-convex semi-
premodular if it satisfies the conditions: (it) and

(iii/c®) g(ax+fBy) < a®o(x)+f°¢(y) for any numbers o, f > 0 such that
a*+ f° <1 and for any x, ye S. Under this condition let us assume 0-o00 = 0.

In particular, we call also a semi-prenorm that satisfies condition (iii/c®)

an s-convex semi-prenorm. The condition of s-convexity (iii/c®) was introduced
by W. Orlicz (cf. [1], [6]).
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4.2. Each s-convex semi-premodular ¢ is locally s-convex and locally
bounded.

Let us observe that from condition (iii/c®) for ¢ it follows condition
(iii/lc*) for ¢. For any numbers &, d > 0 we take « = inf {1, (¢/5)'”} and from
condition (iii/c®) we get the implication: if g(x) <4, then g(ax) < «*g(x) <e.

43. If ¢ is an s-convex semi-premodular, then the functional

0®(x) =

{ inf{e > 0: o(x/s') <1} if 9(4x) < oo for some 1 > 0,
otherwise (xe S),

is an s-homogeneous semi-prenorm equivalent to the semi-prenorm @~ defined
as in 1.5.

The functional ¢° is an s-homogeneous semi-prenorm, because it is the
proper Minkowski functional of the normal and s-convex set
{xeS: g(x) < 1}. Now let us observe that if ¢”(x) <& < 1, then g(x/e') < e
< 1, and further ¢°(x) < &. It follows from the above that ¢°(x) < ¢~ (x) for
any xe S such that p7(x) < 1. Let us also observe that if ¢®(x) < &2 < 1 then
by virtue of condition (iii/c®) there holds ¢ (x/&'/*) < £0(x/¢**) < ¢, and further
07 (x) < &. Hence we get 97 (x) < (¢°(x))"/? for every xe S such that ¢°(x) < 1.
We conclude from these two inequalities that the semi-prenorms ¢° and ¢~
are equivalent.

4.4. A locally s-convex and locally bounded base B can be described by an
s-convex semi-premodular if and only if it is equivalent to some at most
countable premodular base.

If a locally sconvex and locally bounded base B is describable by a
semi-premodular (in particular, by an s-convex semi-premodular), then by
virtue of result 3.3 in paper [4] this base is equivalent to some premodular at
most countable base. Now assume that the locally s-convex and locally
bounded premodular base B is equivalent to some at most countable
premodular base. Then, as one can easy observe, there exists at most
countable premodular base B, = {U,}, equivalent to the base B, composed
of the sets of the base B and such that U,., «c U, for n=1, 2, ... Since the
base B, is composed of the sets which belong to the base B it is also locally
s-convex and locally bounded. Now we take the proper Minkowski
functionals of the normal and s-convex sets U,, ie., functionals

inf{e > 0: (x/e®)eU,) if AxeU, for some 4 # 0,
PaX) = 0 otherwise (xeS),
for n=1,2,... It is obvious that these functionals are s-convex semi-

prenorms on S. Further we take the functionals

0(x) =5up {0, po(9—1}  (xeS, n=1,2,..).
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The functionals g, are s-convex semi-premodulars on S. In fact for any
x, veS and any numbers a, f > 0 such that «°+° <1 we have

pa(ax+fy)~1 < o p(x)+ f° p, () — (° + °)
= “S(pn(x)~ 1)+ﬁs(pn(y)_ l)a

and hence we get condition (iii/c®) for g,. Condition (ii) for g, is obvious.
Since the base B, = {U,} is locally bounded, for each positive integer n there
exists a number a,>0 such that U,ca,U,.;, the inequality
Pn+1(X) < o p,a(x) so is satisfied. Here we can assume a, > 1 for n=1, 2, ...
and take ay, = 1. Now we define the functional

Q(X)= Z 2—n(a0al"'an—l)_sQn(x) (XGS).
n=1

Since the functionals ¢, are s-convex semi-premodulars one can easily
conclude that the functional ¢ is also s-convex semi-premodular on S. It
suffices to show that B(g) ~ B;. For any number ¢ > 0 we select a positive
integer m such that 27" <¢. Let xe U,,. Let us observe that g,(x) =0 for n
=1,...,mand p,(x) < 1. The above and the inequalities p,, (x) < & p,(x)
for n=1,2,... imply

o0

o
0(X)< Y 2700y Hye ) P P(X) K27 Pu(x) Y 2TTS 2T <.
n=m+1 n=1
So U, = U(g,¢). Thus we have B(g) 3B;. On the other hand, for any
positive integer m we take d = 2" "(ap 2y ..., )" %, and let xe U (g, J}, so let
¢(x) <o6. Then we have ¢,(x) <1 and next p,(x) <2. Hence we get
U(g, 8) =2'#U,, and this proves that B, 3 B(p).

5.1. Let {y,} be a sequence of non-negative and convex functions for u
>0 and equal to O for u =0, and let S denote the linear lattice of real
functions measurable on an interval (a, b). Let us define

b
on(X) = [Yu(x(@)dt, n=1,2,..
and further

_ 2n(X)
o(x) = sgp—————n (1 +0n(3)

for xeS.
If ¢,(x) = oo, then we assume here g,(x)/(1+¢,(x)) = 1.

The functional ¢ is a locally s-convex semi-premodular on S. It is clear
that ¢ satisfies conditions (i) and (ii). So it suffices only to show that g
satisfies condition (iii/lc’). We take any elements x, yeS and any numbers
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a, f > 0 such that «°+ B* < 1. Since the functions ¥, are non-decreasing and
convex for u = 0, we have

b
0nx+ ) < (U (2 X (OF + B Iy (1)) di

b b
< o [ (Ix (OF)de +B* [ Iy () dt

= a*0,(X)+ f° 0, (¥) < sup {g,(x), 0,(3)} .

Further, since the function @(u) = u/(1+u) and ¢(o0) =1 is non-decreasing
for 0 <u < o0, we get

1
0(ax-+By) = sup—(a(ax +By))
1
< sup;a)(sup {ea(x), 2.(1)})

1 1
= sup sup % . Q (Q,, (x)), " @ (Qn ()’))} )

1 1
= sup {sup; ¢ (2n(x)), sup~ <p(g,,(y))} = sup {¢(x), e(¥)}.

5.2. The functionals g, given in 5.1 constitute an example of s-convex

semi-premodulars on the lattice S of real measurable functions on an interval
(a, b).

5.3. There exist locally convex and locally bounded bases in linear

lattices, which are not describable by a semi-premodular. An example is the
base given in 6.3 in paper [4].
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