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On the equation of the ρ-orthogonal additivity

Abstract. We solve a conditional functional equation of the form

x ⊥ρ y =⇒ f(x+ y) = f(x) + f(y),

where f is a mapping from a real normed linear space (X, ‖ · ‖) with dimX ≥ 2 into

an abelian group (G,+) and ⊥ρ is a given orthogonality relation associated to the
norm.
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1. Introduction. The Cauchy functional equation, i.e., the equation of ad-
ditivity, has been widely investigated (see e.g. Aczél [1], Kuczma [10], Aczél &
Dhombres [2]). Its conditional form described below deserves further studies.

A mapping f from a linear space X into a group (G,+) is called orthogonally
additive provided that for every x, y ∈ X one has

(1) x ⊥ y implies f(x+ y) = f(x) + f(y),

where ⊥ denotes an orthogonal relation defined on X.
For instance, in an inner product space (X, 〈·, ·〉) the functional

X 3 x 7→ 〈x, x〉 ∈ R

is orthogonally additive (Pythagoras theorem). The notion of orthogonal additivity
has intensively been studied by many authors; see e.g. Sundaresan [13], Drewnowski
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& Orlicz [6], Gudder & Strawther [7], Rätz [12], Szabó [14, 15, 16, 17, 18, 19] and
others.

Let (X, ‖ · ‖) be a real normed linear space with dimX ≥ 2. Define the orthogo-
nality relation ⊥ρ on X as follows:

(2) x ⊥ρ y if and only if ρ′+(x, y) + ρ′−(x, y) = 0,

where

(3) ρ′±(x, y) = lim
t→0±

‖x+ ty‖2 − ‖x‖2
2t

.

Our aim is to give the description of functions satisfying the following condition

(4) x ⊥ρ y implies f(x+ y) = f(x) + f(y).

2. Preliminaries. The functions ρ′+ and ρ′− given by (3) are well-defined and
if (X, 〈·, ·〉) is a real inner product space, then both ρ′+ and ρ′− coincide with 〈·, ·〉.
Next results contain some of the properties of ρ′± (cf. e.g. Amir [3]).

Proposition 2.1 Let (X, ‖ · ‖) be a real normed space with dimX ≥ 2, and let
ρ′+, ρ

′
− : X ×X → R be given by (3). Then

(a) ρ′±(0, y) = ρ′±(x, 0) = 0 for all x, y ∈ X;

(b) ρ′±(x, x) = ‖x‖2 for all x ∈ X;

(c) ρ′±(αx, y) = ρ′±(x, αy) = αρ′±(x, y) for all x, y ∈ X and α ≥ 0;

(d) ρ′±(αx, y) = ρ′±(x, αy) = αρ′∓(x, y) for all x, y ∈ X and α ≤ 0;

(e) ρ′±(x, αx+ y) = α‖x‖2 + ρ′±(x, y) for all x, y ∈ X and α ∈ R;

(f) ρ′−(x, y) ≤ ρ′+(x, y) for all x, y ∈ X.

Proposition 2.2 The functions ρ′+ and ρ′− are continuous in the second variable.

Proposition 2.3 (Precupanu [11]) Let X = R2 and let u, v in SX := {u ∈ X :
‖u‖ = 1} be such that u 6= ±v. Then

lim
τ→0+

ρ′+(u+ τv, v) = ρ′+(u, v).

Remark 2.4 Using the same argument to that used by Precupanu one can show
that with the same assumptions

lim
τ→0−

ρ′+(u+ τv, v) = ρ′+(u, v),

so, in fact, we have

(5) lim
τ→0

ρ′+(u+ τv, v) = ρ′+(u, v).
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Corollary 2.5 Let X = R2 and let u, v in SX be such that u 6= ±v. Then

(6) lim
τ→0

ρ′−(u+ τv, v) = ρ′−(u, v).

Proof By the properties of ρ′± we have

lim
τ→0

ρ′−(u+ τv, v) = lim
τ→0

(−ρ′+(u+ τv,−v)) = − lim
−τ→0

ρ′+(u+ (−τ)(−v),−v)

= −ρ′+(u,−v) = ρ′−(u, v). �

Remark 2.6 Conditions (5) and (6) can be used in each two-dimensional linear
space since such a space is isomorphic with R2.

As a consequence of the above results and by properties of ρ′±, one has even more
general result.

Corollary 2.7 Let (X, ‖ · ‖) be a real normed space with dimX ≥ 2. Functions
R 3 t 7→ ρ′±(x+ ty, y) ∈ R are continuous at zero for every fixed x, y in X.

For the next results we recall the definition of Birkhoff orthogonality: in a normed
space x is Birkhoff orthogonal to y (x ⊥B y) if and only if for all real λ we have
‖x‖ ≤ ‖x + λy‖ (for details the reader is referred to Birkhoff [5], James [9], Amir
[3]).

Functions ρ′± characterize the Birkhoff orthogonality in the following sense (cf.
James [9]; see also Amir [3]).

Proposition 2.8 Let (X, ‖ ·‖) be a real normed linear space with dimX ≥ 2. Then
for all x, y ∈ X and α ∈ R the condition x ⊥B y − αx is satisfied if and only if
ρ′−(x, y) ≤ α‖x‖2 ≤ ρ′+(x, y).

The orthogonality relation ⊥ρ defined by (2) satisfies the following properties.

Proposition 2.9 Let (X, ‖ · ‖) be a real normed linear space with dimX ≥ 2. For
all x, y ∈ X and α ∈ R

(a) x ⊥ρ y − αx if and only if 2α‖x‖2 = ρ′+(x, y) + ρ′−(x, y);

(b) If x ⊥ρ y − αx then ρ′−(x, y) ≤ α‖x‖2 ≤ ρ′+(x, y);

(c) If x ⊥ρ y then x ⊥B y;

(d) If X is smooth, i.e., for all x, y in X one has ρ′−(x, y) = ρ′+(x, y), then x ⊥ρ y
if and only if x ⊥B y.

Let us state the notion of an abstract orthogonality space (see Rätz [12]).
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Definition 2.10 An ordered pair (X,⊥) is called an orthogonality space in the
sense of Rätz whenever X is a real linear space with dimX ≥ 2 and ⊥ is a binary
relation on X such that

(i) x ⊥ 0 and 0 ⊥ x for all x ∈ X;

(ii) if x, y ∈ X \ {0} and x ⊥ y, then x and y are linearly independent;

(iii) if x, y ∈ X and x ⊥ y, then for all α, β ∈ R we have αx ⊥ βy;

(iv) for any two-dimensional subspace P of X and for every x ∈ P , λ ∈ [0,∞),
there exists a y ∈ P such that x ⊥ y and x+ y ⊥ λx− y.

A normed linear space with Birkhoff orthogonality is a typical example of an
orthogonality space (see Rätz [12], Szábo [15, 16]). James orthogonality, since it is
not homogenous (see James [8]), cannot act as an example of a binary relation in
such a space.

Based on the results from the papers by Rätz [12] and Baron and Volkmann [4]
we have the following theorem concerning the orthogonal additivity for a function
defined on an orthogonality space.

Theorem 2.11 Let (X,⊥) be an orthogonality space and let (G,+) be an abelian
group. A mapping f : X → G satisfies condition (1) if and only if there exist an
additive mapping a : X → G and a biadditive and symmetric mapping b : X×X → G
such that

(7) f(x) = a(x) + b(x, x) for all x ∈ X

and

(8) b(x, y) = 0 for all x, y ∈ X with x ⊥ y.

As an immediate consequence of the above result, we deduce that each Birkhoff
orthogonally additive mapping has the form (7). And finally, on account of Propo-
sition 2.9 (d), since in smooth spaces the relations ⊥ρ and ⊥B are equivalent, as a
corollary we get the following result.

Corollary 2.12 Let (X, ‖ · ‖) be a smooth normed linear space with dimX ≥ 2,
and let (G,+) be an abelian group. A mapping f : X → G satisfies condition (4)
if and only if there exist an additive mapping a : X → G and a biadditive and
symmetric mapping b : X ×X → G such that f has the form (7) and condition (8)
with ⊥:=⊥ρ is satisfied.

The question is: What about spaces which are not smooth?

3. Main results. Assume that (X, ‖·‖) is a normed linear space with dimX ≥
2. We will show that the relation ⊥ρ satisfies the four properties of the orthogonality
space. The first three are easy to be checked. In order to check the fourth one we
need some auxiliary results.
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Lemma 3.1 For any two vectors x and w in X we have

lim
t→t0

ρ′±(x+ tw,w) = ρ′±(x+ t0w,w).

Proof By Corollary 2.7 we can write

lim
t→t0

ρ′±(x+ tw,w) = lim
s→0

ρ′±(x+ t0w + sw,w) = ρ′±(x+ t0w,w).

Lemma 3.2 For any two vectors x and w in X we have

lim
t→t0

ρ′±(x+ tw, x) = ρ′±(x+ t0w, x).

Proof By Proposition 2.1 (c)-(e) for t 6= 0 we have

ρ′±(x+ tw, x) = ‖x+ tw‖2 − tρ′∓ sgn t(x+ tw,w),

where sgn t := t
|t| , and by Lemma 3.1 we obtain: if t0 = 0, immediately

lim
t→0

ρ′±(x+ tw, x) = ‖x‖2,

and if t0 6= 0 then

lim
t→t0

ρ′±(x+ tw, x) = ‖x+ t0w‖2 − t0ρ′∓ sgn t0(x+ t0w,w) = ρ′±(x+ t0w, x).

Lemma 3.3 For any x ∈ X \ {0} and λ ∈ [0,∞) there exists z ∈ X \ {0} such that

(9)
[
ρ′+(x, z) + ρ′−(x, z)

][
ρ′+(z, x) + ρ′−(z, x)

]
=

4‖x‖2‖z‖2
λ+ 1

.

Proof If λ = 0, it is enough to take z := x. Assume that λ > 0. Let w ∈ X be
linearly independent of x and such that ρ′+(x,w) + ρ′−(x,w) 6= 0. Define ϕ : R→ R
by

ϕ(t) :=
4‖x‖2‖x+ tw‖2

λ+ 1
−
[
ρ′+(x, x+tw)+ρ′−(x, x+tw)

][
ρ′+(x+tw, x)+ρ′−(x+tw, x)

]
.

We have

ϕ(0) = 4‖x‖4
(

1
λ+ 1

− 1
)
< 0.

If t1 := − 2‖x‖2
ρ′+(x,w) + ρ′−(x,w)

, then

ρ′+(x, x+ t1w) + ρ′−(x, x+ t1w) = 2‖x‖2 + t1
(
ρ′+(x,w) + ρ′−(x,w)

)
= 0

and

ϕ(t1) =
4‖x‖2‖x+ t1w‖2

λ+ 1
> 0.

On account of Proposition 2.2 and Lemma 3.2 function ϕ is continuous and, conse-
quently, between t1 and 0 there exists t0 such that ϕ(t0) = 0, i.e., condition (9) is
satisfied with z := x+ t0w. �
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Now we are able to prove

Proposition 3.4 For any two-dimensional subspace P of X and for every x ∈ P ,
λ ∈ [0,∞), there exists a y ∈ P such that x ⊥ρ y and x+ y ⊥ρ λx− y.

Proof Fix x ∈ X. If x = 0 then take y := 0. For x 6= 0 take nonzero z ∈ X such
that (9) is satisfied. Define

y := −x+
λ+ 1
2‖z‖2

[
ρ′+(z, x) + ρ′−(z, x)

]
z.

We have

ρ′+(x, y) + ρ′−(x, y) = ρ′+
(
x,−x+

λ+ 1
2‖z‖2

[
ρ′+(z, x) + ρ′−(z, x)

]
z
)

+ ρ′−
(
x,−x+

λ+ 1
2‖z‖2

[
ρ′+(z, x) + ρ′−(z, x)

]
z
)

= − 2‖x‖2 +
λ+ 1
2‖z‖2

[
ρ′+(z, x) + ρ′−(z, x)

][
ρ′+(x, z) + ρ′−(x, z)

]

= 0,

and

ρ′+(x+ y, λx− y) + ρ′−(x+ y, λx− y)

= ρ′+
( λ+ 1

2‖z‖2
[
ρ′+(z, x) + ρ′−(z, x)

]
z, (λ+ 1)x− λ+ 1

2‖z‖2
[
ρ′+(z, x) + ρ′−(z, x)

]
z
)

+ ρ′−
( λ+ 1

2‖z‖2
[
ρ′+(z, x) + ρ′−(z, x)

]
z, (λ+ 1)x− λ+ 1

2‖z‖2
[
ρ′+(z, x) + ρ′−(z, x)

]
z
)

= −2
(λ+ 1)2

4‖z‖4
[
ρ′+(z, x) + ρ′−(z, x)

]2
‖z‖2

+
(λ+ 1)2

2‖z‖2
[
ρ′+(z, x) + ρ′−(z, x)

][
ρ′+(z, x) + ρ′−(z, x)

]
= 0,

which concludes the proof. �

Relation ⊥ρ satisfies (iv), so our main result follows immediately.

Theorem 3.5 Let (X, ‖ · ‖) be a real normed linear space with dimX ≥ 2, and let
(G,+) be an abelian group. A mapping f : X → G satisfies condition (4) if and
only if there exist an additive mapping a : X → G and a biadditive and symmetric
mapping b : X×X → G such that f has the form (7) and condition (8) with ⊥:=⊥ρ
holds true.
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Remark 3.6 As a corollary from Proposition 3.4 we infer also that the Birkhoff
orthogonality satisfies condition (iv) in the definition of the orthogonality space
(one may compare this with quite sophisticated considerations from the papers by
Szabó [15, 16]).

References

[1] J. Aczél, Lectures on Functional Equations and Their Applications. Academic Press, New York

- London, 1966.

[2] J. Aczél, J. Dhombres, Functional Eequations in Several Variables. Cambridge University Press,

Cambridge, 1989.

[3] D. Amir, Characterization of Inner Product Spaces. Birkhäuser Verlag, Basel-Boston-Stuttgart,
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