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Asymptotic behavior of the solutions of an
n-th order difference equation

Introduction. The asymptotic behavior of the solutions of the n-th order
differential equations have been considered by T. G. Hallam [3-4] and W. F.
Trench [7]. Similar problems with regard to the second order difference
equations were investigated by J. W. Hooker, W. T. Patula [5], A. Droz-
dowicz [1] and to the n-th order by J. Popenda [6]. This paper is
a generalization of the result obtained by A. Drozdowicz and J. Popenda [2]
for second order difference equation.

In the present paper the asymptotic behavior of the solutions of m-th
order difference equation

(E) A" x,+p, f(x,) =0, mis a positive integer

will be considered. A necessary and sufficient condition for the existence of
a solution x of (E) which has the asymptotic behavior

(AB) lim x, = C,

where C is a constant such that f(C) # 0 will be proved.

Let N denote the set of positive integers, R the set of real numbers.
Throughout this paper it will be assumed that f: R —» R is continuous and
p: N - R, u{0}. Next for a function a: N — R one introduces the difference
operator 4 as follows:

da,=a,, ,—a, A™a,=A(4""'a,), where a,=a(n), neN.

Moreover, let Y%l a; = 0.

One can observe that if f is defined and finite on R then there exists
a solution of (E) for any initial values: x,, ..., X,,.

1. A necessary condition

THEOREM 1. A necessary condition for the existence of a solution x of
(E) which has the asymptotic behavior (AB) is
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s

(NS) " py < 0.

]

ji=1

Proof. Let x denote a solution of (E) having property (AB), i.e. x, - C
for n — c0. Then
(1.1) 4x,—-0, 4%*x,-0,...,4™"x,>0 as n— .

Assume that f(C) > 0. (The case f(C) <0 can be proved in a similar way.)

The continuity of f implies that there exists ¢ > 0 such that f(¢) > 0 for
tel:=[C—¢g, C+e¢]. Since x, - C as n — o0, there exists n; = N (¢) such that
x,€l for all n > n,. Therefore

(1.2) f(x) = Co:=minf(t)>0 for n>=n,.

tel

By summation of (E) over n and using (1.2), one obtains
n—1
A" x,—A" " x, < —Cy Y, p; for n=k>=n,.
i=k
In view of (1.1),

(1.3) A" 1x, 2 C, > p; forany k>=n,.

Therefore, the series

(1.4) Y. p; s convergent.
i=k
By summation of (1.3) over k we obtain
n—1 o
Y
=5 j=

In view of (1.1) we get
CO Z Z p,S —Am_zxs < Q0.
k=sj=k

Hence the series ) %) 2, p; is convergent.
Changing the order of summation, we have

Cod 2 pi=CoY (j+1=5)p;< —A"?x, s=n,.
Jj=s

k=sj=k

The next summation (using (1.1)) gives

Co

M
-
+
(5137
I
=z
=
/)
o
3
!
W
=
k)
W
Y
=
k
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Repeating the above reasoning, we find

n—1 oo

Co 2 X ("= )p < (=12 (xy—x,).

k=ny j=k
Tending with n to infinity, we obtain

Co ¥ Z( 27 < (=1 T(C—x,).

k=n; j=
Changing the order of summation, one can show that

e o}
Co Z (j+'7n_—11—”‘)l’j < (—l)m-z(c_xnl)-
Jj=ny
Hence the series
(1.5) Y U"mi™)p; is convergent.
Jj=n

It is easy to show that the condition
q—-1
6 . =g+ L - 1=t k=g (T

holds for arbitrary j, k, ge N.
One can observe that for r=0,...,q9g—1, keN, the inequality
q—1—r—k <0 holds, too. Hence

____1.___ jtrl'
Tg—-1-n!
Let g > 1. For g = 1, the convergence of the series ) 72, j4™! p; was shown
in (1.4). Assume that the series ) 2,,j4" ' p; is convergent for some g < m—1.
Then by virtue of (1.5), (1.6) and (1.7) it follows that

(1.7) (J k+¢i—1 r)

o g—1

ZJ p;= Zq'(“" Mo+ Y Y (g—-1-Nk—q+n (4212787 p;
j=kr=0
< S g-1-nlk—g+r) &
! J+q k ) q 1
sa j;k( )p]+r 0 (q 1—7)! ,—g‘k Py .

Therefore the series ) 2, j¢ p; is convergent. If ¢ = m—1 then it follows that the
series y i, j™ ! p; is convergent, too. M
2. A sufficient condition
THEOREM 2. Let for every ke N
(S1) {(iR+pkf): R—R if mis even,
(S2) (ix—pf) R—>R if mis odd

be surjections. (ix denotes here the identity function on R.)
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A sufficient condition for the existence of a solution x of (E) which possesses
the asymptotic behavior (AB) is (NS).

Proof. The case f(C) > 0 will be considered. (The case f(C) < 0 can be
shown in a similar way with some modifications.)
Let (NS) hold. Hence

2.1 lim ) " 'p;=0.
n—w j=n
One can observe that the sequence {} %,j" ' p;}s>, is nonincreasing. Anal-
ogously as in the proof of Theorem 1, there exists an interval
I:=[C—¢g, C+¢] (¢ > 0) such that f is positive on I
Denoting C,:= max, f(t), from (2.1) it follows that

C, > j"'p;<e for all n =N, Cy).

j=n

Let
\,

n, =max {min{neN: C, } j" 'p,<¢},m—1}. -
j=n
Next let [, denote the Banach space of bounded sequences x = {h;};2, with
the norm | x|| = sup;, |hy.
Moreover, let us define the set T < {, as follows:

h=C fork=1,2,...,n,—1,

22 x={hjz.eT if {hkelk for k> n,

where

[+ o} o0
L:=[C=-C Y " 'p;, C+C, Y. " 'p;], k=n,.
ik =k

Jj= j

It is easy to show that T is bounded, convex and closed in /. The fact that
T is compact will be shown.

Let us write diam [a, b] = b—a, a, be R. By virtue of (NS) it follows that
diam I, — 0 as n — o0. Let us choose any ¢; > 0. If ¢, is such that diam I, < ¢,
then v={C, C,C,...}el, is an g, -net.

The case diamI,, > ¢, will be considered. Let n; >n, be such that
diam/I, > e, and diamI,,,, <é¢;. (In any case one can find n, because
diam I, - 0 as n — 00.) Then it is easy to show that the set of elements of the
space [, of the form

1,2,...,n3=~n2+1 __
Vs sy ={C, ..., C, C+sy84, ..., C+8, 018, C, ..}
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where

=0, +1, +2,..., iri:=En|iw%i—_l]+l, i=1,2,...,n5—ny+1,
1
forms an &,-net. (En denotes the entier function.)

One can observe that there are ny—mn,+1 intervals I, for which
diam I, > &,. In every interval I, we take 2r,+ 1 values which differ from C by
an integral multiple of ¢; and do not exceed the borders of I,. Next we take all
permutations of these values such that the first element belongs to I,,, the
second to I,,.; and so on, and the last one to I,,. One can observe that the
number of these permutations is equal to [ [;27"2*'(1+2r). Therefore
ny—nz+1

card {v;;%ymmr i = [ (142r)< 0.

5155200e08n3 -0y +1
i=1

S

Hence the ¢,-net is finite. By the Hausdorff theorem, T is compact.
Let us define the operator 4 on T in the following way For any xeT
(defined by (2.2))

Ax:y:{bl, bz,...,bnz_l, bnz, veey bk""}’
where - ’
c . forn=1,2,...,n,—1,
J C—Y ("mzi™")p; f(h) for n = n,, if the order of the
b, = J

equation (E) is even,

Z ( )ij(hj), for n> n,
= if the order m is odd].

-n

(N
The case where m is even. We shall show that A4 is a function from T to T,
By observing that I, < I it follows that 0 < f(h,) < C, for k > n,.
For k> n, and j > k, the inequality

m 1

C1Pj

2.3) 0< (=i p;fh )\T?T)F

<"t Gy
holds. Hence

[o o] [2¢)
C>C-Y (*mii Mpfh)=C—-C, Y j" 'p;
i=k j=k
This means that b, el, for k > n,. Therefore, yeT.

Next we shall show that A4 is continuous. Since fis continuous on R, it is
uniformly continuous on I. In view of this fact, for each &, > 0 there exists
0, > 0 such that the condition [t, —t,| < &, implies |f(t,)—f(¢,)] < é&,. Con-
51der the sequence {x*};%;, x*€ T such that
(2.4) x*—x°) -0, ie. suplh?i—h?]—>0 as a— c0.

nz1

4 — Roczniki PTM — Prace Matematyczne XXIX
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From (2.4) it follows that there exists n, = N (J,) such that
[x*—x°|| < &,, ie. sup|hi—hS|<d, for a>n,.
nz1
Hence, for every a > n, and for each ie N, |hf—h{| < 3,. Then for a >n,
| Ax*— Ax°|| = sup |bj— b}

nz1

—SUPIZ(”"' ") p; f(B)— Z(“"‘ M p; f(]),

nzny j=n
where b° = Ax°, b* = Ax~

Since the series Y 2,(*mZ17")p; f(hD), Y2 C* M1 p; f(hY) are con-
vergent (which follows from (2.3)), we have

e o]
lAx*—Ax%) <&y ¥ O*mkTpy,  a>n,.
J=n2
Hence A is continuous.
By the Schauder fixed point theorem, there exists in T a solution of the
equation x = Ax. Let z={d,, d,, ..., d,,_,, d,,, ...} denote such a solution.
Since ze T, it can be written as follows:

z={C,C,...,C,d,,d\ 1,..},

and

Az={C,C,...,C,C— Z (f+’;',,‘_11'"2)pjf(dj),

J=n2
C— Y (W% 9pifd), ...}
j=n2+1
This means that
2.5) dysy=C— Y ("3 %p,f@d) for k>0.
j=n2t+k .

Using the operator A4 to (2.5) m times, one obtains

A" dyy s = (= 1)" Py Sy 1)y k20,

This means that the sequence {d,};- fulfils equation (E) but for n > n, only.
Now the existence of the solution {x,};>; of (E) such that x, =d, for
n = n, will be proved. One can observe that (E) can be rewritten in the form

xn+pnf(xn) = —xm+n+(T)xm+n—1_(';)xm+n—2+ —(_ l)m_l(m'fl)xn-i—l'
If n=n,—1 then one gets
(2'6) xnz—l+pnz—1f(xn2—l)

= —xm+nz—1 +(T)xm+n2—2+ "'_(_l)m—l(m'ﬁl)xnz‘
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But we require x, to be equal to d, for n > n,. From (2.6) one obtains
Xnp—1 FPny—1 S Xny=1) = —dpin,—1 +Ddping—2+ - _(_1)m~1(mr11)d”2
By virtue of (S1) it follows that the equation
X4 Ppy 1 f) = ~dpipy 1+ Dy 2+ .. — (= )" w21 d,,

has solutions. Let us denoté one of them by x,,_,.

Analogously, one can calculate x,,_,, x,,—3, ..., X5, X; one after the
other. In consequence one gets a sequence which fulfils (2.6), i.e. which fulfils
(B), too. Moreover, this sequence is identical with {z,};°- for n > n, and it has
the asymptotic behavior (AB) because lim,_,  d, = C

The case where m is odd. In a similar way as in the proof of the case
where m is even but with some modifications one can show that A is
a function from T to T and A is continuous. Using Schauder’s fixed point
theorem, analogously as above one finds that

z=Az={C,...,C,C+ Z (™) p; f (R,

ji=ny
C+ Z (T 2)p,f(h) )
j=na+1
This means that
27 dpyir=C+ Y (""" 9p;fd), k=0.
j=na+k

Using the operator 4 to (2.7) m times yields
Amdnz+k = _pnz-l-kf(dn2+k)a - k=0.

Hence the sequence {z,};>, fulfils (E) but for n > n, only. Recalling that m is
odd, one can observe that (E) can be rewritten as

xn_pnf(xn) = xm+n—(’ln)xm+n—1 +(';)xm+n—2_ see +(-1)m—1(m'21)xn+1'

Reasoning similarly to the ‘case where m is even but using (S2), one can
calculate x,,_,, x,,_,, ..., X,, X; one after the other.

In consequence one gets a sequence which fulfils (E) and which is identical
with {z,}7 | for n> n,. It has the asymptotic behavior (AB), too. B
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