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Additive and countably additive correspondences

Set-valued measures (or countably additive correspondences) have 
been intensively studied for their own sake, and in connection with their 
applications, for about fifteen years now. The main interest has been 
focused on those arising as integrals of correspondences (see e.g. [2], 
[7], [12], [13], [24], [39], [40], [43] and references therein). However, 
it seems that such important topics from the theory of vector measures 
as, e.g., the extension problem, convergence theorems, boundedness, 
have not been investigated in case of correspondences. The purpose of 
this paper is to fill in this gap, to some extent.

The first two sections are of preparatory character; in Section 2 
much attention is paid to a theorem discovered by Eadstrom [37] and 
generalized by Hormander [26], but in the finite dimensional case essen­
tially due to Minkowski (cf. [5]), which appears to be a very useful tool 
in studying bounded-valued correspondences. This was apparently ob­
served first by Debreu [12], then used also by Yaladier [43]; see also [25].

In Section 3 we discuss additivity, countable additivity and some 
other properties of correspondences. Though most of the results stated 
here remain valid for group-valued correspondences, we restrict ourselves, 
in Section 3 and throughout the paper, to those taking on values in locally 
convex vector spaces.

In Section 4 our main task is to prove the extension Theorem 4.5, 
an analogue (also as concerns the method used) of the corresponding 
result for vector or group valued measures [16].

In Section 5 we seek conditions which ensure boundedness of the 
range of a set correspondence. Also, we establish here the Saks type de­
composition of correspondences, and generalize a result of Diestel [14].

The results in Section 6 are of Lapunov-type : they were inspired 
by results of Tweddle [42], Schmeidler [39], [40] and Artstein [2] (cf. 
also [8], [9]).

Section 7 contains the Vitali-Hahn-Saks and Mkodym type theorems 
on convergent sequences of correspondences, and an analogue of Nikodym’s-
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uniform boundedness theorem. All of these are almost immediate conse­
quences of the Minkowski-Eadstrôm-Hôrmander theorem.

In Section 8 we consider the problem of the existence of a control 
measure for an additive correspondence, and in connection with this 
the  existence of additive selections.

1. Basic notation used throughout this paper is as follows.
X  denotes a Hausdorff locally convex topological vector space, т 

its topology, X ' the topological dual of X . U is a generic notation for 
a member of a base W of absolutely convex closed neighborhoods of the 
origin in X . sé{X) is the family of all non-empty subsets of X;  &(X),  
&(X)  and Ж(Х)  are the families of bounded, closed, and closed bounded 
convex sets in j/ ( X ) ,  respectively. Instead of { 0 }  we will usually write 0 .  

The closure [resp. convex hull, closed convex hull] of a set A  in X  is 
denoted A or A~  [resp. со A, coA].

For the moment, let яа denote the equivalence relation on s4 (X ) 
defined by

A  iff A  =  B.

Then the quotient Ж (X) j ^  may be identified with ^(X) .  Further, 
the usual addition (A, B)->A + B  in л/ (Х)  agrees with я», that is A x & B x, 
А & B 2 imply A x-\-A2 zxB x + B 2. Therefore, (Ж{Х), +) admits a fac­
torization by ян, and the resulting quotient semigroup may be identified 

*
with fâ(X),  -f), where the new addition is defined by

A + B  ={ A ' +B) -  ( = ( A A B ) - )

(cf. [26], p. 182, and [26]). Eecall that A-\-B  = A + B  if one of the sets 
A, В  is closed and the other compact ([31], §15.6 (10)). The symbol

*
used for finite sums or series will indicate tha t the addition involved is + .

N  denotes the set of positive integers, ^ (N )  the family of all its 
subsets; R  =  ( — <x>, oo).

& denotes a ring of subsets of a set 8. Whenever it is clear from a con­
text tha t a set, say E, is (or should be) taken from we avoid writing
и Е е Ж ' > ОГ SO.

M  always denotes an AT-valued correspondence defined on i.e. 
a function &->s/(X), such that

M(0)  = 0;

then M v, M,  соM,  coM  are the correspondences defined by the formulas

M' { E)  =  \ J{M{F) \ F  с  E},

M (E) = (M{E))~,  (соM) (E) =  соM{E),  (сoM) (E) = coM{E).
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Any additional conditions on X,  M  will be imposed explicitly 
only when necessary.

The reader is referred to [16]-[20]for information about submeasures, 
Fréchet-Mkodym topologies, and some terminology used there for usual 
set functions. This terminology will be extended here to case of correspon­
dences.

2. A topology on s#(X)9 the Minkowski-Radstroin-liormander the­
orem and series of sets. Let VL be the invariant uniformity on X  com­
patible with r. Then the exponential extension of II to sé{X) is defined 
to be the uniformity II on sé (X) determined by the families

A(U) =  {(A, B) es / {X)  x*/ (X) \ A  c  B +  U, В  c  A +  U}, Ue %
*

as a base of vicinities. ( -f may be replaced by +.)
The topology on sé{X) associated with U, the uniform exponential 

extension of r, will be denoted r . The symbols H and r will be also used 
to denote the induced uniformity and topology on any subfamily of s/ (X)  
(cf. [6], Exercises to Chapter 2 ; [32], [33]). Thus if A 0e д/(Х),  then the 
families

(o ( U , A 0) =  {A e stf (X) \ (A, Af) e é(  U)}, Ue <Ш,

form a base of т -neighborhoods of A 0 in s/(X).
We note that the mappings (A, B)->A-\-B, A->A, A->coA, A->coA 

are uniformly continuous.
1'f я» is the relation considered in Section 1, then {&(X), r) m aybe 

identified with (л/(A), f  )/«=#, and {%(X), U) with the separated uniform 
space associated with II).

If X  is metrizable, then (j/(X ), Ü) is semimetrizable, e.g. via the 
known Hausdorff distance between sets; if, besides, X  is complete, then 
so is &(X).  In the particular case where r is determined by a norm || ||, 
the Hausdorff distance is given by the formula

||A, B\\ = inf {fc >  0| A  <= B Jr tU1, B  <= A + tUj} ,

where Ux = {xeX\  ||a?|| <  1).
The families of convex, or bounded, or compact members of ^{X),

as well as the intersections of these families (and many others) are closed
* *

subsemigroups of (fé’(X), + ;  f  j. On Ж(Х),  the addition +  together with
the usual multiplication (t, A)->tA  by non-negative reals (which is associa-

*
tive and distributive with respect to +) define the algebraic structure 
of an “abstract” convex cone.
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The semigroup X ( X )  has the significant property that the law of 
cancellation

(le) A  + B  =  C + B => A  = C

holds in it. This fact, first observed by Badstrôm for the usual addition 
+  in a normed space X,  allowed him to embed algebraically and iso- 
metrically some “cones” of closed convex subsets of X,  endowed with 
the Hausdorff distance, into appropriately defined normed vector spaces
[37].

Soon afterwards, this was generalized by Hormander [26] who proved 
tha t if (X, r) is a locally convex vector space over B,  then (X(X) ,  f)  
can be identified with the cone

X  =  { K J A e  X( X) }
of the real vector space

æ  =  { к л - к в \А ,В е  x ( X ) }

equipped with the locally convex topology of uniform convergence on 
t-equicontinuous subsets of X ' . And he observed that when dimX <  oo 
this result is essentially due to Minkowski (cf. [5]). Here K A: X' - ^B  
is the support function of A  which is defined by

K A(x') =  sup{a?'(a?)|a?eA}.

The original construction of Badstrôm, in which X'  does not appear 
has been recently modified in [25] to treat that general case. I t  seems 
worthwhile to present briefly a version of that construction in which 
neither X'  nor the seminorms defining r (as in [25]) will be used.

We start by proving that:
(leg) I f  Ae  sf (X),  Be @(X) and C is a dosed convex subset of X , then

A-\-B  c: C -\-B => A  c  C

(cf. [37], Lemma 1). Evidently, (leg) => (lc).
Take any U e °Ü. Then

A B  c  G A B A  U.

Let aeA , and choose any Ъге B. Then

a A b x = с-^АЬъАЩ for some cxeG ,Ъге В , иге U ,

аАЪ% = c2 A h A ^ ÿ  f°r some czeC, b3e B , u2e U,
and so forth. Hence

1 1 1
a =  — (C j+ ...+ с Л -  - {bn+1 - Ъг) +  — (% + ... + un), ne B  .

n n n
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Hence, by boundedness of В  and convexity of C and U,

aeC -\-2l7.

Since C is closed, we conclude that aeC. This proves (leg).
Now consider the product-semigroup Ж2(Х) =  Ж( Х ) х  Ж{Х)  and 

the equivalence relation ~  on it, defined by

^ ( А г, В, )  iff А г + В г =

The addition in X 2(X) agrees with hence U{X) = jT2(X )/~  is a
*

semigroup under the addition +  defined by

{ A , B)^  +  (O, D)~ — (A +  G-, B + JD)^
*

(E, F )_ denotes the element of B(X)  determined by (E, F). Since (J., В -f 
+ (B, A =  (0, 0)^ =  0^, the zero of B(X) ,  (В , J.)^ is the negative of
(A, B)^  relative to + ;  notation: (В, A)^  =  —(А, В)^ .  Thus (B{X),  +) 
is an abelian group. Since the mapping H->(H, 0)^ is an isomorphism
of (Ж(Х),  + )in to  (B(X),  +), we can identify each Ae Ж(Х)  with (A, 0)^ 
e R(X).  Since (A, В )„ =  (A, 0)^ + ( 0, B)^  =  A — B, we see that

B(X)  = Ж{ Х) ^ Ж{ Х) .

I t  is now obvious tha t B{X)  is a smallest, up to isomorphism, abelian 
group which contains Ж(Х).

We should note that the negative — A  in B(X)  of a member A  of 
Ж(Х)  does not coincide with —A =  { —ajaeA} unless A  has only one 
point.

For each U e let

F(U) = {(A, B)^e B(X) \ (A,  B)e é?(U)}-,

E{U)  is well-defined because using (leg) one easily verifies that if (H, B)
€<?{U), (C, D)e Ж2(Х) and (С, I)) ~  (A, B), then {C,D)e<C(U). Then
{E ( U) I U e %} is a base of symmetric neighborhoods of for a group
topology, r(r), on B(X) .  I t is Hausdorff, for if SC = (А, В)^€ E(U),  that 

* *
is A  c  B  +  U and B  c= A  +  U, for every U, then A = B,  so tha t SC — 0^. 

I t is also easy to see that r(r) induces f  on Ж(Х).  In fact, for each
Ae Ж(Х),  the neighborhood (A+E(U))r \ j f {X)  of A  in (Ж(Х),  r(r)j 
coincides with the neighborhood <C(A, и ) пЖ( Х)  of A  in (Ж(Х),  rj. 
From this, and the definition of r(r), it follows that the invariant uni­
formity on B(X)  compatible with r(r) is the finest one which induces U 
on Ж(Х).
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The group B(X)  can be now converted into a vector space over It 
by defining multiplication by the formulas

t -(A,  B)^  =  (t A , tB)^ if 0 , t ’(A,  B)^  — ( —tB,  —t A )_ if t <  0 .

This is a unique multiplication which induces the usual multiplication 
by non-negative reals on Ж(Х)  and satisfies the condition ( — 1)’(A, B)^  
= -^(A,  B)^.

Since the neighborhoods E  ( Ï7) of 0^ in B(X)  are convex and absorb­
ing, R(X)  is a Hausdorff locally convex topological vector space under r(r). 

Thus we have established the following
2.1. Theorem  (Minkowski-Eadstrôm-Hôr mander). There exists a Haus­

dorff locally convex topological vector space (B(X),  r(r)) over В  such that
(a) Ж(Х)  c  B(X)  and B( X)  = jf(X )—Ж(Х)\
(b) B(X)  induces on j f ( X)  its algebraic structure of an uabstract‘>'>' 

convex cone)
(c) r(x) is the finest group topology on B(X)  whose invariant uniformity 

induces on j f ( X)  its uniformity U (and topology r).
I f  (X, r) is metrizable [and complete], then so is (B(X), r(r)j [and 

j f ( X)  is a complete, hence closed, convex cone in B(X)].  I f  (X, t) is normed 
by || II, then so is {B(X), r(x)j, and a norm defining r(r) can be chosen so 
that the distance in B( X)  between any two members A , В of j f ( X)  is equal 
to their Hausdorff distance \\A, jB||.(])

This theorem seems to be of some importance for the theory of cor­
respondences (see [12], [25], [43]), because in some situations it enables 
one to replace correspondences by suitable vector-valued functions which 
are usually more handy.

Concerning the definitions and propositions stated below, see [4],. 
[25], [36].

2.2. D efinitions. Let (A n) be a sequence of members of sI(X).
oo

Then ] f  A n denotes the set of all a? such that for some aneAn (ne X) the
71=1

OO
series £  an converges in (X, r) to x.

71=1
OO „

We say tha t the series £  A n x-converges [resp. t-converges], if every
oo я = 1 n

series £  an (aneJl n) т-converges in X  [resp. if the sequence 8n =  £
n —1 i — 1

(J) Added in proof. R. Urbanski has recently extended this result to nor>- 
locally convex spaces X  (to appear in Bull. Acad. Polon. Sci.).
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т-converges in j/(X )]. We write then (r) £  A n [resp. (r) A n]', this
n —1 n = l

symbol will also denote the r-sum [resp. r-sum] of the series, by which
CO

we understand the set £  A n defined above [resp. the unique closed set
n = 1

$o€ (r)lim £ J .
n->oo oo

We say that the series £  A n satisfies the Cauchy condition (with
n ~  1

respect to r) if
П

(Ce) Y U , Ak, Y n , m : n ^  w >  к => ^  A {cz U.
i= m

We will write A n-> 0 if A n—.> 0 in r, that is У U, Ak, Yn  : n ^ k  A n c  U*
OO

It is obvious that the т-convergence of a series A n is equivalent
00 _  n =  1

to the convergence of the series * £  A n in the Hausdorff topological
* oo n = 1 n  _

semigroup (^(X), +  ;r) , and (Ï) 2 Л  = (ï)H m , 2 ' A, in ЩХ).

2.3. P roposition. (a) I f  A n Ф 0  and the series У A n r-converges,.
П = 1 П—1

then
oo oo

<*) z  A '  =  ( . £ Л“Г-
П—1 n = 1

00
(b) I f  a series £  A n r-converges, then it satisfies (Cc), hence all the

oo n = 1
series an (aneAn) converge uniformly, i.e.

n = 1
OO

Y U , Ak, Yn: n ^ k  Z A t <= U,
i~ n

oo oo
so that the series A n r-converges (to ( A^~).

n = 1 П—1
oo •

(b') I f  A ne ê8(X), Yn, and the series A n r-converges, then it satisfies-
n = l  00

(Cc), its r-sum is in 08(X)c\cê(X ), the series * £  coXn v-converges in X ( X )
00 00 n =  1

and (t) *]? сo A n — со (t) fjj A n.
П = 1 W = 1

OO

(c) Suppose X  is sequentially complete. Then i f  a series A n satisfies
n = l

(Cc), it is r-convergent.
P roo f. Parts (a), (b), (c) are known (and easy). (br) I t  is obvious- 

that the r-sum S 0 of our series is closed and bounded. Now, given UT
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n n
there is к such that 8n = A {e A ($0, V) for w >  k. Then co$n =  ( Д1 coA*)~

i = l  oo г = 1

€ <f(cô$0, U) for n ^ k .  I t  follows that the series соA n r-converges
n —1

in Ж(Х)  to co$0, hence also in (B{X), r(r)). Hence, given TJ, there is к
П П

«uch that А-t c  * £  соA i <=. TJ for n >  m >  k, i.e. (Cc) is satisfied.
i = m  i = m

Actually, (Cc) is an easy consequence of (leg). Indeed, if 8n€ «?($0, U) 
* *

for w >  k, then Sn a  80+ U  and 80 a JSm +  TJ for n > m >  k. Hence
n *  n

8m-f- A { c  8m + 2U, so that A f  c  2TJ for n >  m >  k, by (leg).
i = m + 1 i = m + l

2.4. Corollary. Suppose X  is sequentially complete. Then a series 
of members of êS(X) is т-convergent iff  it is т-convergent.

The concepts of the unconditional r- or т-convergence and the sub-
oo

series r- or т-convergence of a series A n, and of the т-summability of
тг=1

a family {A{)ieI, are quite analogous to those in the “point” case (see e.g.
[3], [5], [10], [25]). We say that a family {Af)ieI satisfies the Cauchy 
condition (with respect to r) for summability if

(Ccs) Y U , Ави, Уе: e n e u = 0  => J?  A { c  TJ;
Ue

ejj, e denote finite subsets of I. If (Ccs) holds and I  — N,  we also say
OO

th a t the series £  A n is unconditionally Cauchy.
n = 1

The statements in the proposition below are either straightforward 
or can be proved by applying the Minkowski-Badstrom-Hormander 
theorem (or (leg)).

OO

2.5. Proposition, (a) I f  a series JT A n is unconditionally [resp.
n ~  1

subseries] т-convergent, then it is unconditionally [resp. subseries] т-con­
vergent and unconditionally Cauchy.

OO
(b) I f  A ne &(X), Уn, and the series fC A n is unconditionally т-соп-

n =  1

vergent, then it is unconditionally Cauchy and

OO 0 0

( ”0  ^p (n )  (l ')
n —1 n = 1

oo
for every permutation p of N. Moreover, *f£ со A n is unconditionally т-соп-

n — J

vergent in Ж IX).
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(c) Suppose X  is sequentially complete. Then for a series A n, where
n= 1

A ne 91 (X), Yn, all the hinds of convergence introduced after 2.4., and (Ccs), 
are equivalent.

In  view of the Minkowski-Badstrôm-Hôrmander theorem it is also 
clear that т-summability in 91 {X) has “usual” properties ([6], Chapter 3).

R em ark . I t  is well known that 9!{X) is the same for all locally 
convex topologies on X  which are compatible with the (given via r) duality 
{X, X ') ([31], 20.11(7)), and also that the closure of a convex subset
of X  is the same for all of them ([31], 20.8(6)). Therefore the family Ж {X)

*
and the addition +  in it do not depend on a choice of such a topology,

*
and neither does \B{X),  +). I t  would be interesting to know somewhat 
more about the relationship between the corresponding topologies on 
B(X)  (it is trivial that rx c  r2 => r(rx) c  r(r2) and to represent the resulting 
duals of B(X).  Hormander’s functional representation of B{X)  seems 
to be more suitable for those purposes.

Another question is whether Ж(Х)  is the largest subsemigroup of 
*

ifë{X), +) in which the law of cancellation holds. And what about 91 {X) 
in (leg)1?

Further, are there any conditions other than metrizability which 
jointly with completeness or sequential completeness of X  imply comple­
teness or sequential completeness of &(Х) or Ж{Х)Ч This is pertinent 
to the extension problem for additive correspondences (4.5).

3. Additivity of correspondences. A correspondence M  may be con­
sidered as a mapping of 9t into either the semigroup \sé{X), +) or, if

*

sets with the same closure are identified, the semigroup {4>(X), +). Accord­
ingly, we have two types of additivity, and then two types of count­
able additivity of a correspondence. More precisely:

3.1 D efinition . We say tha t M  is
(a) additive [resp. subadditive] if

=  [resp. с ]  M ( E2) (=  M( EX) \  M ( E 2))
whenever E x, E 2 are disjoint;

(b) Countably additive, or a-additive [resp. a-subadditive], if
_  CO 00 00 _jf (U -Bn) = [resp. <=] (ï) У ЩЖп) ( = (î) 2 1 м(Еп))

п — 1 п =1  п ~  1
for every disjoint sequence (En) c  91 whose union is in M',

(c) exhaustive [resp. semiexhaustive] if M (En)->0 for every infinite 
disjoint sequence (En) a  32 [whose union is in Щ-,

3 — Roczniki PTM — Prace Matematyczne XIX
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(d) or Her-continuous, if M (En)-+ 0 for every sequence {En) c= Ш such 
that En .J, 0  ;

(e) strictly additive [subadditive, e-additive., a-subadditive], if the 
equalities or inclusions in (a), (b) hold when ~ and * are omitted and (r) 
is replaced by (r);

(f) semicountably additive, or so-additive [resp. semicountably sub­
additive, or sa-subadditive'], if

oo 00
M (U  En) = [resp. c ]  the set ^  M(En)

n —l n —1

for every disjoint sequence (En) <= M whose union is in S/t.
Though it is quite obvious, note that M  has any of the properties 

introduced in (a) and (b) iff M  has the corresponding property.
3.2. Proposition. Suppose M is additive. Then Ж is exhaustive

[semiexhaustive] i f f  for every disjoint sequence (En) c  [whose union is
OO

in Щ the series J? M(En) is unconditionally Cauchy.
n = \

P ro o f. Only if. Otherwise, for some U there is a sequence (ek) of 
pairwise disjoint finite subsets of Ж such that M(Ei) Ф U. Then

Uek
M( Fk) Ф U, where F k — [J  E { (he Ж). This contradicts the exhaustivity

ieer.
of M.

In the case when M  is semiexhaustive the sequence (Gn) =  (E{ f 
F x, E t , F 2, ...), where yields a contradiction

2 к
because its union belongs to and M(Gn)-h> 0.

Part i f  is trivial.
3.3. Proposition. M is additive and order-continuous if f  M  is a-ad- 

ditive and semiexhaustive.
P roo f. If. We will show more, namely that M* is order-continuous. 

If this is false, we can find a sequence (En) c: £% such that En\ 0  and 
for some U, (En) ф U (ne Ж). Hence for each n there is Fn c  En such 
that M( Fn) Ф U. Since

OO
M( Fn) =  <ï) £ M { F nn ( E k\ E fc + l)) ?

k =n

for m large enough we have
m

M (Fn\ E m+1) =  * £  M (ffnr>(Ek\ E k+1)) Ф U.
k —n

Now one defines easily a sequence 1 =  hx <  k2 <  ... such that 

M(Fkn\ E kn+1) * U ,  пеЖ.
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Denote A n =  F k \ E k , Bn = E k \ F k (ne N). Then the sequencet i. vft Ь7Ь
(Cn) = (Ei, A x, B 2, A 2, ...) is disjoint, its union is E xe0t, and M(Cn)+->0. 
A contradiction with the semiexhaustivity of M.

Only if. First wxe show that M  is semiexhaustive. Let (En) be a dis-
oo

joint sequence in 01 whose union belongs to 0t, and let Fn denote U  E k
k = n

(ne N). Then

M(Fn) = М(Еп)+ M(Fn+1),

and M(Fn)-+0, M(Fn+1)^> 0 by order-continuity of M. I t  follows that
Щ Е п)-+ 0.

On the other hand, by additivity,
_  n * 

fc=l
hence

__  OO ° °

щ и к )  = ( ï )  Е щ е  j .
n —1 n = l

Thus M  is (7-additive.
The trivial example: M(E) = X  if E Ф 0 , =  0 if E = 0 , shows 

that (7-additivity does not imply semiexhaustivity, in general.
3.4. Peoposition. Suppose M is strictly additive [and its values are, 

respectively, sequentially closed, or sequentially complete (in particular 
compact)]. Then M is order-continuous iff  M is sa-subadditive and semi­
exhaustive [resp. sa-additive and semiexhaustive', strictly a-additive].

P roof. If. Let En, Fn be as in the only i f  part of the proof of 3.3.
П

Then, for any U, there is by Proposition 3.2 some h such that £  M(E{) <= TJ
i—m

if n ^ m ^ T t .  Hence, by s<r-subadditivity of M, M(Fm) is contained in
OO

the set £  (Ef), which in turn is contained in U-, m >  fc. Since M( F1)
m— 1 i—m m—1

=  Д1 M (Ei)-\- M(Fm), it follows that Д 1 M(E{)e S (M(FX), V) for m >  fc.
i= 1 oo i=1

Thus M ( F X) = (r) JP M(En), and this means that M  is c-additive. Tirère­
nt: 1

fore Proposition 3.3 can be applied to deduce that M  is order-continuous. 
Only if. Again, let En, Fn be as above. Then

M(Fn) =  M(En)+ M(Fn+l), n e N ,

and therefore, starting with an arbitrary element yxe M( FX) we can 
successively define elements xx, y2, then x2, y 3, ... so that

Xne M ( E n), yne M ( F n)
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and
Уп=Я}п +  Уп+\\ n * N -

Hence
П

У1 = £ ® к  + Уп+1,
1

OO

and since yn+x-> 0 by order-continuity of M, yx = xk. Thus M{FX)
oo k= 1

c= JT M(En). Semiexhaustivity of M  follows from 3.3.
n =  1

Now let une M{En) {ne N). Then, picking out any vne M(Fn) {ne X),  
we have

П
=  Vn + 1 e M{FX)

OO

and vn+l-^ 0 by order-continuity. Therefore, if the series uk converges
k= 1

[and it is certainly so when M{FX) is sequentially complete] and M{FX) 
is sequentially closed, the sum of the series belongs to M{FX). Hence 
the alternative assertions of the proposition follow.

The following is an immediate consequence of the Orlicz-Pettis 
theorem (see e.g. [21], [28]).

3.5. Proposition. Let 0t be a а-ring. I f  M  is strictly o-additive when X  
is endowed with the topology a{X, X'), then M  is strictly o-additive under 
the original topology of X .

The next two results show how strictly additive or (7-additive cor­
respondences may be obtained from subadditive ones.

3.6. Proposition. I f  M is strictly subadditive, then the formula

П
(a) Ma{E) =  [J  M(E{)\{Ei)f=1 is a finite decomposition of E j

г= 1

defines the least {with respect to c )  strictly additive correspondence Ma: 
M->sé{X) such that M{E)  <= Ma{E), Eeâê. I f  M is so-subadditive, then 
so is Ma.

3.7. Proposition. Suppose X  is sequentially complete and suppose M  
is strictly additive, so-subadditive and semiecchaustive. Then the correspond­
ence M°: &->s/{X) defined by the formula

OO

(cr) M a{E) — U  M{En)\ {En) is a decomposition of E j
n = l

is strictly o-additive.
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P roof. In view of Proposition 3.2, if {An) is a disjoint sequence
oo

in & whose union is in St, then the series JT M( An) converges uncondi-
71=1

tionally.
Let F a S tbe the union of a dis joint sequence (Fk) <= ^,andleta?€ Ж°(Е). 

By definition, there exists a decomposition {Fn) of E  and elements xne Ж (En)
OO OO

such that x = ]? œn- Since Fn = (Fnn F k), using scr-subadditivity of M
n =  1 k= 1 oo

we find xnke Ж{Епг\Ек) such that xn =  xnk. The family {xnk\n, kc JSf],
k = 1

as well as each family {xnk\ne N} (Tee N), is summable in X.  Hence for
OO

each к the series xnk converges unconditionally, and its sum, yk, belongs
n = 1

to M a{Fk). Now
O O O O  0 0  0 0  00

® =  £  Z * n k  =  2 !  =  JE#*:,
n = l  k =  1 k = l  n =  l k = l

oo
so that xe M a(Fk). Thus we have proved that

k = l
oo 

fc = 1

i.e. sff-subadditivity of M a.
Conversely, suppose zke M a(Fk). Then for each к there is a decom-

OO

position (Fkj)jL1 of F k, and zkje Ж (Fkj) such that zk = zkj. The sets Fkj
3 =  1

form a decomposition of F, hence the family {zkj | k, je X}  is summable 
in X  and

OO

2 «к =  2 z v € M a (E )-
k =  1 k,jeN

oo
Thus the series ffj M a(Fk) r-converges (unconditionally) and its sum is

*=i
contained in M a(E). This, together with sor-subadditivity, is nothing 
else but strict c-additivity of 3Ia.

I t is easily seen tha t ЗГ  is the least (with respect to c )  cr-additive 
correspondence for which M(E)  с  31°(E), FeSt.

3.8. Proposition, (a) I f  31 has any of the following properties: 
additivity ; subadditivity ; exhaustivity ; semiexhaustivity ; additivity and 
order-continuity; strict additivity, strict subadditivity, sa-subadditivity, 
then so does each of the correspondences M and coJI.

(b) I f  Ж is o-additive, then so is со Ж.
(c) I f  St is a о-ring and 31 is strictly o-additive, then so is Ж \
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P roof. The only non-obvious implication in (a), (31 is additive 
and order-continuous) =>(Ж" is order-continuous), is a consequence of 
Proposition 3.3 and the i f  part of its proof. Implications (b) and (c) 
are easy to prove.

3.9. Proposition. Suppose f  is a continuous linear mapping from X  
into another Hausdorff locally convex space Y, and let the correspondence 
f3 1 : 01 sé ( Y) be defined by the formula

(f3I) (E) = f  [31(E)].
Then i f  31 has any of the properties introduced by Definition 3.1, except 
so-additivity, then so does fM , respectively.

In order to include in our discussion correspondences of the type 
considered in Example 3.12 below, we formulate the following

3 10. Definition . 31 is said to be quasi-additive [resp. strictly quasi­
additive], if it is subadditive [strictly subadditive] and
(q) 31(E) c  (3I ( EkjF ) — M(F))~ [resp. 31(E) c  31 (E F) — M (F)]
whenever E, F  are disjoint.

3.11. Proposition. I f  M is quasi-additive, then so is 31v ; i f  in ad­
dition Ж is order-continuous, then so is M  ", and both 31 and 31 " are semi- 
exhaustive.

P roof. The first assertion is straightforward. Now7 assume Ж is 
order-continuous and let En j 0 . Then 31(En\ E n+1) c  (31(En) — 31(En+1))~ 
by (q), hence M (En\ E n+1) ^ 0  so that 31 is semiexhaustive. Suppose 31 
is not order-continuous. Then we can assume that, for some U, and some 
F n a E n, 3!(Еп)Ф2Т1 (neJSf). Since Fnn E k \ 0  (k^oo), for Jc large 
enough wre have 31(Fnn E k) c= U, hence M(Fn\ E k) Ф Ü by subadditivity 
of 31. Our proof can be now completed similarly as in the i f  proof of 3.3.

3.12. Example. Let К  be a family of (point-valued) additive set 
functions y: & -+X.  Then the correspondence 31 = MK\ M ~^sé(X) given 
by the formula

31(E) =  { y( E) \ ye  К]

is strictly quasi-additive.
If each ye К  is <r-additive [resp., if К  is uniformly exhaustive ([16], 

§4)], then 31 is su-sub additive [resp. exhaustive]. If 01 is a сг-ring and 
each ye К  is u-additive [resp. exhaustive], then Ж has the following 
property :
(*) If (En) is a disjoint sequence in M and, for some r, xe 31 (Er), then 

there exists a cr-additive set function v: 0>(N)-^X  such that
v(e)e Ж (и  E n) for every ee0>(N), and v({r}) =  x

[resp.
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(**) =  (*) with “c-additive” replaced by “additive exhaustive”].

Formula 3.6(a) for 31 =  MK takes the form
П

Ma(E) = { ^ W ^ ) !  ((p{, Ei))^x is a finite sequence in К  xHt,
%=i

(Efff^i is a decomposition of Fj,

which reminds one of the known formulas for the supremum of a family 
of real-valued additive set functions (cf. [21], III. 7).

Countable additivity of each pie К  and uniform exhaustivity of К  
may not ensure (semi)exhaustivity of 3Ia. However, if X  = (X, || ||) is 
a Banach space and there exists an exhaustive additive Я: M->[0, oo] 
such that

\}pt(E)\\ < &(E), Е е ® ,  pieK,

then 31a is exhaustive. In this case 31° =  ( Ma)a (Proposition 3.7) can be 
defined, and 31° is the least strictly сг-additive correspondence which 
“contains"” all pieK.

If X  is finite dimensional, the given condition is also necessary for 31a 
to be exhaustive.

If p is a continuous seminorm on X,  we define a function pM:  
®->[0, oo] by the formula

(pM)(E) = sup{p(a?)| xe I f " (E)}.

Evidently, p M  — p M \  p3I(0)  =  0 and i>31 is non-decreasing: 
E  c  F  => p 31(E) <  p 31(F).

3.13. Proposition. I f  31 is subadditive, then p3 I is a submeasure. 
If, moreover, Ж is o-subadditive or so-subadditive [resp. exhaustive-, semi- 
exhaustive; quasi-additive and order-continuous], then p3 I is o-subadditive 
[resp. exhaustive; semiexhaustive; order-continuous].

4. Continuity and extensions. Let I  be a Frechet-Mkodym (FN-) 
topology on M. In particular, Г  can be the FN-topology Г(г)) determined 
by a submeasure rj on ®; recall that Г(г\) is semimetrizable, for instance 
by the semimetric (E, F)->mf{l, r)(EAF)} (A denotes the symmetric 
difference). We write (®, rf) to indicate that M is endowed with the top­
ology F(r}).

4.1. D efinition . 31 is said to be Г-continuous, 31 4  Г, if 31 is con­
tinuous as a mapping from (®, Г) into (sH(X), f). If Г = Г(г)), we write 
31 4  rj instead of 31-4 E(rj).

Suppose 31 is subadditive. Then the families

'T(U) =  [Ее® 1 3 f ( E )  с  Щ, Ve i l
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form a base of neighborhoods of 0  for an FN-topology, Г(М),  on 01 ([16], 
1.5). This topology obviously depends only upon M  and the topology 
of X.  If {Pi\ie 1} is a family of seminorms on X  determining the topology 
of X,  then the corresponding family of submeasures p{M , ie 1, deter­
mines Г{М).  I t  is evident that M  is /'(Ж )-continuous at 0 , this, however, 
does not imply continuity on £%. (Counterexample.: Let 01 be the family 
of all subsets of Nu{oo} and M(E) — {JT 2~n\ if oo  ̂E, = В  if E = {oo},

шЕ

— [0 ,1] otherwise.)
4.2. Proposition. Suppose M  is quasi-additive and Г is an FN-topology 

on 01. I f  M  is Г -continuous at 0 , then M: (0ê, Г) -> (j/(X ), r) is uni­
formly continuous. Moreover, Г(М) is the weakest F  N -topology on Si under 
which M is continuous. Thus M 4  Г  iff Г(М)  <= Г.

Proof. Given U, there exists a normal ([16], §1) neighborhood iF 
of 0  in (&, Г) such that Ее IF => M{E) <z Ü. (Hence Г с ^ ( Р ) .  I t  
follows that Г(М) <z Г .)

Let E, Feâ# and EAFelF.  Then M(E)  <= (M(E\F)- \ -M(EnF))~  
cz ( M ( E \ F ) + ( M ( F ) -  M(F\E)) - )~  =  (M(F) +  M ( E \ F ) ~  M(F\E) )~  
cz M(F) + 3U, and similarly M(F) cz M(E)  +3Z7. Hence M  is uniformly 
P-continuous.

We will write M x 4  M 2 when М г 4  Г ( М 2), and M t ~  M 2 when 
M x4  M 2 and M 2 4  M t (cf. [16], [19]).

Some properties of M  yield corresponding properties of Г(М).  For 
example

4.3. P roposition. I f  M is quasi-additive and order-continuous [ex­
haustivei], then the FN-topology Г(М) is order-continuous [exhaustive].

This is in part a consequence of Proposition 3.11, in part obvious. 
The above two propositions enable us to apply some results concerning 
the relation Г г cz Г 2 among FN-topologies to obtain analogous results 
about continuity of correspondences. For example from [19], 1.1, we 
get immediately the following

4.4. Proposition. Suppose 01 is a а-ring, M  is quasi-additive and 
order-continuous, and rj is an arbitrary submeasure on 0t. Then M <4 У 
i f f  M(E) — 0 whenever rj(E) — 0.

In the particular case when M  =  MK (Example 3.12), M  4  Г  means 
simply that the functions ye К  are Г-equicontinuous.

Now we proceed to the extension problem for correspondences.
4.5. Theorem. Let X  be metrizable and complete, and let 0lo be the 

в-ring generated by 0t.
I f  M : 0 t - ^ { X )  is quasi-additive, order-continuous and exhaustive, 

then there exists a unique quasi-additive order-continuous (hence exhaustive)
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correspondence M 0: 0?O-><£(X) such that

M 0(E) = M(E),  EeM.

In  particular, i f  M is a-additive (or strictly a-additive) and exhaustive,, 
then the extension M 0 is a-additive and exhaustive.

P roof. Since the FN-topology Г = Г(Ш) is order-continuous and 
exhaustive (4.3), there exists a unique order-continuous FN-topology F0, 
on which induces Г  on 0t ('[16], 8.3 or 7.2). Since 0t is dense in (Ûê0, Г0) 
([16], 8.2), ^ (X )  is complete under the Hausdorff distance and M  is 
uniformly jT-continuous (4.2), there exists a unique Г0-continuous ex­
tension Ж0: 0êo->cë'(X) of M.

M0 is quasi-additive. In fact, let E, Fe 0êQ, E n F  = 0. Since Г  and Г0 
are semimetrizable and ^  is dense in (0to, Г0), there are sequences (En), 
(Fn) c= 01 such that

En->E, Fn->F in Г0.
Then also

En\jF n->EKjF in Г0.

We can assume that EnnF% = 0  (ne N). (Otherwise replace En,. 
Fn by Fn' En, respectively.) From

Щ Е аuF„) <= (M(En) +  M(Fn))~, M(EJ <= ( ï ( £ , u ï , ) -

by passing to the limits as n-^oo and employing continuity of the mappings 
(A, В) ->(A +B)~,  (A, B) -+(A —B)~, we get

M,(EuF)  = (M„(E) +  M0(F))-, M,(E) c (M0( E u F ) -  M,(F))~.

So indeed M 0 is quasi-additive.
Since Г0 is order-continuous (and exhaustive), so is, obviously, M 0. 

I t  is also evident that Г0 =  Г(М0).
Now suppose M x: is another quasi-additive order-con­

tinuous extension of M.  Then Гх = Г( МХ) is an order-continuous FN- 
topology on 0êo, m is dense in (&0, Fx) and M <4 Гх. It follows readily 
that / \  induces Г  on 01, hence by uniqueness of Г0 we have Гх = Г0. 
Thus M x <£. Г0, hence M x =  M 0.

To prove the remaining part of the theorem it suffices to observe 
that in view of Proposition 3.3 only additivity of M 0 must be verified. 
But this can be done quite similarly as in the case of quasi-additivity 
above.

B em ark . It is not clear whether M Q need be strictly additive (and 
hence strictly cr-additive, 3.4) if M  is. This is certainly the case when M  
is compact-valued, because then additivity coincides with strict additivity,, 
but in general the answer seems to be “no”.
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Let us note also that for additive 31 : & Ж (X)  the extension M0: 
&0 -> X ( X )  can be easily obtained by applying the Minkowski-Badstrom- 
Hôrmander theorem.

4.6. Corollary. I f  P : ->%?(X) is another quasi-additive [additive]
correspondence, P(E)  <= M(E) for every Ee&,  and P 0 denotes the unique 
quasi-additive [additive] order-continuous extension of P on then P 0(E) 
cz M 0(E) for every Е е М й.

Therefore, if M — MK (Example 3.12), where each /ле К  is cr-additive 
and К  is uniformly exhaustive, and K 0 denotes the family of cr-additive 
extensions of functions from К  on ., then i lf^  c: 310. Since 31 K \ M =  31K, 
it follows that l / 0 =  31 Kq.

5. Boundedness.
5.1. Definition . M  is said to be bounded-valued if 31: M & ( X ) ,  

and bounded if its range U  {M(E)\ Ее Щ is bounded.
5.2. Theorem. Suppose 31 is quasi-additive, bounded-valued and 

satisfies the condition:

(bs) For every disjoint sequence (En) c  3# and any choice of elements 
æne M(En) (ne N), the sequence (xn) is bounded (equivalently, the

oo
set [J  M(En) is bounded).

n =  1

Then M is bounded.
P roof. We can assume that 3% is an algebra on S. [Otherwise 

=  3&\j { S \ E  I Ее Щ is an algebra zd 3% and by setting M { S \ E )  = — 31(E) 
for Ее 3&, we extend 31 to a quasi-additive bounded-valued correspondence 
on 3ê0, which also satisfies (bs).]

Suppose 31 is not bounded. Then there exists U such that

(1) J f v (S) Ф JcU for every he N .

Since M(S)  is bounded, we can find kxe N  such that

M(S) cz kxU.

In view of (1), there exists E x such that

31 (Ef) ф 2k1 U.

Since by quasi-additivity of 31, 3I (E1) cz (Ж (S)— 3 I ( S \ E 1))~, we deduce 
that

3 I ( S \ E X) Ф TcxU.
Evidently, either

M ' ( E x) ф k ü ,  Y k e N
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or
ЛГ ( 8 \ Е г) Ф kU, Yke N  -,

let A 1 denote any of the sets E x, S \ E 1 for which this is true, and let 
B x =  8 \ А Л.

Thus

(Aj) Ф kU, VkeN-,  M i A ^ ç ^ U - ,  M(B1) ^ k 1U.

Repeating the above reasoning with A x in place of S, we find a de­
composition

Aj  =  A 2vj B 2, А 2слВ2 — 0
with

Ж " ( A 2) ф kU , y ke  A ; M ( A 2) ф k2U ; M( B2) ф k2 U,

where k2e N, k2> кг.
Continuing in this manner, we get an infinite disjoint sequence 

(Bn) c= and a sequence (kn) c  N  such that

M( Bn) Ф kn U
which contradicts (bs).

5.3. Corollary. I f  M is quasi-additive (in particular additive or 
strictly additive), bounded-valued and exhaustive, then M is bounded.

As we shall see in what follows, a large part of the theory of additive 
bounded-valued correspondences can be reduced to the theory of usual 
additive set functions. This is based on a construction described below, 
in which the Minkowski-Radstrôm-Hormander theorem (2.1) is applied 
in an essential way (cf. [12], [25], [43]).

Suppose M  is additive and bounded-valued. Then the correspondence 
M* =  соЖ is also additive (3.8) and its values are in Jf(X),  the family 
of non-empty closed bounded convex subsets of X.  Therefore M* can 
be considered as an additive set function taking values in the space B(X)  
from the Minkowski-Radstrôm-Hormander theorem. If Ж is <7-additive, 
or order-continuous, or semiexhaustive, or exhaustive, then so is, re­
spectively, Ж* (3.8). Since for a point-valued additive set function <r-ad- 
ditivity is equivalent to order-continuity and implies semiexhaustivity, 
it is immediately seen that the following improvement of Proposition 3.3 
holds. (Propositions 2.3 and 2.5 can be also applied here.)

5.4. Theorem. Suppose M is bounded-valued. Then: (Ж is a-additive) 
о  (Ж is additive and a-subadditive) (Ж is additive and order-continuous) 
=> Ж is semiexhaustive.

As an immediate consequence of Corollary 5.3 and Theorem 5.4 
we get
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5.5. Corollary. I f  3$ is a в-ring and M is a-additive (in particidar 
strictly a-additive) and bounded-valued, then M is bounded.

Actually, this result is readily derived from the well-known fact 
that a vector measure on a cr-ring is bounded (see e.g. [16], 4.12). (Bound­
edness of M* in R(X)  is equivalent to boundedness of M.)

By a direct application of Theorem 5.2 we establish our next result.
5.6. Corollary. I f  is a а-ring and M is sa-additive and bounded- 

valued, then Ш is bounded.
P roof. Let (En) be a disjoint sequence in 0t, E  its union, and let

OQ

xne M(En) (ne N). Take any ze M{fJ  En). Then, by sa-additivity of M,
7l~l

OO 0 0  CO

« =  Ц у п {yne M(En)) and zm =  £  yne M{ U  En) for every m. Now,
n —1 n —m n —m

given U, there exist r, se A such that M(E)  c  rJJ and zne U for n ^  s.
П

Then £  wke M(E) — zn+1 a  (r-f 1) U, hence a?ne2(r + 1) U for all n >  s.
k=1

I t  follows that the sequence (æn) is bounded and thus condition (bs) in 
5.2 is satisfied.

Countable additivity of a correspondence M  is usually understood 
as s<r-additivity in our sense ([2], [13], [39]), but to obtain some of the 
deepest results the requirement tha t M  be bounded-valued is frequently 
imposed (see e.g. [2], [39], [43]). In  this case, as Corollary 5.6 shows, 
M  is bounded. I t  follows that if a sequence (En) c  01 is disjoint and 
œne M(En) (ne N), then the set

xn I e is a finite subset of a |
nee

is bounded. Now, there are spaces, called О-spaces, where this property
OO

of a sequence (xn) implies convergence (unconditional) of the series xn
n =  l

(see [20], [21], [30], and references therein), for example finite dimensional 
spaces.

CO

Hence, if X  is an О-space, our series xn (xne M(En)) will converge
oo n — 1

and its sum will belong to M (^f En), by definition of sa-additivity. Thus
n =  1

the following theorem holds.
5.7. Theorem. I f  X  is an 0-space, is a а-ring and M is sa-additive 

and bounded-valued, then M  is strictly a-additive (and bounded).
So far our results in this Section do not cover the case when M = MK 

(Example 3.12), that is, none of them implies the Nikodym theorem on 
uniform boundedness ([10], [18], [22], [41]).
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This gap is filled m by
5.8. Proposition. Suppose & is a a-ring, M is quasi-additive, bounded­

valued and has property (*) or (**) from Example 3.12. Then M is bounded.
P roof. Let xnc M(En) (ncN),  where (En) is a disjoint sequence 

in For each n there is, by 3.12 (**) (<= 3.12 (*)), an additive exhaustive 
function jun: 0>{N)->X  such that

(+ )  yn(e)€ M ( U  En), ec0>{X)
nee

and yn({n}) = xn.
Condition (+ ) implies boundedness of the set {yn{e)\ ncN]  for 

every ec^{N) .
By the №kodym type theorem ([18], Theorem 2) the set {pn{e)\ne N,  

ec^{N)}  is bounded, hence so is its subset {xn\ ncN}.
Thus condition (bs) is 5 2 is satisfied, so that Ж is bounded.
5.9. Definitions. Suppose Ж is subadditive. Members of JZ'(M) 

=  {Eet%\ M v (E) — 0} are called M-null.
A set Ac M is called an atom of Ж if Ж"(А) Ф 0 and for every В  c  A  

either Ж "(B) =  0 or M ( A \ B )  = 0 . This means that M*(А) Ф0  and 
there exists X 0cjtf(X)  such that for every В a A

А Г ( В ) =  0 or 1 Ff B)  =x~0

or, provided M  is quasi-additive,

M(B) = 0 or M { B ) = X 0.

(If M  is strictly subadditive or strictly quasi-additive, respectively, 
closure can be omitted.)

M  is said to be non-atomic if it has no atoms. We say that Ш satisfies 
countable chain condition, (ccc) if every family of mutually disjoint sets 
Ecôiï with M(E) Ф 0 is at most countable (cf. [19]).

For example if X  is met-rizable and M  : is additive and
exhaustive, or if there is a finite measure v: ->[0, oo) such that v(E) — 0
=> M(E) = 0, then M  satisfies (ccc).

An easy application of the Kuratowski-Zorn Principle shows that 
if 01 is a cr-ring and M  satisfies (ccc), then there exists a set S0e& such 
that M(E) = 0 if E n S 0 = 0 .  I t  follows that then we can assume that 
is a cr-algebra on S 0.

We say that Ж is bounded [unbounded] on a set Вс M if Ж (В) is 
bounded [unbounded].

5.10. Theorem. Suppose & is a а-ring and M is additive and order- 
continuous ( =  a-additive and exhaustive, 3.3), in particular strictly a-ad- 
ditive, and satisfies (ccc). Then either M is bounded or there exists a finite 
number of pairwise disjoint sets В, А г, . . . , A k in M such that



46 L. D r e w n o w s k i

(a) Ж is bounded on В ,
(b) A 1, . . . ,  A k are atoms of M  on which M is unbounded.
(c) Ж vanishes outside the set S0 =  . . . u l j .
P roof. By the Kuratowski-Zorn Principle there exists a maximal 

family d  of mutually disjoint sets E  such that Ж" (E) is bounded and Ф 0.
By(cce), discountable, say d  =  {B1, B 2, Let B  =  U Bn. Since Ж

___  00

is or-additive (3.8, 3.3), M* (B) = (r) ^  M~ (Bn) is bounded.
n — 1

By the maximality of d , if E n  В  =  0 , then either M~ (E) =  0 or 
M" (E) is unbounded.

Similarly as above, there exists a maximal family, sé, of mutually 
disjoint and disjoint from В , atoms of Ж, and = '{A1, A 2, ...}. By 
exhaustivity of Ж, the family st  is finite; as we noted above, each Ж" (J.^) 
is unbounded.

Finally, condition (c) is satisfied, for otherwise non-atomicity of Ж 
outside of S 0 would imply the existence of an infinite disjoint sequence 
(En) such that Ж v (En) is unbounded (ne N), thus contradicting exhausti­
vity of Ж.

5.11. Corollary. I f  d  and M  are as in 5.10 and M  is non-atomic, 
then Ж is bounded.

Now we give an analogue of the Saks decomposition ([22], IV. 9.7).
5.12. Theorem. Under the same assumptions as in 5.10, for each U 

there exists a finite family d" of mutually disjoint sets in d  such that, for 
each Fed", either M" (F) c  U or F  is an atom of M and M" (F) Ф U, 
and Ж vanishes outside of U  d \

P roof. Let S be a maximal family of mutually disjoint sets E  in d  
such that either M" (E) a U or E  is an atom of Ж and Ж" (E) ф U\ 
S  is countable by (ccc). Since Ж" is additive and exhaustive (3.8, 3.3), 
by 3.2 there exists a finite subfamily d"0 of S  such that Ж" ({J S') a  ( \ )U  
for every finite subfamily S' of S \ F r0. Then, by cr-additivity of Ж", 
Ж" (F0) cz U, where F 0 = и ( S \ F r0). I t  follows easily that d" =  d '0u{F 0} 
is as required.

We close this Section with a generalization of a result of Diestel [14] 
(cf. also [15], [21], [29], [30], [33]).

5.12. Theorem. Suppose X  is separable, d  is a а-ring and M is ad­
ditive, compact-valued and bounded. Then M  is exhaustive.

P roof. Once more it is possible to apply the Minkowski-Radstrôm- 
Hôrmander theorem. Let F  be a countable dense subset of X . Let G 
be a compact subset of X. Then for any closed U there exists a finite 
subset F  of D such that

С c  F +  U;
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we can assume that none of the points in F  can be removed from F  without 
affecting this inclusion. This implies

I t  follows that
F  c  0 +  Ü.

с о F € & ( c o C ,  U ) .

Hence the linear subspace 9CQ of the space B{X)  from the Minkowski- 
Badstrôm-Hôrmander theorem, spanned by all these coO’s, is separable.

The function Ж* =  соЖ: is additive and bounded, and so
it is exhaustive (apply, e.g., [29], Theorem 8). Hence Ж is exhaustive, 
too.

6. Convexity. The notions of an atom of Ж and of non-atomicity 
of Ж introduced by Definitions 5.9 are of purely algebraic character. 
For the purposes of the present section we assume the following

6.1. Definition . Given a topology т on X,  we say that Ж is x-non- 
atomic if for each set E  in & and each r-neighborhood V of 0 in X  there 
exists a finite decomposition E Y, . . . ,  Er of E  such that Ж" (Е{) с  V for 
i =  1, .. . ,  r.

I t is trivial that if Ж is т-non-atomic and a topology хг is weaker 
than t, then Ж is also r x-non-atomic.

In what follows ^  will denote a а-ring and Ж an additive order-con­
tinuous correspondence 3$ stf(X).

In view of Theorem 5.12, if r is the original topology of X  and Ж 
satisfies (ccc), thus particularly if X  is metrizable, then Ж is т-non-atomic 
iff Ж is non-atomic in the sense of Definition 5.9. As we noted above 
then Ж will also be a(X,  X')-non-atomic. Bow, it is easily seen that 
o(X,  X')-non-atomicity of Ж is equivalent to (usual) non-atomicity of 
all correspondences x 'M (œ'eX'); œ'M(E) — æ'[M(E)\  Eeâ%. But, 
even when Ж is point-valued, usual non-atomicity of Ж may not imply 
o(X,  A')-non-atomicity [42]; the converse implication is trivial.

The following theorem is related to the results of Sehmeidler ([39], 
Theorem 1.2; [40], Theorem 1) and Artstein ([2], Theorem 4.2); cf. also 
[8], [9].

6.1. Theorem. I f  Ж is a{X , X')-non-atomic, then the a{X, X')-closure 
of M(E) is convex for every EeM.

P roof, (cf. [42], p. 67). We can assume that X  is over B. Let |  
=  (x[, . . . ,  xn) be a finite sequence in X'.  We can consider  ̂ as a linear 
mapping X  ->Bn, £(«) =  (æ[(æ), . . . ,  x'n{x)). Then the correspondence Ms: 
& sé (Bn), defined by equality

Mt (E) =
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is additive and order-continuous (3.9), non-atomic, and compact-valued. 
Hence it is strictly additive, so also strictly сг-additive, by 3.4. Now we 
can apply any of the results of Schmeidler or Artstein mentioned above 
to see that values of M è are convex.

Since

the o(X,  X')-closure of 31(E) — P) [MS(E)],
‘i

where |  varies over all finite sequences in X',  the assertion of our theorem 
follows.

From the theorem we derive easily a generalization of a result of 
Tweddle [42] (cf. also [8], Théorème 2, and [39], Theorem 1.6, [40], 
Theorem 2).

6.2. Corollary. I f  M  is a(X, X')-non-atomic, then the a(X, X')- 
closure of the range of M is convex.

P roo f. Since M" is a(X,  A')-non-atomic, additive and order-con­
tinuous (3.8), for each EeM  the a(X, X' ) -closure Ш" (E)~a of I *  (E) is 
convex by 6.1.

Since 31" (Ег)~аи31" (E2)~a <=: 31" (Еги E 2)~a for any E x, E 2e&, 
the set

A  =  (J 31" (E ) - a
Eem

is convex, and so is A  a. But A  a is identical with the a(X,  X')-closure 
of the range of 31.

6.3. Corollary. I f  M is o(X, X')-non-atomic and its values are 
weakly closed, in particular weakly compact, then they are convex.

An open question is whether the result of Schmeidler [(40], Theorem 1) 
may be derived from Theorem 6.1 (see how Tweddle [42] obtains a result 
of Uhl).

7. Convergence of correspondences and uniform boundedness principle.
In  this Section M denotes a а-ring. The proofs of the two results stated 
below are immediate if one applies the Minkowski-Badstrom-Hormander 
theorem and indicated results from the theory of vector-valued set func­
tions.

Our first result contains analogues of the Vitali-Hahn-Saks and 
№kodym types theorems [17].

7.1. Theorem. Let (3fn)mN be a sequence of a-additive (here — additive 
and order-continuous, 5.4) [resp. additive and exhaustive] correspondences 
3& ->08(X) such that for each Ee£% the sequence (3In(E))neN converges in 
[sé(X),  т); let 3I0(E) denote any of the sets in  (r)lim 3In(E).
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Then JT0: St -+S${X), M 0 is a-additive [resp. additive and exhaustive'], 
and the family { J7n | n >  0} is uniformly a-additive (here ~  uniformly 
order-continuous) [resp. uniformly exhaustive].

Moreover, i f  Г  is an F  N -topology on St and Mn <4 Г  for every ne Ж, 
then also JT0 <4 Г  and the family {Mn | n >  0} is Г -equieontinuous.

The next result is a generalization of the Aikodym type theorem 
on uniform boundedness of a family of vector measures ([18], [29], Theorem 
6; see also [10], [41]).

7.2. Theorem . Suppose J t is a family of a-additive {or additive and 
exhaustive) correspondences St->Sft{X) such that the set

\J{M{E)\  MeJ t ]

is bounded for every Ее St. Then the set

(J  W ® ) l  Me J t , Ее St)
is also bounded.

R em ark . On this occasion I  would like to note that B. B. Darst 
was apparently the first who extended Mkodym’s uniform boundedness 
principle to the case of scalar valued bounded finitely additive (hence 
exhaustive) set functions [10]. I  was unaware of this fact while preparing 
my note [18]. The result of Darst was kindly pointed out to me by Pro­
fessor J. K. Brooks.

8. Control measures and selections. The topological meaning of 
a control measure for a vector measure has been widely discussed in [19], 
and could be repeated now in case of correspondences, but we restrict 
ourselves to the definition of this notion and two existence theorems.

8.1. D e fin it io n . A control measure for an additive correspondence M  
is any additive set function v : St->[0, oo] such that

JT ~  v,
i.e. F{M) =  7 » .

If JT is exhaustive [or order-continuous and St is a or-ring], then its 
control measure, if exists, can be chosen to be bounded (hence exhaustive) 
[and cr-additive] (cf. [19], p. 209).

8.2. Theorem . Suppose St is a a-ring and JT is additive and order- 
continuous. I f  JT satisfies (ccc), in particular i f  X  is metrizable, then there 
exists a finite a-additive control measure for JT.

(Cf. [43], assertion (2) of Théorème 23.)
P roof. In view of Theorem 5.10, without loss of generality we can 

assume that JT is bounded. Then JT* =  coJT: St ->R{X)  is a a-additive 
vector measuie which satisfies (ccc). By theorem 2.3 in [19] (see also [35]),

4 — Roczniki PTM — Prace M atem atyczne XIX
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there exists a finite or-additive control measure v for M*. I t is obvious 
that v is a required control measure for M.

8.3. Corollary. I f  X  is metrizable and M: 0k (a ring) ->s#(X) is 
additive and exhaustive, then there exists a bounded additive control measure 
for M.

P roof. We can assume that X  is complete and M  is closed-valued. 
Then Theorem 4.5, used via the Stone representation theorem, similarly 
as in [19], Section 4, reduces our assertion to the order-continuous caser 
so that the preceding theorem can be applied.

8.4. D e f in it io n . A (point-valued) set function y: 9 t-> X  is called 
a selection for M, if y(E)e M(E)  for every E  in 0k.

Of course, if M  is additive [a-additive], we are especially interested 
in the existence of additive [or-additive] selections for M.

If A is a s ubset of X,  Ext A will denote the set of extreme points 
of A.

8.5. Lemma. Suppose C0, Cx, C2 are convex subsets of X  and O0 — Cx -\-С2, 
Then i f  х0e E x tCq, there exists exactly one pair of points xxeCx, x2eC2 
such that x0 — xx +  x 2 these points are extreme points of Cx and C2 respectively. 
(Of. [36].)

8.6. Theorem . Suppose 0k is an algebra of subsets of S and M is strictly 
additive and convex-valued. Then for each xe Ext M(S) there exists a unique 
additive selection /лх for M  such that

yx(S) =  œ.
In  addition, the selection yx has the property

fix(E)eEiXb M(E),  Eeâ%.
Moreover, i f  M is order-continuous [exhaustive], then yx is a-additive 

[exhaustive].
P roof. Eor each Ее 0k let yx(E) denote the uniquely determined 

member xx of M(E)  such that for some x 2e M{S \E) ,  x — хгХ х 2; yx(E) 
e Ext 31(E) (8.5). IVe claim that the selection yx for M  thus defined is 
additive.

Let E, Ее 0k, E n E  =  0 . Then there exist elements yxe M(E),  
y 2e M(F)  and y3e M ( S \ ( E u F ) )  such that x =  ух + У% + Уъ- Sine e y xe M(E)  
and y2 + yze M ( S \ E ) ,  we have yx =  y x(E). Similarly y2 = yx{F) and 
У1 + У2 =jux{EvE) .  Hence

Ух( ^ ) Е у х{Е) — px( E kjF).
The last assertion of the theorem is obvious.

8.7. Corollary. I f  0k is an algebra of subsets of S and M is (strictly) 
additive weahly compact valued, then M admits at least one additive selection y. 
The selection y is a-additive [exhaustive] i f  M  is.
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Proof. With no loss of generality we can assume that X  is complete. 
Then the values of the correspondence cbЖ are weakly compact convex 
subsets of X  ([31], 20.6(3)), it is strictly additive (3.8) and Ext cbflf (F) 
c  M{E) for every Ee£% ([31], 25.1 (7)). We apply the preceding theorem.

We shall need the following result due to Husain and Tweddle ([27]).
8.8. Lemma. I f  C0, Cx, Cz are compact convex subsets of X  with 

C0 =  Ci +  C2, then (я?! c Ext Oil there exists y e Ext C2 such that ce -\-y e Ext C0} 
is a dense subset of ExtCj.

From Lemmas 8.5 and 8.8 we derive immediately the following
8.9. Corollary. I f  is an algebra of subsets of 8 and M is a 

{strictly) additive correspondence whose values are compact convex subsets 
of X , then the correspondence E  —>ExtJT(F), Ee&, is quasi-additive.

The next result is an easy consequence of Theorem 8.6, Lemma 8.8 
and the Krein-Milman theorem.

8.10. Corollary. Suppose 0t, M are as above, with ucompact” 
replaced by uweaTcly sompast” . For each xe E x t!f($ ) let px be the selection 
for M established in Theorem 8.6. Then, for every Eeâê,

M{E)  == co{px{E)\ xe Ext M(S)}.

8.11. Corollary. I f  3% is a e-ring, M is weahly compact valued, e-ad­
ditive and satisfies (ccc), then

(+ ) M(E)  =  {p{E)\ p is an additive selection for M}~
for every Ее

Proof. As noted in Section 5, (ccc) enables us to assume that M 
is a cr-algebra on a set 8. Let {Аг, A 2, ...} be a maximal, countable by (ccc), 
family of mutually disjoint atoms of M. Denote 8a — U  A n, 8b =  8 \ 8 a. 
M is non-atomic on 8b, hence its values on subsets of 8b are convex (6.1). 
If px is a selection for M  on 8b and xne M{An) {ne N), then the set function 
p: &->X defined by

p{E) = p1{Er\8b) +  £  К I E n A niJT{M)}

is a selection for p on In view of 8.10, the family of all p which can be 
obtained in this way is large enough to guarantee (+ ). (Evidently, this 
family contains all selections for 31.)

R em ark . Our results on selections generalize those given in [24], 
where X  was required to satisfy some extra condition (P). On the other 
hand, they are certainly not so deep as the results of Artstein ([2], Sec­
tion 8).

8.12. Theorem . I f  &, M are as in Corollary 8.11, then there exists 
& e-additive selection Я for M such that Я ^  M  (i.e. Р(Я) =  Г{М)).
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P roof. We start with the following observation: If Ее 31),
then there exists F  a E, F e 3$ \ jV(3I), and a cr-additive selection /iF 
of MF =  M\MF, where 0lF — {Ae ЩA  c  F }, such that Ж(ЖУ) =  X{/xF).

Indeed, we can assume M(E)  0, and then by 8.11 there exists 
a cr-additive selection p for ME such that /л(Е) Ф 0.

Let be a maximal family of mutually disjoint sets A  in MF such 
that fx(A) = 0 and A ^ J r (31). By (ccc), sé is at most countable, hence 
its union A q is in and /x(A0) = 0. Then F  =  E \ A 0 and yF — [a\Mf 
are as required in our assertion. (In addition, AeJf{[xF) iff y F{A) = 0.)

Now, there exists a maximal family of mutually disjoint sets in 
with the property that for each Fe  there is a cr-additive 

selection pF for MF such that J f {MF) =  jV{jxF). is at most countable, 
so that we can write =  {F1} F 2, ...} (Fin F j =  0  if i Ф j). The maxi- 
mality of J5" and the observation made above imply that 31 vanishes 
outside of U ^ -  ^  follows easily that the cr-additive set function Я: M->X 
defined by X(E) =  £/xF (E n F n) is a selection for 31 which satisfies

П
jr(M)  =

Since both M  and A satisfy (ccc), each of them has a finite cr-additive 
control measure (8.2; [19], 2.3). Hence jV(31) = jV(X) is equivalent to 
F(M) = Г(Х) ([19], 1.1).

By a theorem of Bybakov ([38]; see also [1], [16], [19], [44] for 
some improvements and generalizations), if Я is a cr-additive measure 
defined on a cr-ring 1# and taking values in a normed space X,  then there 
is x'0eX' such that Я ~х '0Л.

This, and Theorem 8.12, imply immediately the following analogue 
of the Bybakov’s result for correspondences.

8.13. Corollary. I f  X  is a normed space, M a а-ring, and 31 is e-ad­
ditive and weakly compact valued, then there exists x'0eX'  such that 31 ~  x'0 31.

Postscript. After this paper was submitted for publication, the 
author learned that Pallu de la Barrière [3] obtained much stronger re­
sults on selections; he also proved a version of Corollary 6.3. The reader 
is also referred to some recent works by A. Costé for related results, 
and to the Thesis of Godet-Thobie [23] for an excellent exposition of 
the theory of multimeasures.
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