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Countable codimensional subspaces of semiconvex spaces

Abstract. We obtain for semiconvex spaces analogues of three known results on the 
inheritance of certain barrelledness and bornological properties of locally convex spaces by 
subspaces of countable codimension.

1. Introduction. Following the papers of Saxon and Levin [13] and 
Valdivia [16] showing that a countable codimensional subspace of a bar­
relled space is again barrelled, there has been considerable interest in de­
termining other properties of locally convex spaces which are similarly 
inherited. We refer the reader to [6], [11], [12], [16] and [17] for examples, 
noting in particular that Webb [17] has shown that countable barrelledness
[5] is one such property (see also [6]).

Adasch und Ernst [2] and de Wilde et Gerard-Houet [3] have also 
considered similar properties for certain topological vector spaces. The results 
of Iyahen [9] and Kadelburg [10] may also be relevant to the reader in 
this connection. Here we are concerned with this problem in semiconvex 
spaces [7]. In [7], Iyahen introduced corresponding notions of hyperbar­
relledness and K0-hyperbarrelledness in such spaces. We show that hyper­
barrelledness is inherited by subspaces of countable codimension; for the 
analogue of Webb’s result we are led to a definition which is apparently 
rather stronger than Iyahen’s N0-hyperbarrelledness. Valdivia showed in [16] 
that a countable codimensional subspace of an ultrabornological space (in 
the locally convex sense) is bornological. Our final result is a semiconvex 
version of this.

Our methods are extensions of the techniques developed by Valdivia 
in [15] and [16] and by Saxon and Levin in [13].

2. Countable hyperbarrelledness. In [7], Iyahen gives the following defi­
nitions.

* The first author’s research was partly supported by an NRC grant. The second author 
acknowledges a travel grant under the Commonwealth University Interchange Scheme. AMS 
Subject Classification: 46A15.



64 T. Husain and I. Tweddle

(i) A semiconvex space (E , £) is hyperbarrelled if each ^-closed balanced 
semiconvex absorbent subset of E is an ^-neighbourhood of 0.

00
(ii) A semiconvex space (E , Ç) is 4<0-hyperbarrelled if V = f] U„ is an

n=  1

^-neighbourhood of 0 whenever it is absorbent and there is Я > 0 such 
that each Un is a closed balanced Я-convex neighbourhood of 0.

Since a semiconvex space need not have a base of neighbourhoods of 
0 consisting of sets which are Я-convex for some fixed Я ([14], p. 179), it 
seems natural to modify (ii) by allowing Я to vary with n. We do this 
by adapting Iyahen’s idea of an ultrabarrel of type (a) [8] to the semicon­
vex setting.

(iii) A semiconvex ultrabarrel of type (a) in a (semiconvex) space (E , £)
is a system {U ^: n , k e N }  of closed balanced semiconvex £-neighbourhoods

00

of 0 such that U{k + 1) + U(k + 1) Ç U(k) (n,/ceN) and П is a semicon-
n — 1

vex absorbent set (к e N).
(iv) A semiconvex space (E , £) is countably hyperbarrelled if, whenever

00

{U{f ]: n , k e N } is a semiconvex ultrabarrel of type (a), then П U(n] is an
n =  1

(^-neighbourhood of 0 (keN).
It is clear that a hyperbarrelled space is countably hyperbarrelled and 

that a countably hyperbarrelled space is N0-hyperbarrelled. Iyahen has 
shown in [8] that the strong dual of a metrizable locally convex space is 
countably ultrabarrelled and consequently it is countably hyperbarrelled. He 
also notes in [7] that such a space need not be (quasi-) hyperbarrelled. 
However,

Theorem 1. A separable countably hyperbarrelled space is hyperbarrelled. 
P roof. In a separable countably hyperbarrelled space (£, £) let 

(xm: meiV) be a dense subset, Ш be a base of balanced semiconvex 
neighbourhoods of 0, and В be a closed balanced semiconvex absorbent set.

We can find a sequence (U„) in such that Un + 1 + Un + 1 ^  U„ 
(n e N) and

00
(*) {xm- rneN}\B = {xm: m e N } \  П (B + Un).

n =  1

Choose fl ^  1 such that В is jS-convex and let

= (n , keN) .

Since K® £  fil ~kB ^ U „ +k^ 1 + Un^ 1 S  i3‘ - ‘ B + [ /n+i_2 (n = 2 , 3 , . . . , ice
00 00

eN) ,  it follows that f] Vn(k> = f| (]S1"kB + t/ ll + fc_ 1) for each k e N .  Since
n =  1 n= 1
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n  V„(k) 2  /?1_kB, it is absorbent (k e N ); it is also /i-convex (keN)  for
n= 1

00

00 00 00

n  K,k,+ n  Km s  n
n= 1 n ~  1 n =  2

00 00

s  П W l ' kB + u ^ k- 2) z  n  W ‘B+/j[/„+t_2) •
n= 2 n= 2

00

= P n  Vnk>-
n =  1

It is now clear that {X(fc): n , k e N )  is a semiconvex ultrabarrel of type (a)
oo ao

in (E, f) and consequently П K{1) = П (B + Un) is an ^-neighbourhood
n = l  n=  1

of 0. Finally
00 00

int n  (B+C7„)Scl{(int n  (B + U„)) r> {x„ : meN}}
и =  1 n=  1

2 d  { B n { x m: m e N } }  (by (*))
s  B,

which shows that В is an ^-neighbourhood of 0.
We have attempted above to justify considering countable hyperbar­

relledness rather than N0-hyperbarrelledness in general. However, the two 
definitions coincide in the important special case below.

Theorem 2. Let (E , f) be a semiconvex space in which there is a base of 
balanced neighbourhoods of 0 consisting of sets which are X-convex for some 
fixed X > 0. Then (E , £) is countably hyperbarrelled if and only if it is 
N0-hyperbarrelled.

Proof. We have already noted that countable hyperbarrelledness implies 
^ 0-hyperbarrelledness. Suppose that (E, if) is X0-hyperbarrelled and let Ш be 
a base of balanced Я-convex ^-neighbourhoods of 0. If n , k e N }  is
a semiconvex ultrabarrel of type (a) in (E, £), we can find > 0 such that

00

П  is /ifc-convex (keN)  and P̂ (k>e ^  such that Î (k) £  UJ,k) (n, keN).  Then
n =  1

00

И̂ (к) = cl (I^(k + 2)-l- П U% + i)} is a max (Я, /?fc +^-convex ^-neighbourhood of
m =  1

00 00 

0 (n , k e N ) and fj Wjk) is absorbent (keN).  By hypothesis П W„k) is an
n= 1 n =  1

«^-neighbourhood of 0 (k e N). But
00 00 oo

П wnw £  П (t/!k+2)+*4k + 2)+l7<k + 1)) £  П U(„k) (keN).
n=  1  n — 1  n= 1

5 — Prace Matematyczne 22.1
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This completes the proof.
A simple extension of the proof of [7], Theorem 4.2, establishes 
Theorem 3. Any sc-inductive limit of countably hyperbarrelled spaces is 

countably hyperbarrelled.
Combining the methods of [1] and [7], we have a second permanence 

property.
Theorem 4. Any product of countably hyperbarrelled spaces is countably 

hyperbarrelled.
Proof. Let (£у)уеГ be a non-empty family of countably hyperbarrelled 

spaces over the same scalar field. Let { U к e N} be a semiconvex ultrabarrel
of type (a) in П {Ey: у e Г] and fix he IS. By [7], Lemma 4.1, there is a finite

00

subset Г0 of Г such that П {Ey : у е Г \ Г 0} £  П U(f  + 1). We suppose that Г0
n= 1

and Г\Г0 are non-empty, the proof being easily modified in the remaining 
cases. Let V„ik) = U(nk+h) n  П {Ey: у е Г 0} (n , k e N ). Clearly {F„(k): n,/ceN} is
a semiconvex ultrabarrel of type (a) in П {Ey: у е Г 0]. By Theorem 3,

00

П {Ey: ye  Г0} is countably hyperbarrelled so that V„ik) is a neighbourhood
n= 1

00

of 0 in П {Ey: ye  Г0} (ke N). Then f) K,(fc) + Я  {Ey: у e Г\Г0} is a neighbour-
n =  1

hood of 0 in П {Ey: ye  Г} (k e lS ). Since
00  CO 0 0  oo

n  v r  + n { E r: y s r \ r 0} S  n  U ?  +  1 ' +  f |  U ? +11 E  П  U«>,
n= 1 n =  1 n — 1 n ~  1

00

it follows that П U{k) is a neighbourhood of 0 in Я {Ey: уеГ} .  The result
n =  1

now follows since h e N is arbitrary.

3. Subspaces of countable codimension. The following two lemmas are 
fundamental for the proofs of the results referred to in § 1 (cf. [13], § 2 
Proposition, §3 Lemma; [15], Lemma 1).

L em m a  1. Let (E , £) be a countably hyperbarrelled space and let C be 
a closed balanced semiconvex subset of (£, f) whose span F has at most 
countable codimension in E. Then F is closed in {E, Ç).

Proof. We give the proof for the infinite codimensional case; the finite 
case involves only a notational change. Let e1,e 2>... be a basis for 
a supplement of F in E. For each ne IS choose 0„ > 0 and let J„ be the 
set of scalars of modulus at most 3n. Let x0 e cl F and let IF be any filter 
in F converging to x0. Choose a base % of balanced semiconvex neighbour­
hoods of 0 in £  and let ^  be the filter in £  with base {X + U : X e F ,  U e ^ } .  

also converges to x0. Suppose ^  does not induce a filter on D„ = nC +
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П
+ £  Jrer for any ne IS. Then there are sequences (2Q in J5", (U„) in %

r — 1

such that for each ne IS,
(i) (xn+Un) n D n = 0 , (ii) Un + l + Un + 1 + Un + l S Un.
Choose fi > 0 such that C is jS-convex and for n , k e N  let Wjk)

= cl { n /r‘ C + (L  Ur+tn 2 - kJre, )+U.+t}. Then:
r =  1

(a) each Wfk) is a closed balanced semiconvex neighbourhood of 0 
in (£, £);

(b) Wn{k +1) + Wn(k + C Wnw (n, к e N);
oo oo m

(c) П  Wïk) 3  P~kC+ У ( £  Ur+k n  2~kJrer) which is absorbent (Zc 6 N).
n = l  m =  1 r =  1

We show:
00

(d) П is semiconvex (he IS).
n — 1

00
Let x, у e П  W^k). Then, for each n eIS,

n=  1

x , y e c l  [n£-fcC + ( £  Ur+k n  2~kJrer)+Un+k}
r — 1

and so for n ^  2,
n

x + y eel {np~kC + ( £  Ur+kn 2 ~ k Jrer) +
r =  1

+ l/n+k + n /T kC + ( X Lr+fcn 2 - kJ rcr)+ l/„ +k}
r =  1

n — 1

S cl{PnJJ-‘ C + 2( £  !Л+1п 2 - Ч е г)+2(С/я+, п 2 - ‘ Л е .)+ и „ +* + и . +4}
r =  1

(note that Ur+k n  2~k Jrer is actually convex since Ur+k is balanced)

S c l{ ( ^ 3 r ) <n_1^ “ '‘C + 2 *”S  Vr+kn 2 - %Jrer) + 2{V .+t + V . , t + V . ^  

Е с1{20(и -1)/Г *С  + 2 ( £ ' Ur+tn 2 - t Jre,) + 2U ,+k. 1} (by (ii))
r =  1

E max (2/1,2) cl {(n- 1)/Г*С+( I  C/r+l n 2~‘ ./,«,)+
r =  1

= max (2)8, 2) WÿWj.

Consequently
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00 00 °o 00
П  w£k)+  П  Wn{k) £  max (2/?, 2) f )  =  max (2jS, 2) П  ^ ( k ) -

n = 1 «=1 П=2 n=l
00

Since (£, £) is countably hyperbarrelled we now deduce that П ^»k)
n=  1

is an ^-neighbourhood of 0 (kel \).  Choose l e . f  such that X  — X
00

ç  n  wn(2) and for each neJV, choose Yne ^  such that У„-Уп £  Wf2'*.
n -  1

Note that

w<»+w<» E cl ! C ‘ C + ( i  2- 4 ,e , ) + V ,  + l )
r= 1

ç n ^ C  + fX  2 ~ 4 rer)+Un (n e N ).
r= 1

Let z e У„+ W„{2), x eX„nY„ .  Then for some у e У„, u e JT„(2) we have 

z = y + u = X  + ( y - x )  + UEXn+Wn{2)+Wn{2)

£  Хн + п Г ' С Ц  £
r= 1 

n

Consequently by (i), z<£n/?_1C + £  2~l Jrer so that
r= 1

(*) (Yn+Wn{2)) n ( n r l C+ £  2 "1 J rcr) = 0  (neN ).
r= 1

Suppose w e X .  Then we can find n0 such that w еп о /С 1 C. For any
'' oo

ye У„0 we must have w — уф W^2) by(*), which implies that w — уф П И̂ (2)-
П- 1

00

Since X — X  Ç П fK(2) we now deduce that уфХ.  This shows that
n= 1

N r> = 0  which is impossible since X,  YnQe . Consequently ^  must 
induce a filter on Dni say. Now Dni is closed, being the sum of a closed 
set and a compact set, and so x0 e D„t . This shows that the closure of F

00 n

is contained in F+  (J £  J rer for any choice of the J„. Since the inter­
n é  r= 1

section of all these sets is F, we deduce that F is closed.
Our other main tool is
Lemma 2. Let F be a closed subspace of at most countable codimension 

in a countably hyperbarrelled space (E , £) and let G be any algebraic sup­
plement of F in E. Then Ç induces the finest linear topology on G and 
(E,£) is the topological direct sum of (F ,£ |f ) and (G, Ç\G).

Proof. This is standard if the codimension of F is finite ([4], Chapter 1,
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§ 12, Corollary 3). Otherwise let e1, e 2, be a basis of a supplement G of 
F in E. A base of neighbourhoods of 0 for the finest linear topology ц

00 n

on G is given by all sets of the form (J J r er, where J„ is the set of
n= 1 r =  1

scalars of modulus at most ôn for some arbitrary positive <5„ (neN).  Let 
JH be a base of closed balanced semiconvex neighbourhoods of 0 for £. 
A base of neighbourhoods of 0 for the direct sum topology defined by

00 n

£|f and rj is given by all sets of the form U n F  + (J X Jrer, where
n=  1 r =  1

U e 41 and the Jn are as above. Choose any such set and choose j8 > 0 
such that U is /Lconvex.

Since F is closed in (£,£), it is closed in En = F + L(e l , e2, •••, e„) 
(ne IS) with the topology induced by (L(el , e2, e n) denotes the linear
span of e1, e2, e n (n e N ).) Consequently Ç\F is the direct sum topology 
of and the usual topology on L(e1, e2, ..., e„). We can therefore find

' Г. П
Une Jl/ such that Enr \Un ^  f3~l U n  F+ £  2-1 J r er (neN).  We may fur-

r =  1

ther assume that Un + l + Un + 1 + Un + i ^  Un (neN).  Put W„(k) = cl \P~k U n
П

n f  + ( £  Ur+kn 2 ~ kJrer)+Un+k} (n,keN) .  It follows as in the proof of
r =  1

oo

Lemma 1 that f) Wjk) is an ^-neighbourhood of 0 (keN).  Now
n= 1

oo oo n

П Wn(i )S  П [H~l U n F  + ( ^  Vr+tn 2 - l J,er) + V.}.
n = l  w = l  r = 1

00

Let x e  П И̂,(1) and choose m such that x e E m. Then since x e /? -1 U n F  +
n=  1 

m

+( I  u r+ t n 2  1 Jrer)+ Um, we have by linear independence
r =  1

m
x e f U / n f + Q ;  Ur+1 n 2 _1 J r er) + Lm n  £ m

r = 1

Ç P~l V n F  + ( X Ur+ln 2 - 4 rer) + r l U n F +  £  2_1Л ^

Ç U n F + X  Л

П ILn(1) Ç l / n F + U
n =  1 n =  1

X
1

Thus
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which is therefore an ^-neighbourhood of 0. Since Ç is necessarily coarser 
than the direct sum topology, the proof is complete.

We now apply Lemmas 1 and 2 to obtain an analogue of Webb’s 
result concerning countably barrelled spaces ([17], Theorem 6).

T heorem  5. Let (E , £) be a countably hyperbarrelled space and let F 
be a subspace of at most countable codimension. Then (F , £|F) is countably 
hyperbarrelled.

Proof. Let [U ^: n , k e N } be a semiconvex ultrabarrel of type (a) in 
(F, £|F). Taking closures in (E , £), we deduce from Lemma 1 that all the

oo
sets cl П U{k) (k e N ) have the same linear span H,  which is a closed

n=  1

subspace of (E, Ç). If 41 is a base of closed balanced semiconvex neighbour­
hoods of 0 in (E, Ç) we can choose V„(k)e<% such that for all n , k e N ,
H n V nik) Ç cl U„w , K(k)i + K/k)i £  Упк\  K„(fc41) + L„(k + 1) £  F„(k). Let = cl

00
{( П  U{k)) + H nV^k + l)) (n , k e N ). We see as before that {Wjk): n , k e N }

m = Г

is a semiconvex ultrabarrel of type (a) in (Я ,£ |н) and further that

П  w„(k+1) ^  П  cl U(„k) (keN).
n=  1 n = l

Let G be a supplement of H in E. It follows from Lemma 2 that
if B{f ] = Ĥ (k)-|-G (n,fceiV), then {B|,k): n , k e N } is a semiconvex ultrabarrel

00 00
o f type (a) in  (E , <!;). F o r  each /ce iV  we have F a  (] Bj,k+1) =  F a  fj  W (̂k+1)

rt— 1 и =  1
00 00 00

Ç  F a  П  cl G*k) =  П  U(k) and  consequently  П  U(k) is a  n e igh b o u rh o o d
n =  1 п =  1 n =  1

of 0 in (F, Ç\F) for each k e N .  This completes the proof.
From Theorems 2 and 5 and our remarks in Section 2 we deduce 

immediately
C o ro lla ry . Let (E , £) be an # 0-hyperbarrelled space for which there is 

Я > 0 such that ^ has a base of balanced X-convex neighbourhoods of 0. 
I f  F is a subspace of E of at most countable codimension, then (F , £\F) is 
К0-hyperbarrelled.

In particular, a subspace of at most countable codimension in the strong 
dual of a metrizable locally convex space is N0-hyperbarrelled in the induced 
topology.

If in the setting of Theorem 5, В is a closed balanced semiconvex 
absorbent subset of (F, £|F) and H is now the linear span of the closure 
A of В in (£ ,£), then A + G is a closed balanced semiconvex absorbent 
subset of (E , Ç). We can therefore establish similarly

T h eorem  6. Let (E , Ç) be a hyperbarrelled space and let F be a subspace 
of at most countable codimension. Then (F , £)F) is hyperbarrelled.
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Finally we give an analogue of Corollary 1.3 of [16]. If В is a balanced 
semiconvex bounded subset of a topological vector space E, then EB 
denotes the linear span of В endowed with the locally bounded topology 
having {n~1B : neN } as a base of neighbourhoods of 0.

L em m a  3. Let (E , Ç) be a semiconvex space and suppose there is a family 
ЗЙ of balanced semiconvex bounded subsets of {E , f) such that the spaces 
EB (B eâ$) are hyperbarrelled and (E , if) is the sc-inductive limit of {EB: В e Щ 
under the natural embedding mappings. Let F be a subspace of E of at most 
countable codimension. Then (F , f F) is the sc-inductive limit of {FBnF\ В е Щ  
under the natural embedding mappings.

Proof. Let F be a balanced semiconvex absorbent subset of F such that 
F n F Bnf is a neighbourhood of 0 in FBnF for each B e :%. Choose Я > 0 
such that V is Я-convex. Let sé be the set of all finite sums of elements 
of 0&. It is clear that for each A es4, Ea is also hyperbarrelled and V n F AnF 
is a neighbourhood of 0 in FAnF. Let W\_A] be the closure of Я-1 FnF.,.„,, 
in Ea (Ae .q/). Since the closure of A~x Vr\FAnF in FAnF is contained 
in Я-1 F n F ^  + Я-1 V n F AnF Ç V n F AnF, it follows that W[ A] r \ F  
= W\_A~] n  FAnF Ç V ( A e s V). Note also that W\_A] is Я-convex. We show 
that W = U (VF [A]: AEséj  is Я-convex. If x, ye W, we can choose A 1, A2e-c/ 
such that xeW\_Af \ ,  y e IF [A 2]. But then x, y e W [ A X + A2] and so 
x + y e  AW \_AX + A2~\. We have therefore shown that W+ W Ç AW.

Let G be the span of V+ W and let H be any supplement of G in E. 
Then V+W+H  is a Я-convex balanced absorbent subset of E. For each Be Jd, 
the span of W[B~\ is a closed, at most countable codimensional subspace 
L(B) of EB\ we know further that EB is the topological direct sum of L(B) 
and any of its supplements, each of which must have its finest vector topology 
(Lemmas 1 and 2). Now (F + W AH)  n  EB is a balanced semiconvex absorbent 
subset of EB and (F + W + H) n  L(B) 2  IF[B] which is a neighbourhood 
of 0 in L(B). It now follows that (V + W + H ) r \ E B is a neighbourhood 
of 0 in EB ( B e M ) .  Consequently F+IF+ Я  is a neighbourhood of 0 in 
(£,£). Since

{V + W + H) n  F = (V + W) n F = V + (W n f )  ç  F + F ç  ЯF, 
it follows that F is a neighbourhood of 0 in F. The result now follows.

T heo rem  7. Let (E , f) be a separated sequentially complete almost convex 
hyperbornological space [15] and let F be a subspace of at most countable 
codimension. Then (F , Ç\F) is hyperbornological.

P ro o f There is a family M of balanced semiconvex bounded subsets 
of (£, f) such that each EB (Be &) is a complete metrizable locally bounded 
space, and therefore hyperbarrelled, and (£, £) is the sc-inductive limit of 
{EB\ B e @} under the natural embedding mappings [7]. The spaces 
FBnF {Be 08) are hyperbornological since they are metrizable. The result now 
follows from Lemma 3 and [7], Theorem 3.2.
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