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Abstract. In this paper, we present some results concerning the existence and the
local asymptotic stability of solutions for a functional integral equation of fractional
order, by using some fixed point theorems.
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1. Introduction. Integral equations are one of useful mathematical tools in
both pure and applied analysis. This is particularly true for problems in mechanical
vibrations and the related fields of engineering and mathematical physics. We can
find numerous applications of differential and integral equations of fractional order
in viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. [2,
16, 19, 20, 21]. There has been a significant development in ordinary and partial
fractional differential equations in recent years; see the monographs of Abbas et al.
[1], Kilbas et al. [17], Lakshmikantham et al. [18], Miller and Ross [19], Podlubny
[20].

During the last decade, many classes of integral equations have been considered
including the local, global and the asymptotic behavior of solutions by Banaś et al.
[3, 4, 5, 7, 8], Darwish et al. [10], Dhage [11, 12, 13, 14], and the references therein.
In the most of them the main tool was the measure of noncompactness [6].

In [5], Banaś and Dhage studied the existence of solutions in the space of real
functions defined, continuous and bounded on the half-line of the following nonlinear
quadratic Volterra integral equation of fractional order

(1) x(t) = f(t, x(α(t))) +
∫ β(t)

0
g(t, s, x(γ(s)))ds; t ∈ R+ := [0,∞),
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where α, β, γ : R+ → R+, f : R+ × R → R and g : R+ × R+ × R → R are
continuous functions. The main tool used is the technique associated with certain
measure of noncompactness related to monotonicity.

Motivated by the above paper, this paper deals with the existence of solutions to
the following nonlinear quadratic Volterra integral equation of Riemann-Liouville
fractional order

(2) u(t) = f(t, u(α(t))) +
1

Γ(r)

∫ β(t)

0
(β(t)− s)r−1g(t, s, u(γ(s)))ds; if t ∈ R+,

where α, β, γ, f, g are as in (1), r ∈ (0,∞) and Γ(.) is the (Euler’s) Gamma function
defined by

Γ(ξ) =
∫ ∞

0
tξ−1e−tdt, ξ > 0.

We prove the existence of solutions of equation (2) by using Schauder’s fixed po-
int theorem, and we obtain some results about the local asymptotic stability of
solutions. Finally, an example illustrating the main result is presented in the last
section.

2. Preliminaries. In this section, we introduce notations, definitions, and
preliminary facts which are used throughout this paper. Let L1([0, b]); b > 0 we
denote the space of Lebesgue-integrable functions u : [0, b]→ R with the norm

‖u‖1 =
∫ b

0
|u(t)|dt.

By BC := BC(R+) we denote the Banach space of all bounded and continuous
functions from R+ into R equipped with the standard norm

‖u‖BC = sup
t∈R+

|u(t)|.

For u0 ∈ BC and η ∈ (0,∞), we denote by B(u0, η), the closed ball in BC centered
at u0 with radius η.

Definition 2.1 ([17]) Let r > 0. For u ∈ L1([0, b]); b > 0 the expression

(Ir0u)(t) =
1

Γ(r)

∫ t

0
(t− s)r−1u(s)ds,

is called the left-sided mixed Riemann-Liouville integral of order r.

In particular,

(I0
0u)(t) = u(t), (I1

0u)(t) =
∫ t

0
u(s)ds; for almost all t ∈ [0, b].

For instance, Ir0u exists for all r > 0, when u ∈ L1([0, b]). Note also that when
u ∈ C([0, b]), then (Ir0u) ∈ C([0, b]),
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Example 2.2 Let ω ∈ (−1,∞) and r ∈ (0,∞), then

Ir0 t
ω =

Γ(1 + ω)
Γ(1 + ω + r)

tω+r, for almost all t ∈ [0, b].

Let G be an operator from Ω ⊂ BC; Ω 6= ∅ into itself and consider the solutions
of equation

(3) (Gu)(t) = u(t).

Now we review the concept of attractivity of solutions for equation (2).

Definition 2.3 ([5]) Solutions of equation (3) are locally attractive if there exists
a ball B(u0, η) in the space BC such that for arbitrary solutions v = v(t) and
w = w(t) of equations (3) belonging to B(u0, η) ∩ Ω we have that

(4) lim
t→∞

(v(t)− w(t)) = 0.

When the limit (4) is uniform with respect to B(u0, η) ∩ Ω, solutions of equation
(3) are said to be uniformly locally attractive (or equivalently that solutions of (3)
are locally asymptotically stable).

Lemma 2.4 ([9]) Let D ∈ BC. Then D is relatively compact in BC if the following
conditions hold:
(a) D is uniformly bounded in BC,
(b) The functions belonging to D are almost equicontinuous on R+,
i.e. equicontinuous on every compact interval of R+,
(c) The functions from D are equiconvergent, that is, given ε > 0, there corresponds
T (ε) > 0 such that |u(t)− u(+∞)| < ε for any t ­ T (ε) and u ∈ D.

3. Main Results. In this section, we are concerned with the existence and glo-
bal asymptotic stability of solutions for the equation (2). The following hypotheses
will be used in the sequel.

(H1) The functions α, β, γ : R+ → R+ are continuous and limt→∞ α(t) =∞.
(H2) The function f : R+ ×R→ R is continuous and there exist positive constants

M,L such that M < L and

|f(t, u)− f(t, v)| ¬ M |u− v|
(1 + α(t))(L+ |u− v|) , for t ∈ R+ and for u, v ∈ R.

(H3) The function t → f(t, 0) is bounded on R+ with f∗ = supt∈R+ f(t, 0) and
limt→∞ |f(t, 0)| = 0.

(H4) The function g : R+ × R+ × R → R is continuous and there exist functions
p, q : R+ → R+ such that

|g(t, s, u)| ¬ p(t)q(s)
1 + α(t) + |u| , for t, s ∈ R+ and for u ∈ R.
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Moreover, assume that

lim
t→∞

p(t)
∫ β(t)

0
(β(t)− s)r−1q(s)ds = 0.

Theorem 3.1 Assume that hypotheses (H1) − (H4) hold. Then the equation (2)
has at least one solution in the space BC. Moreover, solutions of equation (2) are
locally asymptotically stable.

Proof Set d∗ := supt∈R+ d(t) where

d(t) =
p(t)
Γ(r)

∫ β(t)

0
(β(t)− s)r−1q(s)ds.

From hypothesis (H4), we infer that d∗ is finite.
Let us define the operator N, such that for any u ∈ BC

(5) (Nu)(t) = f(t, u(α(t))) +
1

Γ(r)

∫ β(t)

0
(β(t)− s)r−1g(t, s, u(γ(s)))ds; t ∈ R+.

By considering conditions of theorem we infer that N(u) is continuous on R+. Now
we prove that N(u) ∈ BC for any u ∈ BC. For arbitrarily fixed t ∈ R+ we have

|(Nu)(t)| =
∣∣∣f(t, u(α(t))) +

1
Γ(r)

∫ β(t)

0
(β(t)− s)r−1g(t, s, u(γ(s)))ds

∣∣∣

¬
∣∣∣f(t, u(α(t)))− f(t, 0) + f(t, 0)

∣∣∣

+
∣∣∣ 1
Γ(r)

∫ β(t)

0
(β(t)− s)r−1g(t, s, u(γ(s)))ds

∣∣∣

¬ M |u(α(t))|
(1 + α(t))(L+ |u(α(t))|) +

∣∣∣f(t, 0)
∣∣∣

+
p(t)
Γ(r)

∫ β(t)

0

(β(t)− s)r−1q(s)
1 + α(t) + |u(γ(s))|ds

¬ M‖u‖
L+ ‖u‖ + f∗ + d∗.

Thus

(6) ‖N(u)‖ ¬M + f∗ + d∗.

Hence N(u) ∈ BC. Equation (6) yields that N transforms the ball Bη := B(0, η)
into itself where η = M + f∗ + d∗. We shall show that N : Bη → Bη satisfies
the assumptions of Schauder’s fixed point theorem [15]. The proof will be given in
several steps.
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Step 1: N is continuous.
Let {un}n∈N be a sequence such that un → u in Bη. Then, for each t ∈ R+, we have

|(Nun)(t)− (Nu)(t)| ¬ |f(t, un(α(t)))− f(t, u(α(t)))|

+
1

Γ(r)

∫ β(t)

0

(β(t)− s)r−1|g(t, s, un(γ(s)))− g(t, s, u(γ(s)))|ds

¬ M‖un − u‖
(1 + α(t))(L+ ‖un − u‖)

(7) +
1

Γ(r)

∫ β(t)

0
(β(t)− s)r−1‖g(t, s, un(γ(s)))− g(t, s, u(γ(s)))‖ds.

Case 1. If t ∈ [0, T ]; T > 0, then, since un → u as n→∞ and g is continuous,
(7) gives

‖N(un)−N(u)‖BC → 0 as n→∞.

Case 2. If t > T ; T > 0, then from (H4) and (7) we get

|(Nun)(t)− (Nu)(t)| ¬ M‖un − u‖
L+ ‖un − u‖

+
p(t)
Γ(r)

∫ β(t)

0

(β(t)− s)r−1q(s)(|un(γ(s))|+ |u(γ(s))|)
(1 + α(t) + |un(γ(s))|)(1 + α(t) + |u(γ(s))|)ds

¬ M‖un − u‖
L+ ‖un − u‖

+
2ηp(t)
Γ(r)

∫ β(t)

0

(β(t)− s)r−1q(s)ds

(8) ¬ M‖un − u‖
L+ ‖un − u‖

+ 2ηd(t).

Since un → u as n→∞ and t→∞, then (8) gives

‖N(un)−N(u)‖BC → 0 as n→∞.

Step 2: N(Bη) is uniformly bounded.
This is clear since N(Bη) ⊂ Bη and Bη is bounded.

Step 3: N(Bη) is equicontinuous on every compact interval I of R+.
Let t1, t2 ∈ I, t1 < t2 and let u ∈ Bη. Also without lose of generality suppose that
β(t1) ¬ β(t2), thus we have

|(Nu)(t2)− (Nu)(t1)|
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¬ |f(t2, u(α(t2)))− f(t2, u(α(t1)))|+ |f(t2, u(α(t1)))− f(t1, u(α(t1)))|

+
1

Γ(r)

∣∣∣
∫ β(t2)

0
(β(t2)− s)r−1[g(t2, s, u(γ(s)))− g(t1, s, u(γ(s)))]ds

∣∣∣

+
1

Γ(r)

∣∣∣
∫ β(t2)

0
(β(t2)− s)r−1g(t1, s, u(γ(s)))ds

−
∫ β(t1)

0
(β(t2)− s)r−1g(t1, s, u(γ(s)))ds

∣∣∣

+
1

Γ(r)

∣∣∣
∫ β(t1)

0
(β(t2)− s)r−1g(t1, s, u(γ(s)))ds

−
∫ β(t1)

0
(β(t1)− s)r−1g(t1, s, u(γ(s)))ds

∣∣∣

¬ M |u(α(t2))− u(α(t1))|
(1 + α(t2))(L+ |u(α(t2))− u(α(t1))|)

+|f(t2, u(α(t1)))− f(t1, u(α(t1)))|

+
1

Γ(r)

∫ β(t2)

0
(β(t2)− s)r−1

∣∣∣g(t2, s, u(γ(s)))− g(t1, s, u(γ(s)))
∣∣∣ds

+
1

Γ(r)

∫ β(t2)

β(t1)
(β(t2)− s)r−1

∣∣∣g(t1, s, u(γ(s)))
∣∣∣ds

+
1

Γ(r)

∫ β(t1)

0

∣∣∣(β(t2)− s)r−1 − (β(t1)− s)r−1
∣∣∣×
∣∣∣g(t1, s, u(γ(s)))

∣∣∣ds

¬ M |u(α(t2))− u(α(t1))|
L+ |u(α(t2))− u(α(t1))| + |f(t2, u(α(t1)))− f(t1, u(α(t1)))|

+
1

Γ(r)

∫ β(t2)

0
(β(t2)− s)r−1

∣∣∣g(t2, s, u(γ(s)))− g(t1, s, u(γ(s)))
∣∣∣ds

+
p(t)
Γ(r)

∫ β(t2)

β(t1)
(β(t2)− s)r−1q(s)ds

+
p(t)
Γ(r)

∫ β(t1)

0

∣∣∣(β(t2)− s)r−1 − (β(t1)− s)r−1
∣∣∣q(s)ds.

From continuity of α, β, f, g and as t1 → t2, the right-hand side of the above inequ-
ality tends to zero.

Step 4: N(Bη) is equiconvergent.
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Let t ∈ R+ and u ∈ Bη, then we have

|(Nu)(t)| ¬ |f(t, u(α(t)))− f(t, 0) + f(t, 0)|

+
∣∣∣ 1
Γ(r)

∫ β(t)

0
(β(t)− s)r−1g(t, s, u(γ(s)))ds

∣∣∣

¬ M |u(α(t))|
(1 + α(t))(L+ |u(α(t))|) + |f(t, 0)|

+
p(t)
Γ(r)

∫ β(t)

0

(β(t)− s)r−1q(s)
1 + α(t) + |u(γ(s))|ds

¬ M

1 + α(t)
+ |f(t, 0)|

+
1

1 + α(t)

(
p(t)
Γ(r)

∫ β(t)

0
(β(t)− s)r−1q(s)ds

)

¬ M

1 + α(t)
+ |f(t, 0)|+ d∗

1 + α(t)
.

Thus

|(Nu)(t)| → 0, as t→ +∞.

Hence, we get

|(Nu)(t)− (Nu)(+∞)| → 0, as t→ +∞.

As a consequence of Steps 1 to 4 together with the Lemma 2.4, we can conclude
that N : Bη → Bη is continuous and compact. From an application of Schauder’s
theorem [15], we deduce that N has a fixed point u which is a solution of the equ-
ation (2).

Now we should investigate uniform local attractivity for solutions of equation
(26). Let us assume that u0 is a solution of equation (2) with conditions of Theorem
3.1. Consider ball B(u0, η

∗) with η∗ = LM∗

L−M , where

M∗ :=
1

Γ(r)
sup
t∈R+

{∫ β(t)

0

(β(t)− s)r−1|g(t, s, u(γ(s)))− g(t, s, u0(γ(s)))|ds; u ∈ BC
}
.
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Take u ∈ B(u0, η
∗), we have

|(Nu)(t)− u0(t)| = |(Nu)(t)− (Nu0)(t)|
¬ |f(t, u(α(t)))− f(t, u0(α(t)))|

+
1

Γ(r)

∫ β(t)

0
(β(t)− s)r−1|g(t, s, u(γ(s)))− g(t, s, u0(γ(s)))|ds

¬ M‖u− u0‖
L+ ‖u− u0‖

+
1

Γ(r)

∫ β(t)

0
(β(t)− s)r−1|g(t, s, u(γ(s)))− g(t, s, u0(γ(s)))|ds

¬ M

L
‖u− u0‖+M∗

¬ M

L
η∗ = η∗.

Thus we observe that N is continuous function such that N(B(u0, η
∗)) ⊂ B(u0, η

∗).
Moreover, if u is a solution of equation (2) then

|u(t)− u0(t)| = |(Nu)(t)− (Nu0)(t)|
¬ |f(t, u(α(t)))− f(t, u0(α(t)))|

+
1

Γ(r)

∫ β(t)

0
(β(t)− s)r−1|g(t, s, u(γ(s)))− g(t, s, u0(γ(s)))|ds

¬ M |u(α(t))− u0(α(t))|
L+ |u(α(t))− u0(α(t))|

+
p(t)
Γ(r)

∫ β(t)

0

(
(β(t)− s)r−1q(s)

1 + α(t) + |u(γ(s))| +
(β(t)− s)r−1q(s)

1 + α(t) + |u0(γ(s))|

)
ds

¬ M |u(α(t))− u0(α(t))|
L+ |u(α(t))− u0(α(t))| +

2p(t)
Γ(r)

∫ β(t)

0
(β(t)− s)r−1q(s)ds

(9) ¬ M

L
|u(α(t))− u0(α(t))|+ 2p(t)

Γ(r)

∫ β(t)

0
(β(t)− s)r−1q(s)ds.

Since α(t)→∞ as t→∞, then

lim
t→∞

|u(α(t))− u0(α(t))| = lim
t→∞

|u(t)− u0(t)|.

Thus, by using (9), we deduce that

lim
t→∞

|u(t)− u0(t)| ¬ lim
t→∞

2Lp(t)
(L−M)Γ(r)

∫ β(t)

0
(β(t)− s)r−1q(s)ds = 0.

Consequently, all solutions of equation (2) are locally asymptotically stable. �
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4. An Example. As an application of our results we consider the following
integral equation of fractional order

u(t) =
1

2(1 + t)(1 + |u(t)|)

(10) +
1

Γ( 2
3 )

∫ t

0
(t− s)−13 ln(1 + s|u(t)|)

(1 + t+ |u(s)|)2(1 + t4)
ds; t ∈ R+,

where r = 2
3 , α(t) = β(t) = γ(t) = t,

f(t, u) =
1

2(1 + t)(1 + |u|) , t ∈ R+, u ∈ R,

and

g(t, s, u) =
ln(1 + s|u|)

(1 + t+ |u|)2(1 + t4)
; t, s ∈ R+, u ∈ R.

For each t ∈ R+ and u, v ∈ R, we have

|f(t, u)− f(t, v)| ¬ |u− v|
2(1 + t)(1 + |u− v|) ,

Then we can easily check that the assumptions of Theorem 3.1 are satisfied. In
fact, we have that the function f is continuous and satisfies assumption (H2), with
M = 1

2 and L = 1. Also f satisfies assumption (H3) with f∗ = 1
2 . Next, let us notice

that the function g satisfies assumption (H4), where p(t) = 1
1+t4 and q(s) = s. Also,

∫ β(t)

0
(β(t)− s)r−1q(s)ds =

9
10
t
5
3 ,

and

lim
t→∞

p(t)
∫ β(t)

0
(β(t)− s)r−1q(s)ds = lim

t→∞
9t
5
3

10(1 + t4)
= 0.

Hence by Theorem 3.1, equation (10) has a solution defined on R+ and solutions of
this equation are locally asymptotically stable.

Acknowledgement. The authors are grateful to the referee for carefully re-
ading the paper.
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Bel-Abbès, B.P. 89, 22000, Sidi Bel-Abbès, Algérie
E-mail: benchohra@univ-sba.dz

(Received: 2.06.2011)


