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Correspondences between ideals and z-filters for
rings of continuous functions between C∗ and C

Abstract. Let X be a completely regular topological space. Let A(X) be a ring of
continuous functions between C∗(X) and C(X), that is, C∗(X) ⊆ A(X) ⊆ C(X).
In [9], a correspondence ZA between ideals of A(X) and z-filters on X is defined.
Here we show that ZA extends the well-known correspondence for C∗(X) to all rings
A(X). We define a new correspondence ZA and show that it extends the well-known
correspondence for C(X) to all rings A(X). We give a formula that relates the two
correspondences. We use properties of ZA and ZA to characterize C∗(X) and C(X)
among all rings A(X). We show that ZA defines a one-one correspondence between
maximal ideals in A(X) and the z-ultrafilters in X.
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Let X be a completely regular topological space, C(X) the ring of all continuous
real-valued functions on X, and C∗(X) the ring of bounded continuous real-valued
functions on X. Let A(X) be any ring of real-valued continuous functions between
C∗(X) and C(X), that is

C∗(X) ⊆ A(X) ⊆ C(X).

This paper is concerned with correspondences between ideals in A(X) and z-filters
on X.

There is a well-known correspondence E between ideals in C∗(X) and z-filters
in X [6, Problem 2L]. However, E does not associate filters to ideals when applied
to rings of continuous functions that strictly contain C∗(X). There is also a well-
known correspondence Z between ideals in C(X) and z-filters in X that maps each
function to its zero set. However, although Z is defined on all of C(X), it does
not associate filters to ideals when applied to rings of continuous functions strictly
contained in C(X) [6, Section 2.4]. It is known that the correspondence Z for C(X)
distinguishes between ideals of C(X) much more sharply than the correspondence
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E does for ideals of C∗(X). Indeed, in [6, p. 30], the correspondence for C∗(X) is
called “rudimentary”. Of course, the correspondences Z and E cannot be compared
directly because they are defined for different rings.

In a previous article [9], we defined the map ZA which associates a z-filter on
X to each ideal I of any given ring of continuous functions A(X) with C∗(X) ⊆
A(X) ⊆ C(X). In this paper we describe a new map ZA which also associates a
z-filter on X to each ideal I of A(X). We show that the correspondences ZA and
ZA extend the well-known correspondences for C∗(X) and C(X), respectively, to
all such rings A(X) (Corollaries 1.3 and 2.4). We show that the correspondences ZA
and ZA characterize C∗(X) and C(X) among all rings A(X) between C∗(X) and
C(X) (Theorems 1.2 and 2.3). The maps ZA and ZA also allow us to compare the
relationship between the correspondences defined separately for C∗(X) and C(X)
by comparing their extensions to all such rings A(X). We give an explicit formula
that defines this relationship (Theorem 3.1). We also show that ZA is a one-one
correspondence between maximal ideals in A(X) and z-ultrafilters on X (Theorem
4.8).

Rings of continuous functions between C∗(X) and C(X) have been studied by
several authors. D. Plank [8] gives a description of their maximal ideals. In [9], [10],
[2], and [5] the map ZA has been used as a correspondence between ideals in A(X)
and z-filters on X. See [3] for an extended class of rings and [4] for a relationship
between subrings of C(X) containing C∗(X) and real compactifications. Also, work
relating such rings to lattice structures is in [1] and [7].

1. C∗(X) and the map ZA.
In this section we show that the correspondence ZA, defined in [9], between

ideals in subrings A(X) of C(X) containing C∗(X) and z-filters on X extends the
natural correspondence for C∗(X), and we then prove additional properties about
the correspondence ZA. Recall that the correspondence for C∗(X) is described as
follows. For f ∈ C∗(X) let Eε(f) = {x : |f(x)| ¬ ε}, and let E(f) = {Eε(f) : ε >
0}; then the correspondence is given by

I → E[I] = ∪{E(f) : f ∈ I}.
It is shown in [9] that for a ring A(X) between C∗(X) and C(X), the map ZA
associates a z-filter on X to each non-invertible function f ∈ A(X) as follows. If E
is a subset of X then f is E-regular in A(X) if there exists g ∈ A(X) such that
fg(x) = 1 for x ∈ E. When A(X) is understood by context, we simply say that f
is E-regular, without explicit reference to the ring. Then

ZA(f) = {E ∈ Z[X] : f is Ec-regular},
where Z[X] is the family of zero sets of X. Given a set S ⊆ A(X), we define
ZA[S] = ∪{ZA(f) : f ∈ S}. It is shown in [9] that the map I → ZA[I] is a
correspondence between ideals I in A(X) and z-filters on X. We now show that
the correspondence ZA extends the correspondence E for C∗(X) to all subrings
of C(X) containing C∗(X). Indeed, the next theorem shows that ZA characterizes
C∗(X) among subrings of C(X) containing C∗(X). We make use of the following
lemma about ZA proved in [9], which we state here for convenience.
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Lemma 1.1 Let A(X) be a ring of continuous functions such that C∗(X) ⊆ A(X) ⊆
C(X), let f, g ∈ A(X), and let F be a z-filter on X. Then

(a) f is noninvertible in A(X) if and only if ZA(f) is a z-filter on X.

(b) ZA(f) ⊆ F if and only if limF fh = 0 for all h ∈ A(X).

We now give a characterization of C∗(X) among subrings of C(X) containing
C∗(X) in terms of the relationship between ZA and E. As usual, f ∨ g and f ∧ g
are pointwise maxima and minima respectively (as in [6]). If H is a collection of
zero-sets in X we use the notation 〈H〉 as follows. If H is a z-filter base then 〈H〉
is the z-filter generated by H. Otherwise 〈H〉 = Z[X], the collection of all zero-sets
in X.

Theorem 1.2 Let A(X) be a ring of continuous functions such that C∗(X) ⊆
A(X) ⊆ C(X). Then A(X) = C∗(X) if and only if ZA(f) = 〈E(f)〉 for all f ∈
A(X).

Proof Suppose A(X) = C∗(X). Let f ∈ A(X). If f is invertible in A(X) then
clearly ZA(f) = Z[X] = 〈E(f)〉. If f is noninvertible in A(X), let E ∈ E(f). Then
for some ε > 0, |f(x)| > ε for all x ∈ Ec. Let h = f ∨ ε. Clearly h−1 ∈ C∗(X)
and h−1f(x) = 1 for x ∈ Ec, and hence E ∈ ZA(f). For the other containment,
suppose E ∈ ZA(f). Then there exists g ∈ A(X) such that fg(x) = 1 for x ∈ Ec.
Since g is bounded there exists ε > 0 such that |f(x)| > ε for all x ∈ Ec. Thus
E ⊇ {x : |f(x)| ¬ ε}, so E ∈ 〈E(f)〉.

Conversely, suppose ZA(f) = 〈E(f)〉 for all f ∈ A(X). If there is an unbounded
function f ∈ A(X) then h = 1/(f2 + 1) is bounded and never zero. By definition
〈E(h)〉 is a z-filter, so ZA(h) is a z-filter. But h is invertible in A(X), contradicting
Lemma 1.1(a). �

Corollary 1.3 For any ideal I ∈ C∗(X), ZC∗ [I] = E[I].

Proof It follows from Theorem 1.2 and the definitions that ZC∗ [I] =
⋃
f∈I〈E(f)〉.

It remains to show that
⋃
f∈I〈E(f)〉 =

⋃
f∈I E(f). The right to left containment

follows directly from the definitions. The left to right containment also makes use
of the fact that E[I] is a z-filter and hence upward closed [6, p. 33]. �

For the remainder of this section, we prove more properties about the map ZA.
First we show how to characterize in terms of ZA which sets are H-regular.

Lemma 1.4 Let A(X) be a ring of continuous functions such that C∗(X) ⊆ A(X) ⊆
C(X), let f ∈ A(X), and let H be a zero set in X. Then H ∩ F 6= ∅ for every
F ∈ ZA(f) if and only if f is not H-regular. In particular, f is not F -regular for
any F ∈ ZA(f).

Proof Suppose H is disjoint from some F ∈ ZA(f). Then H ⊂ F c. By the defini-
tion of ZA(f), f is F c-regular. But then f is H-regular. For the other implication,
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suppose H meets every F ∈ ZA(f). Then there is a z-filter F containing H and
ZA(f). Now if f is H-regular then there exists h ∈ A(X) such that fh(x) = 1 for
x ∈ H, and in this case limF fh 6= 0. But by Lemma 1.1(b), limF fh = 0 for all
h ∈ A(X). It follows that f is not H-regular. �

The next lemma shows to what extent ZA maps products and sums of functions
to respectively meets and joins on the lattice of z-filters.

Lemma 1.5 Let A(X) be a ring of continuous functions such that C∗(X) ⊆ A(X) ⊆
C(X), and let f, g ∈ A(X).

(a) ZA(fg) = ZA(f) ∧ ZA(g)

(b) ZA(f + g) ⊆ ZA(f) ∨ ZA(g)

(c) If f, g ­ 0, then ZA(f + g) = ZA(f) ∨ ZA(g)

Proof (a) The containment ZA(fg) ⊆ ZA(f) ∧ ZA(g) follows from the fact that
if fg is locally invertible on Ec, then so are f and g. For the other containment,
let E ∈ ZA(f) ∧ ZA(g). Then there exist h, k ∈ A(X) such that fh(x) = 1 and
gk(x) = 1 for x ∈ Ec. Then fghk(x) = 1 for x ∈ Ec, and so E ∈ ZA(fg).

(b) Let F = ZA(f)∨ZA(g). Then by Lemma 1.1(b), limF fh = 0 and limF gh =
0 for all h ∈ A(X). Thus limF (f + g)h = limF fh+ limF gh = 0 for all h ∈ A(X),
and so by Lemma 1.1(b), ZA(f + g) ⊆ F .

(c) Since 0 < f ¬ f + g, it follows from Lemma 1(d) of [9] that ZA(f) ⊆
ZA(f + g). Similarly, ZA(g) ⊆ ZA(f + g), and so ZA(f) ∨ ZA(g) ⊆ ZA(f + g).
Equality then follows from (b). �

Notice that Lemma 1.5 (a) implies that for any f ∈ A(X) we have ZA(f) =
ZA(f2). This also follows directly from the definition of ZA(f). Furthermore, the
opposite containment of (b) does not in general hold, for f = x and g = −x is a
counterexample with A(X) = C(X).

2. C(X) and the map ZA.
In this section we define a new correspondence ZA between ideals and z-filters

for rings A(X) between C∗(X) and C(X), and show that it extends the well-known
correspondence for C(X). Recall that the natural correspondence between ideals in
C(X) and z-filters on X is described as follows. To each f ∈ C(X) we associate its
zero set Z(f), and to an ideal I in C(X), the correspondence is defined as follows:

I → Z[I] = ∪{Z(f) : f ∈ I}.

For rings A(X) between C∗(X) and C(X), we define a map ZA as follows.

Definition 2.1 Let A(X) be a ring of continuous functions such that C∗(X) ⊆
A(X) ⊆ C(X). For f ∈ A(X) we set

ZA(f) = {E ∈ Z[X] : for all zero sets H ⊂ Ec, f is H-regular}.
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Given a set S ⊆ A(X), we define ZA[S] = ∪{ZA(f) : f ∈ S}.
We now show that the correspondence ZA extends the correspondence Z for

C(X) to all subrings A(X) of C(X) containing C∗(X). Indeed, the next theorem
shows that ZA characterizes C(X) among all such rings A(X). We first prove the
following fundamental proposition.

Proposition 2.2 Let A(X) be a ring of continuous functions such that C∗(X) ⊆
A(X) ⊆ C(X), and let f ∈ A(X). Then f is not invertible in A(X) if and only
if ZA(f) is a z-filter on X. When f is invertible in A(X), ZA(f) = Z[X], the
collection of all zero sets on X.

Proof If f is invertible in A(X) then it follows directly from the definition of
ZA(f) that ZA(f) = Z[X].

If f is not invertible in A(X) then clearly ∅ /∈ ZA(f). Also, if E ∈ ZA(f)
and F ⊃ E then clearly F ∈ ZA(f). Now suppose E1, E2 ∈ ZA(f). We show that
E1 ∩ E2 ∈ ZA(f). To this end let H be a zero set with H ⊂ (E1 ∩ E2)c. We show
that f is H-regular and it will follow that E1 ∩ E2 ∈ ZA(f). Suppose, for the sake
of contradiction, that f is not H-regular. It follows by Lemma 1.4 that H ∩ F 6= ∅
for every F ∈ ZA(f). So there is a z-filter F containing ZA(f) and H, in particular
ZA(f) ⊂ F . By Lemma 1.1(b) it follows that limF fh = 0 for all h ∈ A(X). Now
note that the zero sets H1 = H ∩ E1 and H2 = H ∩ E2 are disjoint from E2 and
E1, respectively, and so by hypothesis f is H1-regular and H2-regular. Since the
collection of sets on which a given function is regular is closed under finite unions
([9], Lemma 1(b)), it follows that f is H1∪H2-regular. That is, there exists k ∈ A(X)
such that fk(x) = 1 for x ∈ H1 ∪H2. Since H1 ∪H2 ⊂ H and since limF fk = 0 it
follows that there is a zero set H0 ∈ F with H0 ⊂ H − (H1 ∪H2) for which f is not
H0-regular. But since H0 is a zero set which is disjoint from E1 and E2 it follows
by the definition of ZA(f) that f is H0-regular. This contradiction completes the
proof. �

Theorem 2.3 Let A(X) be a ring of continuous function such that C∗(X) ⊆
A(X) ⊆ C(X). Then A(X) = C(X) if and only if ZA(f) = 〈Z(f)〉 for all f ∈
A(X).

Proof Suppose A(X) = C(X). Let f ∈ A(X). If f is invertible in A(X), then
by Proposition 2.2 we have ZA(f) = Z[X]. Since f is invertible, Z(f) is empty,
and hence 〈Z(f)〉 = Z[X]. Now f ∈ A(X) = C(X) is noninvertible if and only if
Z(f) 6= ∅. Suppose f is noninvertible. If H is a zero set such that H∩Z(f) = ∅, then
f is H-regular in C(X). So by the definition of ZA(f) it follows that Z(f) ∈ ZA(f)
and hence 〈Z(f)〉 ⊂ ZA(f). For the other containment, suppose E ∈ ZA(f) and
p ∈ Ec. Since X is completely regular, there is a zero-set H containing p such that
H ⊂ Ec. But f is invertible on H by definition of ZA(f), so f 6= 0 on H. It follows
that f is nonzero on every point p ∈ Ec and hence, E ⊇ Z(f) . Thus, E ∈ 〈Z(f)〉.

Conversely, suppose f ∈ A(X) is never zero, that is Z(f) = ∅. Then by hypo-
thesis ZA(f) = 〈Z(f)〉 is not a z-filter, so f is invertible in A(X) by Proposition
2.2. Thus A(X) is inverse closed (every function in A(X) that does not vanish on
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X has an inverse in A(X)). Any subring of C(X) that is uniformly closed (closed
in the uniform topology), contains all constant functions, and is inverse closed is
C(X) itself ([11], problem 44C part 5, p. 294). Since A(X) ⊇ C∗(X), it is straight
forward to see that A(X) is uniformly closed. Since A(X) also contains constant
functions, it follows that A(X) = C(X). �

Corollary 2.4 For any ideal I ∈ C(X), ZC [I] = Z[I].

Proof It follows from Theorem 2.3 and the definitions that ZC [I] =
⋃
f∈I〈Z(f)〉.

It remains to show that
⋃
f∈I〈Z(f)〉 =

⋃
f∈I Z(f). The right to left containment

follows directly from the definitions. The left to right containment also makes use
of the fact that Z[I] is a z-filter and hence upward closed [6, p. 25]. �

3. Comparing the correspondence for C(X) and C∗(X).
We pointed out in the introduction that the correspondences Z and E, being

defined on different rings, cannot be compared directly. In the next theorem, we
compare these correspondences by comparing their extensions ZA and ZA to inter-
mediate rings. Indeed, we give a formula that relates ZA and ZA for any ring A(X)
between C∗(X) and C(X). We need some notation.

For a z-filter F we write hF for the hull of F , that is hF is the set of z-ultrafilters
containing F . If U is a collection of z-ultrafilters we write kU to denote the kernel
of U, that is, kU is the intersection of the z-ultrafilters in U.

Theorem 3.1 Let A(X) be a ring of continuous functions such that C∗(X) ⊆
A(X) ⊆ C(X) and let f be a noninvertible function in A(X). Then ZA(f) =
khZA(f).

Proof Let E ∈ ZA(f). We show that E ∈ U for every z-ultrafilter U containing
ZA(f). Suppose that there exists U ∈ hZA(f) such that E /∈ U . Then there exists
F ∈ U such that E ∩ F = ∅. But then f is F -regular by the definition of ZA(f). It
follows that there exists an h ∈ A(x) such that limU fh 6= 0, which is a contradiction
to Lemma 1.1(b). For the other containment, suppose that E /∈ ZA(f). Then there
exists a zero-set H ⊂ Ec such that f is not H-regular. By Lemma 1.4 it follows
that H meets every F ∈ ZA(f), and so there is a z-ultrafilter U containing H and
ZA(f). But then E /∈ U , and consequently E /∈ khZA(f). �

Note that this result also gives an alternate proof of Proposition 2.2: if f is not
invertible then ZA(f) is a z-filter by Lemma 1.1(a). So ZA(f) = khZA(f) is also a
z-filter.

4. Ideals and ZA.
The main goal of this section is to clarify the behavior of the correspondences

ZA and ZA on maximal ideals in A(X). It is known that E (resp. Z) is a one-one
correspondence between maximal ideals in C∗(X) (resp. C(X)) and z-filters on X;
it is noted in [6, p. 82] that it is remarkable that the characterization of the maximal
ideals in C∗(X) and in C(X) have a common solution, that is, each maximal ideal
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in its ring corresponding to a z-ultrafilter on X. We mentioned earlier that for any
A(X), the map ZA maps ideals in A(X) to z-filters on X. It was furthermore shown
in [2] that ZA maps each maximal ideal in A(X) to a z-filter that is contained in
a unique z-ultrafilter on X. In [9] an inverse map Z←A is defined, which in [10] is
shown to map z-filters on X to ideals in A(X). In this section, we show that the
correspondence ZA indeed maps ideals in A(X) to z-filters on X. We also show
that it maps each maximal ideal to a z-filter contained in a unique z-ultrafilter,
and that this containment can be strict for rings other than C(X). Furthermore,
we define an inverse map Z←A from z-filters to ideals. We show that when restricted
to z-ultrafilters, Z←A coincides with the analogous inverse map Z←A , and that Z←A is
a one-one correspondence between z-ultrafilters and maximal ideals.

We need some lemmas including some basic facts about the kernel-hull operator.

Lemma 4.1 If H is a z-ultrafilter then for all z-filters F and G, if F ∧ G ⊆ H ,
then F ⊆ H or G ⊆ H.

Proof Suppose F and G are z-filters such that F ∧ G ⊆ H. If F * H, then there
exists F ∈ F such that F /∈ H. For all G ∈ G, we have F ∪G ∈ F and F ∪G ∈ G.
Thus F ∪G ∈ F ∧G ⊆ H. Since H is a z-ultrafilter, z-ultrafilters are prime z-filters,
and F /∈ H, it follows that G ∈ H. Thus G ⊆ H. �

Lemma 4.2 Let F and G be z-filters on X. Then

(a) kh(F ∧ G) = khF ∧ khG
(b) kh(F ∨ G) ⊇ khF ∨ khG
(c) kh(F ∨ G) = kh(khF ∨ khG)

Proof (a) If E ∈ kh(F ∧ G) then E belongs to every z-ultrafilter that contains
F ∧ G, so clearly E belongs to every z-ultrafilter that contains F and to every
z-ultrafilter that contains G; that is, E ∈ khF ∧ khG. For the other containment,
suppose E ∈ khF ∧ khG. Then E belongs to every z-ultrafilter that contains F and
to every z-ultrafilter that contains G. Now let U be any z-ultrafilter that contains
F ∧ G. Then by Lemma 4.1, either F ⊆ U or G ⊆ U . In either case, E ∈ U . Thus
E ∈ kh(F ∧ G).

(b) Since F ⊆ F∨G it follows that khF ⊆ kh(F∨G). Similarly, khG ⊆ kh(F∨G),
and the result follows.

(c) By part (b), kh(F ∨ G) ⊇ khF ∨ khG ⊇ F ∨ G. The result follows by taking
kh of all three expressions and noting that kh is an idempotent operation. �

Theorem 4.3 Let A(X) be a ring of continuous functions such that C∗(X) ⊆
A(X) ⊆ C(X). If I is an ideal in A(X), then ZA[I] is a z-filter on X. Moreover,
if M is a maximal ideal in A(X), then ZA[M ] is contained in a unique z-ultrafilter
on X.
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Proof Clearly ∅ /∈ ZA[I]. Suppose E ∈ ZA[I] and F ⊇ E. Then E ∈ ZA(f) for
some f ∈ I, so F ∈ ZA(f) and hence F ∈ ZA[I]. If E,F ∈ ZA[I] then E ∈ ZA(f) and
F ∈ ZA(g) for some f, g ∈ I. Now, using Theorem 3.1 and Lemma 4.2(b) we have
E ∩F ∈ ZA(f)∨ZA(g) ⊆ kh(ZA(f)∨ZA(g)). But by Lemma 1.5 (a) (applied to f2

and g2) and Lemma 1.5(c) we have kh(ZA(f) ∨ ZA(g)) = kh(ZA(f2) ∨ ZA(g2)) =
kh(ZA(f2 + g2)) = ZA(f2 + g2) ⊆ ZA[I]. Thus E ∩ F ∈ ZA[I]. This shows that
ZA[I] is an ideal.

Now, if M is a maximal ideal then ZA[M ] is contained in a unique z-ultrafilter U
[2]. Since ZA[M ] ⊆ ZA[M ], it follows that ZA[M ] is also contained in the z-ultrafilter
U . �

The containment in Theorem 4.3 may be proper as the following example shows.
For the example we use the fact that if A(X) = C∗(X) then limF fh = 0 if and
only if limF f = 0 for any h ∈ C∗(X), and hence by Lemma 1.1(b), ZA(f) ⊆ F if
and only if limF f = 0. We also make use of the following proposition, which is a
slightly weaker form of Theorem 2.4 in [10]. It uses the inverse map of the set map
ZA defined by

Z←A [F ] = {f ∈ A(X) : ZA(f) ⊆ F}

where F is a z-filter on X.

Proposition 4.4 For any z-ultrafilter U and any ring of continuous functions
A(X), such that C∗(X) ⊆ A(X) ⊆ C(X), the set Z←A [U ] is a maximal ideal in
A(X).

Example 4.5 Let A(X) = C∗[0,∞). Let E = {1, 2, 3, . . .} and let UE be any free
z-ultrafilter on [0,∞) containing E. Let M = Z←A [UE ]. By Proposition 4.4, M is a
maximal ideal in A(X). Now, by Theorem 4.3, ZA[M ] is contained in the unique
z-ultrafilter UE . We show that the containment is proper. In particular, we show
that E /∈ ZA[M ]. Now for each f ∈ M , by Lemma 1.1(b) and the above remarks,
we have limUE f = 0, in particular for each n, there is a set Un ∈ UE such that
−1/n < f(x) < 1/n for all x ∈ Un. Select a1 ∈ U1∩E, and using the fact that UE is
free, select B1 ∈ UE , such that a1 6∈ B1. For each n, select an ∈ Un∩E∩

⋂
1¬j<nBj

and select Bn such that an 6∈ Bn. Then (an) is a one-one E-valued sequence; in
particular (an) assumes infinitely many integer values, and hence is unbounded.
Furthermore, f(an) → 0 as n → ∞ by construction. Since f is continuous, we can
choose distinct real values bn 6∈ E close to an (say, with |an − bn| < 1), and such
that f(bn)→ 0 as n→∞. As the differences between the bn and an are bounded,
and the set {a1, a2, . . .} is unbounded, the set F = {b1, b2, . . .} is unbounded, and
hence F is contained in some free z-ultrafilter UF . Then limUF f = 0, and hence
ZA(f) ⊆ UF by Lemma 1.1(b). Since E /∈ UF , E /∈ khZA(f) = ZA(f). Since f was
an arbitrary element of M it follows that E /∈ ZA[M ].

We now consider the inverse of the map ZA.
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Definition 4.6 The inverse map of the set map ZA is defined by

Z←A [F ] = {f ∈ A(X) : ZA(f) ⊆ F}

where F is a z-filter on X.

Theorem 4.7 Let A(X) be a ring of continuous functions such that C∗(X) ⊆
A(X) ⊆ C(X). If U is a z-ultrafilter on X, then Z←A [U ] = Z←A [U ]. In particular,
Z←A [U ] is a maximal ideal in A(X).

Proof We first observe that, in general, ZA(f) ⊆ U if and only if ZA(f) ⊆ U .
Indeed, if ZA(f) ⊆ U , then U ∈ hZA(f), and by Theorem 3.1, it follows that
ZA(f) = khZA(f) ⊆ U . The converse is trivially true. From this we conclude that
Z←A [U ] = Z←A [U ]. By Proposition 4.4, Z←A [U ] is a maximal ideal, and this completes
the proof. �

Theorem 4.8 Let A(X) be a ring of continuous functions such that C∗(X) ⊆
A(X) ⊆ C(X). There is a one-one correspondence between z-ultrafilters on X and
maximal ideals in A(X) given by

U → Z←A [U ].

Proof By Theorem 4.7, Z←A (U) is guaranteed to be a maximal ideal in A(X).
Thus it remains to show that ZA is one-one on the collection of z-ultrafilters on X.
Now let U1 and U2 be z-ultrafilters on X, and suppose that Z←A [U1] = Z←A [U2]. By
Theorem 4.7, these are maximal ideals, so by Theorem 4.3, ZAZ←A [U1] is contained
in a unique z-ultrafilter. In general, for any z-filter F , we have directly from the
definitions that ZA[Z←A [F ]] ⊆ F , and hence ZAZ

←
A [U1] ⊆ U1. Similarly, ZAZ←A [U2]

is contained in the unique z-ultrafilter U2. Since ZAZ
←
A [U1] = ZAZ

←
A [U2], it follows

that U1 = U2. �
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