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Abstract. The aim of this paper is to prove a common fixed point theorem for even
number of single-valued and two set-valued mappings in complete Menger space using
implicit relation. Our result improves and extends the result of Chen and Chang [Com-
mon fixed point theorems in Menger spaces, Int. J. Math. Math. Sci. 2006, Art. ID
75931, 15 pp].
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1. Introduction. There have been a number of generalizations of metric space.
One such generalization is Menger space introduced in 1942 by Karl Menger [15]
who used distribution functions instead of nonnegative real numbers as values of the
metric. Schweizer and Sklar [23, 15] studied this concept and then the important
development of Menger space theory was due to Sehgal and Bharucha-Reid [25].
It is also of fundamental importance in probabilistic functional analysis, nonlinear
analysis and applications [2, 3]. In 1991, Mishra [17] formulated the definition of
compatible maps in probabilistic metric space (shortly PM-space). This condition
has further been weakened by introducing the notion of weakly compatible mappings
by Singh and Jain [26] in PM-spaces. It is worth to mention that every pair of
compatible maps is weakly compatible, but the converse is not always true.

In 1976, Caristi [1] proved a fixed point theorem. Since the Caristi’s fixed point
theorem does not require the continuity of the mapping, it has applications in many
fields. In 1993, Zhang et al. [27] proved a set-valued Caristi’s theorem in probabilistic
metric spaces. Chuan [7] brought forward the concept of Caristi type hybrid fixed
point in Menger PM-space. Various authors proved some fixed point theorems for
multi-valued mappings in probabilistic metric spaces (see [4, 22, 9, 10, 21]). Recently,
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Chen and Chang [6] proved a common fixed point theorem for four single valued and
two set-valued mappings in complete Menger space using the notion of compatibility.
In [22], Razani and Shirdaryazdi proved a common fixed point theorem for even
number of single valued mappings in complete Menger space. In [6, 18, 22], the
results have been proved for continuous mappings.

In fixed point theory many authors (see [5, 13, 14, 16, 19, 20, 26]) used implicit
relations as a tool to find common fixed point of mappings. These observations mo-
tivated us to prove a common fixed point theorem for even number of single-valued
and two set-valued mappings in complete Menger space using implicit relation. Our
results never require continuity of one or more mappings.

2. Preliminaries.

Definition 2.1 ([24]) A mapping ∗ : [0, 1]× [0, 1]→ [0, 1] is t-norm if ∗ is satis-
fying the following conditions:

1. ∗ is commutative and associative;

2. a ∗ 1 = a for all a ∈ [0, 1];

3. c ∗ d ­ a ∗ b whenever c ­ a and d ­ b and a, b, c, d ∈ [0, 1].

Definition 2.2 ([24]) A mapping F : R→ R+ is called a distribution function if
it is non-decreasing and left continuous with inf{F (t) : t ∈ R} = 0 and sup{F (t) :
t ∈ R} = 1.

We shall denote by = the set of all distribution functions defined on [−∞,∞]
while H(t) will always denote the specific distribution function defined by

H(t) =
{

0, if t ¬ 0;
1, if t > 0.

If X is a non-empty set, F : X×X → = is called a probabilistic distance on X and
the value of F at (x, y) ∈ X ×X is represented by Fx,y.

Definition 2.3 ([24]) A PM-space is an ordered pair (X,F), where X is a non-
empty set of elements and F is a probabilistic distance satisfying the following
conditions: for all x, y, z ∈ X and t, s > 0,

1. Fx,y(t) = H(t) for all t > 0 if and only x = y;

2. Fx,y(0) = 0;

3. Fx,y(t) = Fy,x(t);

4. if Fx,y(t) = 1 and Fy,z(s) = 1 then Fx,z(t+ s) = 1.

The ordered triple (X,F , ∗) is called a Menger space if (X,F) is a PM-space, ∗
is a t-norm and the following inequality holds:

Fx,y(t+ s) ­ Fx,z(t) ∗ Fz,y(s),

for all x, y, z ∈ X and t, s > 0.
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Every metric space (X, d) can always be realized as a PM-space by considering
F : X ×X → = defined by Fx,y(t) = H(t− d(x, y)) for all x, y ∈ X. So PM-spaces
offer a wider framework than that of metric spaces and are better suited to cover
even wider statistical situations.

Definition 2.4 ([3]) Let (X,F , ∗) be a Menger space and A be a non-empty
subset of X. Then A is said to be probabilistically bounded if

sup
t>0

inf
x,y∈A

Fx,y(t) = 1.

If X itself is probabilistically bounded, then X is said to be a probabilistically
bounded space.

Throughout this paper, B(X) will denote the family of non-empty bounded
subsets of a Menger space (X,F , ∗). For all A,B ∈ B(X) and for every t > 0, we
define

DFA,B(t) = sup{Fa,b(t); a ∈ A, b ∈ B}

and

δFA,B(t) = inf{Fa,b(t); a ∈ A, b ∈ B}.

If the set A consists of a single point a, we write

δFA,B(t) = δFa,B(t).

If the set B also consists of a single point b, we write

δFA,B(t) = Fa,b(t).

It follows immediately from the definition that

δFA,B(t) = δFB,A(t) ­ 0,

δFA,B(t) = 1⇔ A = B = {a},

for all A,B ∈ B(X).

Definition 2.5 ([24]) Let (X,F , ∗) be a Menger space with continuous t-norm.

1. A sequence {xn} in X is said to converge to a point x in X if and only if for
every ε > 0 and λ ∈ (0, 1), there exists an integer N such that Fxn,x(ε) > 1−λ
for all n ­ N.

2. A sequence {xn} in X is said to be Cauchy if for every ε > 0 and λ ∈ (0, 1),
there exists an integer N such that Fxn,xm(ε) > 1− λ for all n,m ­ N.

3. A Menger space in which every Cauchy sequence is convergent is said to be
complete.

The following definition is on the lines of Jungck and Rhoades [12].
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Definition 2.6 The mappings f : X → X and g : X → B(X) are said to be
weakly compatible (or coincidentally commuting) if they commute at their coinci-
dence points, that is gu = {fu} for some u ∈ X then fgu = gfu (Note that the
term gu = {fu} implies that gu is a singleton).

Remark 2.7 If mappings f : X → X and g : X → B(X) of a Menger space
(X,F , ∗) are compatible then they are weakly compatible but the converse need
not be true.

3. Implicit Relation.

In 2008, Imdad and Ali [11] used the following implicit relation for the existence
of common fixed points of the involved mappings.

Let Ψ be the class of all real continuous functions ψ : [0, 1]4 → R satisfying the
following conditions:

(R-1) For every u > 0, v ­ 0 with ψ(u, v, u, v) ­ 0 or ψ(u, v, v, u) ­ 0, we have
u > v.

(R-2) ψ(u, u, 1, 1) < 0, for all u > 0.

Example 3.1 ([11]) Define ψ : [0, 1]4 → R as ψ(t1, t2, t3, t4) = t1−φ (min{t2, t3, t4}),
where φ : [0, 1]→ [0, 1] is a continuous function such that φ(s) > s for 0 < s < 1.

Example 3.2 ([11]) Define ψ : [0, 1]4 → R as ψ(t1, t2, t3, t4) = t1−amin{t2, t3, t4},
where a > 1.

Example 3.3 ([11]) Define ψ : [0, 1]4 → R as ψ(t1, t2, t3, t4) = t1−at2−min{t3, t4},
where a > 0.

Example 3.4 ([11]) Define ψ : [0, 1]4 → R as ψ(t1, t2, t3, t4) = t1− at2− bt3− ct4,
where a > 1, b, c ­ 0(6= 1).

Example 3.5 ([11]) Define ψ : [0, 1]4 → R as ψ(t1, t2, t3, t4) = t1−at2−b(t3 + t4),
where a > 1, b ­ 0(6= 1).

Example 3.6 ([11]) Define ψ : [0, 1]4 → R as ψ(t1, t2, t3, t4) = t31 − at2t3t4, where
a > 1.
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4. Results.

Theorem 4.1 Let (X,F , ∗) be a complete Menger space where ∗ is a continuous
t-norm. Let P1, P2, . . . , P2n : X → X be single-valued mappings and let A,B : X →
B(X) two set-valued mappings. If the following conditions are satisfied:

(1) A(X) ⊆ P2P4 . . . P2n(X), B(X) ⊆ P1P3 . . . P2n−1(X);
(2) One of P1P3 . . . P2n−1(X) or P2P4 . . . P2n(X) is a closed subset of X;
(3) The pairs (A,P1P3 . . . P2n−1) and (B,P2P4 . . . P2n) are weakly compatible;

Suppose that




P1(P3 . . . P2n−1) = (P3 . . . P2n−1)P1,
P1P3(P5 . . . P2n−1) = (P5 . . . P2n−1)P1P3,

...
P1 . . . P2n−3(P2n−1) = (P2n−1)P1 . . . P2n−3,

A(P3 . . . P2n−1) = (P3 . . . P2n−1)A,
A(P5 . . . P2n−1) = (P5 . . . P2n−1)A,

...
AP2n−1 = P2n−1A,

P2(P4 . . . P2n) = (P4 . . . P2n)P2,
P2P4(P6 . . . P2n) = (P6 . . . P2n)P2P4,

...
P2 . . . P2n−2(P2n) = (P2n)P2 . . . P2n−2,

B(P4 . . . P2n) = (P4 . . . P2n)B,
B(P6 . . . P2n) = (P6 . . . P2n)B,

...
BP2n = P2nB;





(4) There exists ψ ∈ Ψ such that

(1) ψ

(
δFAx,By(t), FP1P3...P2n−1x,P2P4...P2ny(t),
δFAx,P1P3...P2n−1x(t), δFBy,P2P4...P2ny(t)

)
­ 0,

for all x, y ∈ X and t > 0. Then there exists a point z ∈ X such that {z} = {P1z} =
{P2z} = . . . = {P2nz} = Az = Bz.

Proof Let x0 be an arbitrary point in X. By (1), we choose a point x1 ∈ X such
that y0 = P2P4 . . . P2nx1 ∈ Ax0. For this point x1 there exists a point x2 ∈ X such
that y1 = P1P3 . . . P2n−1x2 ∈ Bx1, and so on. Continuing in this manner we can
construct sequences {xn} and {yn} in X as follows

y2n = P2P4 . . . P2nx2n+1 ∈ Ax2n, y2n+1 = P1P3 . . . P2n−1x2n+2 ∈ Bx2n+1,

for n = 0, 1, 2, . . .. Now, using inequality (1) with x = x2n and y = x2n+1, we get

ψ

(
δFAx2n,Bx2n+1(t), FP1P3...P2n−1x2n,P2P4...P2nx2n+1(t),
δFAx2n,P1P3...P2n−1x2n(t), δFBx2n+1,P2P4...P2nx2n+1(t)

)
­ 0,

ψ
(
Fy2n,y2n+1(t), Fy2n−1,y2n(t), Fy2n,y2n−1(t), Fy2n+1,y2n(t)

)
­ 0.
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Using (R-1), we get

(2) Fy2n,y2n+1(t) > Fy2n−1,y2n(t).

Thus {Fy2n,y2n+1(t), n ­ 0} is a bounded strictly increasing sequence of positive real
numbers in [0, 1] and therefore tends to a limit L(t) ¬ 1. We claim that L(t) = 1. For
if L(t0) < 1 for some t0, then letting n→∞ in inequality (2), we get L(t0) > L(t0)
a contradiction. Hence L(t) = 1 for all t > 0.

Claim: {yn} is a Cauchy sequence in X. Now for m ­ 1,

Fyn,yn+m(t) ­ Fyn,yn+1
(
t

2

)
∗ Fyn+1,yn+m

(
t

2

)
.

This yields that

lim
n→∞

Fyn,yn+m(t) ­ lim
n→∞

Fyn,yn+1

(
t

2

)
∗ lim
n→∞

Fyn+1,yn+m

(
t

2

)

= 1 ∗ lim
n→∞

Fyn+1,yn+m

(
t

2

)

= lim
n→∞

Fyn+1,yn+m

(
t

2

)

­ lim
n→∞

(
Fyn+1,yn+2

(
t

4

)
∗ Fyn+2,yn+m

(
t

4

))

= lim
n→∞

Fyn+2,yn+m

(
t

4

)

...

­ lim
n→∞

(
Fyn+m−2,yn+m−1

(
t

2m−1

)
∗ Fyn+m−1,yn+m

(
t

2m−1

))

= 1,

and thus limn→∞ Fyn,yn+m(t) = 1, since ∗ is continuous and a∗1 = a for all a ∈ [0, 1].
Hence {yn} is a Cauchy sequence in X.

Now, suppose that P2P4 . . . P2n(X) is a closed subset of X, then for some u ∈ X
we have z = P2P4 . . . P2n(u) ∈ P2P4 . . . P2n(X). Putting x = x2n and y = u in
inequality (1), we have

ψ

(
δFAx2n,Bu(t), FP1P3...P2n−1x2n,P2P4...P2nu(t),
δFAx2n,P1P3...P2n−1x2n(t), δFBu,P2P4...P2nu(t)

)
­ 0,

ψ

(
δFy2n,Bu(t), Fy2n−1,P2P4...P2nu(t),

Fy2n−1,y2n(t), δFBu,z(t)

)
­ 0,

as n→∞, we have

ψ (δFz,Bu(t), Fz,z(t), Fz,z(t), δFBu,z(t)) ­ 0.
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Using (R-1), we have δFz,Bu(t) > 1 for all t > 0, which contradicts. Hence z = Bu.
Therefore, Bu = {z} = {P2P4 . . . P2nu}. Since (B,P2P4 . . . P2n) is weakly compati-
ble pair we have B(P2P4 . . . P2nu) = (P2P4 . . . P2n)Bu, hence Bz = {P2P4 . . . P2nz}.
Putting x = x2n and y = z in inequality (1), we have

ψ

(
δFAx2n,Bz(t), FP1P3...P2n−1x2n,P2P4...P2nz(t),
δFAx2n,P1P3...P2n−1x2n(t), δFBz,P2P4...P2nz(t)

)
­ 0,

ψ

(
Fy2n,P2P4...P2nz(t), Fy2n−1,P2P4...P2nz(t),
Fy2n−1,y2n(t), FP2P4...P2nz,P2P4...P2nz(t)

)
­ 0.

Taking limit as n→∞, we have

ψ
(
Fz,P2P4...P2nz(t), Fy2n−1,P2P4...P2nz(t), 1, 1

)
­ 0,

which contradicts (R-2). Hence z = P2P4 . . . P2nz. Therefore,Bz = {P2P4 . . . P2nz} =
{z}. Since B(X) ⊆ P1P3 . . . P2n−1(X), there exists v ∈ X such that {P1P3 . . .
P2n−1v} = Bz = {P2P4 . . . P2nz} = {z}. Putting x = v and y = z in inequality (1),
we have

ψ

(
δFAv,Bz(t), FP1P3...P2n−1v,P2P4...P2nz(t),
δFAv,P1P3...P2n−1v(t), δFBz,P2P4...P2nz(t)

)
­ 0

ψ (δFAv,z(t), Fz,z(t), δFAv,z(t), Fz,z(t)) ­ 0,

or

ψ (δFAv,z(t), 1, δFAv,z(t), 1) ­ 0.

Using (R-1), we get δFAv,z(t) > 1 for all t > 0, which contradicts. Hence, Av = {z}.
Since Av = {P1P3 . . . P2n−1v} and the pair (A,P1P3 . . . P2n−1) is weakly compati-
ble, we obtainAz = A(P1P3 . . . P2n−1v) = (P1P3 . . . P2n−1)Av = {P1P3 . . . P2n−1z}.
Putting x = z and y = x2n+1 in inequality (1), we get

ψ

(
δFAz,Bx2n+1(t), FP1P3...P2n−1z,P2P4...P2nx2n+1(t),
δFAz,P1P3...P2n−1z(t), δFBx2n+1,P2P4...P2nx2n+1(t)

)
­ 0,

ψ
(
δFAz,y2n+1(t), Fz,y2n(t), δFAz,z(t), δFy2n+1,y2n(t)

)
­ 0.

Taking limit as n→∞, we have

ψ (δFAz,z(t), Fz,z(t), δFAz,z(t), δFz,z(t)) ­ 0

ψ (δFAz,z(t), 1, δFAz,z(t), 1) ­ 0.

Using (R-1), we get δFAz,z(t) > 1 for all t > 0, which contradicts. Hence, Az =
{P1P3 . . . P2n−1z} = {z}. Therefore, we get Az = Bz = {P1P3 . . . P2n−1z} =
{P2P4 . . . P2nz} = {z}. Now we show that z is the fixed point of all the com-
ponent mappings. Putting x = P3 . . . P2n−1z, y = z, P

′
1 = P1P3 . . . P2n−1 and
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P
′
2 = P2P4 . . . P2n in inequality (1), we have

ψ

(
δFAP3...P2n−1z,Bz(t), FP ′1P3...P2n−1z,P

′
2z

(t),

δFAP3...P2n−1z,P ′1P3...P2n−1z
(t), δFBz,P ′2z(t)

)
­ 0,

ψ

(
FP3...P2n−1z,z(t), FP3...P2n−1z,z(t),
FP3...P2n−1z,P3...P2n−1z(t), Fz,z(t)

)
­ 0,

ψ
(
FP3...P2n−1z,z(t), FP3...P2n−1z,z(t), 1, 1

)
­ 0,

which contradicts (R-2). Hence, P3 . . . P2n−1z = z. Therefore, P1z = z. Continuing
this procedure, we have

Az = {P1z} = {P3z} = . . . = {P2n−1z} = {z}.
Similarly, if we put x = z, y = P4 . . . P2nz, P

′
1 = P1P3 . . . P2n−1 and P

′
2 =

P2P4 . . . P2n in inequality (1), we get P4 . . . P2nz = z. Hence, P2z = z. Continu-
ing this procedure, we get

Bz = {P2z} = {P4z} = . . . = {P2nz} = {z}.
Therefore z is a unique common fixed point of P1, P2, . . . , P2n, A and B.
The proof is similar when P1P3 . . . P2n−1(X) is assumed to be a closed subset

of X.
Uniqueness: Let w(6= z) be another common fixed point of P1, P2, . . . , P2n, A

and B. Putting x = z and y = w in inequality (1), we have

ψ

(
δFAz,Bw(t), FP1P3...P2n−1z,P2P4...P2nw(t),
δFAz,P1P3...P2n−1z(t), δFBw,P2P4...P2nw(t)

)
­ 0,

and so

ψ (Fz,w(t), Fz,w(t), Fz,z(t), Fw,w(t)) ­ 0,

or

ψ (Fz,w(t), Fz,w(t), 1, 1) ­ 0,

which contradicts (R-2), we get Fz,w(t) = 1, we have, z = w. Therefore, z is a
unique common fixed point of P1, P2, . . . , P2n, A and B. �

Remark 4.2 Theorem 4.1 improves and extends the result of Chen and Chang [6]
to even number of mappings. In [6], Chen and Chang proved a common fixed point
theorem for four single-valued functions and two set-valued functions in complete
Menger space using compatibility. Our main result is proved for even number of
single-valued and two set-valued mappings using weak compatibility without any
requirement of continuity of the involved mappings.

By setting P1P3 . . . P2n−1 = S and P2P4 . . . P2n = T in Theorem 4.1, we get the
following result for four mappings.
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Corollary 4.3 Let (X,F , ∗) be a complete Menger space where ∗ is a continuous
t-norm. Let S, T : X → X be single-valued mappings and let A,B : X → B(X) two
set-valued mappings. If the following conditions are satisfied:

(1) A(X) ⊆ T (X), B(X) ⊆ S(X);

(2) One of S(X) and T (X) is a closed subset of X;

(3) The pairs (A,S) and (B, T ) are weakly compatible;

(4) There exists ψ ∈ Ψ such that

(3) ψ (δFAx,By(t), FSx,Ty(t), δFAx,Sx(t), δFBy,Ty(t)) ­ 0,

for all x, y ∈ X and t > 0. Then there exists a point z ∈ X such that {z} = {Sz} =
{Tz} = Az = Bz.

Now, we give an example which illustrates Corollary 4.3.

Example 4.4 Let X = [0, 2] with the metric d defined by d(x, y) = |x− y| and for
each t ∈ [0, 1] define

Fx,y(t) =
{ t

t+|x−y| , if t > 0;
0, if t = 0.

for all x, y ∈ X. Clearly (X,F , ∗) be a complete Menger space, where ∗ is defined
as a ∗ b = ab for all a, b ∈ [0, 1]. Let ψ : [0, 1]4 → R be defined as in Example 3.1
and define A,B, S and T : X → X by

A(x) =
{
{1}, if x ∈ [0, 1];{

3
2

}
, if x ∈ (1, 2].

B(x) =
{
{1}, if x ∈ [0, 1];
{ 6

5}, if x ∈ (1, 2].

S(x) =
{ 3−x

2 , if x ∈ [0, 1];
x+1

2 , if x ∈ (1, 2].
T (x) =

{
2− x, if x ∈ [0, 1];
1, if x ∈ (1, 2].

It is clear that A(X) = {1, 3
2} ⊆ T (X) = [1, 2], B(X) = {1, 6

5} ⊆ S(X) = [1, 3
2 ].

Here S(X) and T (X) are closed subsets of X. Then A,B, S and T satisfy all the
conditions of Corollary 4.3 and have a unique common fixed point 1 ∈ X i.e. {1} =
{S(1)} = {T (1)} = A(1) = B(1). It may be noted in this example that the pairs
(A,S) and (B, T ) commute at coincidence point 1 ∈ X. So the pairs (A,S) and
(B, T ) are weakly compatible. Now we show that the pairs (A,S) and (B, T ) are not
compatible, let us consider a sequence {xn} defined as {xn} = {1− 1

n} where n ­ 1,
then xn → 1 as n→∞. Then Axn, {Sxn} → {1} as n→∞ but FASxn,SAxn(t)→

2t
2t+1 6= 1 as n→∞. Thus the pair (A,S) is not compatible. Also Bxn, {Txn} → {1}
as n → ∞ but FBTxn,TBxn(t) → 5t

5t+1 6= 1 as n → ∞. So the pair (B, T ) is not
compatible. All the mappings involved in this example are discontinuous even at
the common fixed point 1.

By setting A = B and S = T in Corollary 4.3, we get the following result.

Corollary 4.5 Let (X,F , ∗) be a complete Menger space where ∗ is a continuous
t-norm. Let S : X → X be a single-valued mapping and let A : X → B(X) be a
set-valued mapping. If the following conditions are satisfied:
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(1) A(X) ⊆ S(X);

(2) S(X) is a closed subset of X;

(3) The pair (A,S) is weakly compatible;

(4) There exists ψ ∈ Ψ such that

(4) ψ (δFAx,Ay(t), FSx,Sy(t), δFAx,Sx(t), δFAy,Sy(t)) ­ 0,

for all x, y ∈ X and t > 0. Then there exists a point z ∈ X such that {z} = {Sz} =
Az.

Remark 4.6 The conclusions of Theorem 4.1, Corollary 4.3 and Corollary 4.5 re-
main true if the implicit function is replaced by one of the implicit functions as
defined in Examples 3.1–3.6 for all distinct x, y ∈ X. Also, it is noted that the re-
sults obtained by using various implicit functions are new for single-valued mappings
and set-valued mappings in complete Menger spaces.

Acknowledgement.The authors are thankful to Professor Dr. Yeol Je Cho for
his paper [21].

References

[1] J. Caristi, Fixed point theorems tor mappings satisfying inwardness conditions, Trans. Amer.
Math. Soc. 215 (1976), 241–251. MR0394329 (52 #15132)

[2] S. S. Chang, Y. J. Cho and S. M. Kang, Probabilistic Metric Spaces and Nonlinear Operator
Theory, Sichuan Univ. Press (Chengdu) 1994.

[3] S. S. Chang, Y. J. Cho and S. M. Kang, Nonlinear Operator Theory in Probabilistic Me-
tric Spaces, Nova Science Publishers, Inc., New York 2001. ISBN: 1-56072 MR2018691
(2004j:47143)

[4] S. S. Chang, Y. J. Cho, S. M. Kang and J. X. Fan, Common fixed point theorems for multi-
valued mappings in Menger PM-spaces, Math. Japonica 40 (2) (1994), 289–293. MR1297244

[5] S. Chauhan and B. D. Pant, Common fixed point theorems for occasionally weakly compatible
mappings using implicit relation, J. Indian Math. Soc. 77 (1-4) (2010), 13–21. MR2724019

[6] C. M. Chen and T. H. Chang, Common fixed point theorems in Menger spaces, Int.
J. Math. & Math. Sci. 2006, Art. ID 75931, 15 pp. MR2251697 (2007i:47070) DOI:
10.1155/IJMMS/2006/75931

[7] S. Chuan, Caristi type hybrid fixed point theorems in Menger probabilistic metric space, Appl.
Math. Mech. (English Ed.) 18 (2) (1997), 201–209. MR1446334 (97k:54035)
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