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Abstract. The aim of this paper is to prove a common fixed point theorem for even
number of single-valued and two set-valued mappings in complete Menger space using
implicit relation. Our result improves and extends the result of Chen and Chang [Com-
mon fixed point theorems in Menger spaces, Int. J. Math. Math. Sci. 2006, Art. ID
75931, 15 pp).
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1. Introduction. There have been a number of generalizations of metric space.
One such generalization is Menger space introduced in 1942 by Karl Menger [15]
who used distribution functions instead of nonnegative real numbers as values of the
metric. Schweizer and Sklar [23, 15] studied this concept and then the important
development of Menger space theory was due to Sehgal and Bharucha-Reid [25].
It is also of fundamental importance in probabilistic functional analysis, nonlinear
analysis and applications [2, 3]. In 1991, Mishra [17] formulated the definition of
compatible maps in probabilistic metric space (shortly PM-space). This condition
has further been weakened by introducing the notion of weakly compatible mappings
by Singh and Jain [26] in PM-spaces. It is worth to mention that every pair of
compatible maps is weakly compatible, but the converse is not always true.

In 1976, Caristi [1] proved a fixed point theorem. Since the Caristi’s fixed point
theorem does not require the continuity of the mapping, it has applications in many
fields. In 1993, Zhang et al. [27] proved a set-valued Caristi’s theorem in probabilistic
metric spaces. Chuan [7] brought forward the concept of Caristi type hybrid fixed
point in Menger PM-space. Various authors proved some fixed point theorems for
multi-valued mappings in probabilistic metric spaces (see [4, 22, 9, 10, 21]). Recently,
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62 A Common Fized Point Theorem for Set-valued Contraction Mappings in Menger Space

Chen and Chang [6] proved a common fixed point theorem for four single valued and
two set-valued mappings in complete Menger space using the notion of compatibility.
In [22], Razani and Shirdaryazdi proved a common fixed point theorem for even
number of single valued mappings in complete Menger space. In [6, 18, 22|, the
results have been proved for continuous mappings.

In fixed point theory many authors (see [5, 13, 14, 16, 19, 20, 26]) used implicit
relations as a tool to find common fixed point of mappings. These observations mo-
tivated us to prove a common fixed point theorem for even number of single-valued
and two set-valued mappings in complete Menger space using implicit relation. Our
results never require continuity of one or more mappings.

2. Preliminaries.

DEFINITION 2.1 ([24]) A mapping = : [0,1] x [0,1] — [0, 1] is t-norm if * is satis-
fying the following conditions:

1. x is commutative and associative;

2. ax1=aforall a€l0,1];

3. ¢xd > ax*bwhenever ¢ > a and d > b and a,b,c,d € [0, 1].

DEFINITION 2.2 ([24]) A mapping F : R — R is called a distribution function if
it is non-decreasing and left continuous with inf{F(¢) : ¢ € R} = 0 and sup{F'(¢) :
teR} =1.

We shall denote by & the set of all distribution functions defined on [—oo, 0]
while H(t) will always denote the specific distribution function defined by

H(t) = {

If X is a non-empty set, F : X x X — < is called a probabilistic distance on X and
the value of F at (z,y) € X x X is represented by F, ,.

0, ift<O0;
1, ift>0.

DEFINITION 2.3 ([24]) A PM-space is an ordered pair (X, F), where X is a non-
empty set of elements and F is a probabilistic distance satisfying the following
conditions: for all z,y,z € X and t,s > 0,

1. Fp,(t) = H(t) for all t > 0 if and only = = y;
2. F,4(0) = 0;
3. Fry(t) = Fya(t);
4. if Fp 4(t) =1 and F.(s) =1 then F, .(t+s) = 1.
The ordered triple (X, F,*) is called a Menger space if (X, F) is a PM-space, *
is a t-norm and the following inequality holds:

Foy(t+s) > Fy.(t) * F, 4(s),

for all z,y,2z € X and t,s > 0.
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Every metric space (X, d) can always be realized as a PM-space by considering
F: X x X — § defined by F, ,(t) = H(t — d(z,y)) for all z,y € X. So PM-spaces
offer a wider framework than that of metric spaces and are better suited to cover
even wider statistical situations.

DEFINITION 2.4 ([3]) Let (X,F,*) be a Menger space and A be a non-empty
subset of X. Then A is said to be probabilistically bounded if

sup inf F,,(t) =1.
t>gm,yeA 2y (t)

If X itself is probabilistically bounded, then X is said to be a probabilistically
bounded space.

Throughout this paper, B(X) will denote the family of non-empty bounded
subsets of a Menger space (X, F,x). For all A, B € B(X) and for every ¢t > 0, we
define

pFap(t) = sup{F,,(t);ac Abe B}
and
sFapt) = inf{F,u(t);a€ A be B}.
If the set A consists of a single point a, we write
sFap(t) = sFap(t).
If the set B also consists of a single point b, we write
sFap(t) = Fup(t).
It follows immediately from the definition that

sFa B(t)
sFaB(t)

sFp a(t) >0,
1< A=B=/{a},

for all A, B € B(X).

DEFINITION 2.5 ([24]) Let (X,F,*) be a Menger space with continuous t-norm.

1. A sequence {z,} in X is said to converge to a point z in X if and only if for
every € > 0 and A € (0, 1), there exists an integer N such that F, ,(e) >1—A
for all n > N.

2. A sequence {z,} in X is said to be Cauchy if for every e > 0 and A € (0,1),
there exists an integer N such that Fy . (¢) >1— A for all n,m > N.

3. A Menger space in which every Cauchy sequence is convergent is said to be
complete.

The following definition is on the lines of Jungck and Rhoades [12].
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DEFINITION 2.6 The mappings f : X — X and g : X — B(X) are said to be
weakly compatible (or coincidentally commuting) if they commute at their coinci-
dence points, that is gu = {fu} for some u € X then fgu = gfu (Note that the
term gu = {fu} implies that gu is a singleton).

REMARK 2.7 If mappings f : X — X and g : X — B(X) of a Menger space
(X, F,*) are compatible then they are weakly compatible but the converse need
not be true.

3. Implicit Relation.

In 2008, Imdad and Ali [11] used the following implicit relation for the existence
of common fixed points of the involved mappings.

Let ¥ be the class of all real continuous functions 1 : [0,1]* — R satisfying the
following conditions:

(R-1) For every u > 0, v > 0 with ¢(u, v, u,v) > 0 or ¥(u,v,v,u) > 0, we have
U > .

(R-2) ¥(u,u,1,1) < 0, for all u > 0.

ExXAMPLE 3.1 ([1 1]) Define w : [0, 1}4 — Ras ’lﬁ(th to, 13, t4) = tl—(b (min{tg, t3, t4}),
where ¢ : [0,1] — [0, 1] is a continuous function such that ¢(s) > s for 0 < s < 1.

EXAMPLE 3.2 ([11]) Define ) : [0,1]* — R as(t1,t2,t3,ts) = t1—amin{ta, t3,14},
where a > 1.

EXAMPLE 3.3 ([11]) Define ) : [0,1]* — R as(t1,ta, t3,ts) = t1—ato—min{ts, 4},
where a > 0.

EXAMPLE 3.4 ([11]) Define ’(/J : [0, 1]4 — R as ¢(t1,t2,t37t4) =11 —aty — btg — le47
where a > 1, b,c > 0(# 1).

EXAMPLE 3.5 ([11]) Define ¢ : [0,1]* — R as 1)(t1,t2,t3,ts) = t1 —ate — b(tz +1t4),
where a > 1, b > 0(# 1).

EXAMPLE 3.6 ([11]) Define v : [0,1]* — R as 9(t1, ta, t3,t4) = t — atatsty, where
a>1.
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4. Results.

THEOREM 4.1 Let (X,F,*) be a complete Menger space where x is a continuous
t-norm. Let Py, Py, ..., Pay : X — X be single-valued mappings and let A, B : X —
B(X) two set-valued mappings. If the following conditions are satisfied:

(1) A(X) C PoPy... Pop(X), B(X) C PPs... Pon1(X);

(2) One of PyPs... Py, _1(X) or PoPy... Py, (X) is a closed subset of X ;

(3) The pairs (A, PyPs...Py,_1) and (B, PyPy ... Pay,) are weakly compatible;
Suppose that

Py(Ps...Pop—1) = (Ps... Pon—1)P1,
P1P3(P5...P2n_1) (P5...P2n_1)P1P3,

Pi ... Poyy_3(Pan—1)
A(Ps... Py 1)
A(P5 Ce P2n—1)

(Pon—1)P1 ... Pay_3,
(P3 - Pgn_l)A,
(P5 - Pgn_l)A,

APy = Pop 1 A,
PQ(P4 .. Pgn) = (P4 .. Pgn)Pg,
PoPy(Ps... Pan) = (Ps... Pan)PoPy,

Py ... Pyy_o(Poy) = (Pon)Ps ... Pop_a,
B(Py...Psn) = (Py...Pa)B,
B(Ps...Pam) = (Ps... Pan)B,

BPy, = P2, B;
(4) There exists 1 € ¥ such that

Fuz.By(t), Fp.Py...Pyy_12,P2 Py... Payy(t)
1 5 z, by ’ 143 2n—1T,2174 2nY ) >O7
( ) w( 5FA?E,P1P3-~~P2W,—12?(t)75FBy7P2P4--~P2ny(t) ~

forallz,y € X andt > 0. Then there exists a point z € X such that {z} = {Pz} =
{P2z} =...={Paz} = Az = Bz.

PROOF Let xg be an arbitrary point in X. By (1), we choose a point x; € X such
that yo = PoPy ... Py € Axg. For this point x; there exists a point x5 € X such
that y; = P Ps... Py, 122 € Bz, and so on. Continuing in this manner we can
construct sequences {x,} and {y,} in X as follows

Yon = PoPy ... Pon®oni1 € ATopn,Yont1 = P1P3 ... Pon_1Z2n42 € Bron,1,
for n=0,1,2,.... Now, using inequality (1) with = x2, and y = xa,,+1, we get

" 5FA$2mBI2n+1 (t)’ FP] Ps...Pop_1%2n,P2Ps...PanTon41 (t)’ >0
F (t),sF )~
1 Aw2n7P1P3---P2n—lx2n 50 Bm2n+17P2P4-~P2nx2n+1

w (Fy2n,7y2n+1 (t)v Fy2n—17y2n (t)v Fyzman—l (t)v Fy2n+1yyzn (t)) > O
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Using (R-1), we get

(2) Fy2my2n+1 (t) > Fy2n717y2n (t)

Thus {Fy,, .y, (t),n > 0} is a bounded strictly increasing sequence of positive real
numbers in [0, 1] and therefore tends to a limit L(¢) < 1. We claim that L(¢) = 1. For
if L(tp) < 1 for some %o, then letting n — oo in inequality (2), we get L(to) > L(to)
a contradiction. Hence L(t) =1 for all ¢ > 0.

Claim: {y,} is a Cauchy sequence in X. Now for m > 1,

t t
Fyn,yn+1 <2) * Fyn+17yn+m (2> .

\Y

Fyn,vyn,+m, (t)

This yields that
. M t t
nILH;Q Fynvyn+m, (t) > nILH;o Fyn yYn+1 5 * nh*>m Fyn+1 Yntm 5
t
= 1x lim wahywm (2>
t
= nh_)m Fyrt,+17yﬂ+7ﬂ 5
. t t
> nll_{r;o Fypiiynio 1 * o ynim 1
t
= nILH;O o nim 1

. t t
nll_{rgo (Fyn+nz27yn+7n1 (Wl) * Fyn#»mfl»yn#ﬂn (W))

=1

\Y

9

and thus lim,, .o F, 4., (t) = 1, since * is continuous and a*1 = a for all a € [0, 1].
Hence {y,} is a Cauchy sequence in X.

Now, suppose that PyPy ... P2, (X) is a closed subset of X, then for some v € X
we have z = PoPy... Pop(u) € PoPy... Py (X). Putting o = x5, and y = u in

inequality (1), we have

6FA1:277.7P1P3 P2n—1902n( )a 5FBu ,P2Py...Pay

sFy, Bu(t): Fyp_ 1 PPy Py w(t),
s n—1, n > 07
w ( Fan—l»yzn (t)v 5FBu,z(t)

,(/) 5FAI2mBu(t)7FP1P3- Pap_1%20,P2Py...Panu (t)7
u(t)

as n — 00, we have

w (5Fz,Bu(t)a Fz,z(t)7 Fz,z(t)a SFBU,Z(t)) > 0.
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Using (R-1), we have 5F, p,(t) > 1 for all ¢ > 0, which contradicts. Hence z = Bu.
Therefore, Bu = {z} = {P2Py ... Py,u}. Since (B, P2 Py ... Pay,) is weakly compati-
ble pair we have B(PyPy ... Popu) = (PaPy ... Poy)Bu, hence Bz = {PyPy ... Poyz}.
Putting = z2, and y = z in inequality (1), we have

w( 5FAZE27“BZ( ) FP1P3 Pop_1%2n,P2Py.. P2n2(t)’ ) 0,
5FAw2n,P1P3..AP2n71$2n( )7 5FBZ,P2P4.HP2nz(t)

7/1< Fy2n7P2P4 Popnz (t) Fan 1,P2Py...Popz (t)v ) >0
F?:/anl,yzn( ) FP2P4 Popz,PaPy.. Pznz(t)

Taking limit as n — oo, we have

U (Fo, PPy Ponz(t), Fys 1 PoPy...Pon=(t),1,1) >0,

which contradicts (R-2). Hence z = Py Py ... Payz. Therefore, Bz = {PyPy ... Panz} =
{z}. Since B(X) C P, Ps...P,_1(X), there exists v € X such that {PP5...
Py, _1v} = Bz ={PyPy ... Py,z} = {z}. Putting x = v and y = z in inequality (1),
we have

5F a0, B2(t), FPyPy... Py 10, PsPy... Panz (),
P
5Fa0,P Py...Por_10(t); 6FB2 Py Py...Pa 2 (1)

1/} (6FA’U,Z(t)7 Fz,z(t)a 6FAv,z(t>7 z,z(t)) = 07
or

Y (5Fa0,2(t),1,5Fa0,2(t),1) > 0.

Using (R-1), we get §F 4, () > 1 for all ¢ > 0, which contradicts. Hence, Av = {z}.
Since Av = {P1Ps... Pa,—1v} and the pair (A, P, Ps... Py,_1) is weakly compati-
ble, we obtain Az = A(Plpg e Pgn_lv) = (P1P3 e Pgn_l)A’U = {P1P3 . Pgn_lz}.
Putting = z and y = x9,41 in inequality (1), we get

" 5FAZ-,BI2n+1 (t)’ FP1st---P2n7127P2P4~-»P2n12n+1 (t)v > >0
5FAZ,P1P3~~P27L71Z(t)’ 5FB£I?27L+1,P2P4 PonTont1 (t) ’

w (5FAZ:y2n+1 (t)’ Fzﬂlzn (t)7 5FAZ,Z( ) F"/2n+17y2n (t)) 2> 0.

Taking limit as n — oo, we have

w (5FAZ,Z(t)a FZ,Z(t)75FAZ,Z( )a 6Fz z( )) >0
¢ (5FAZ,Z(t)a 175FAz,z( ) ) > 0.

Using (R-1), we get sFa, .(t) > 1 for all ¢ > 0, which contradicts. Hence, Az =
{P\Ps...Py,_12} = {z}. Therefore, we get Az = Bz = {P\P;...Py,_12} =
{P2Py ... Pypz} = {z}. Now we show that z is the fixed point of all the com-
ponent mappings. Putting x = Ps... P 12,y = z,Pll = PP;...Py,_1 and
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P, = PyP, ... Py, in inequality (1), we have

" sFapy. Py, _128:(1), Fprp, p, _.p(t
5FAP3...P2n—1ZvP1/PS---P2n—12( )’5FBZP z
FPg...Pznflz,Z( ) FP3 P2n 1ZZ t)’
7;[} F t
Ps...P2p_12,P3... P2y 1Z )
1 1

w(FPs..APznflz,z() FP3 Pap_12, Z( 20,

which contradicts (R-2). Hence, Ps ... Pa—12 = z. Therefore, Pz = z. Continuing
this procedure, we have

Az ={Piz} ={Psz} = ... = {Pap_12} = {z}. / ,

Similarly, if we put * = z,y = Py... Pz, P, = PiPs...Py,—1 and P, =
PyPy ... Py, in inequality (1), we get Py...Py,z = z. Hence, Poz = z. Continu-
ing this procedure, we get

Bz ={Psz} ={Pyz} = ... = {Panz} = {z}.

Therefore z is a unique common fixed point of Py, Ps, ..., Py,, A and B.

The proof is similar when P Ps... Py,_1(X) is assumed to be a closed subset
of X.

Uniqueness: Let w(# z) be another common fixed point of Py, P, ..., Pay, A
and B. Putting = z and y = w in inequality (1), we have

6F 42 Bw(t), Fp Py .Pyy_12,PPy.. Panw(t),
( >0
5FAZ,P1P3..‘P2n712(t)7 SFBw7P2P4...P2nw(t) ’

and so

'(/} (Fz,w(t)a Fz,w(t)»Fz,z(t)a Fw,w(t)) > 07

or

(U (Fz,w(t)a FZ,w(t)» 1, 1) >0,

which contradicts (R-2), we get F, ,,(t) = 1, we have, z = w. Therefore, z is a
unique common fixed point of Py, Ps, ..., Py,, A and B. n

REMARK 4.2 Theorem 4.1 improves and extends the result of Chen and Chang [6]
to even number of mappings. In [6], Chen and Chang proved a common fixed point
theorem for four single-valued functions and two set-valued functions in complete
Menger space using compatibility. Our main result is proved for even number of
single-valued and two set-valued mappings using weak compatibility without any
requirement of continuity of the involved mappings.

By setting P1P3 ... Pyp,_1 =S and PoPy ... Py, =T in Theorem 4.1, we get the
following result for four mappings.
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COROLLARY 4.3 Let (X, F,*) be a complete Menger space where  is a continuous
t-norm. Let S,T : X — X be single-valued mappings and let A, B : X — B(X) two
set-valued mappings. If the following conditions are satisfied:

(1) A(X) € T(X), B(X) C S(X);

(2) One of S(X) and T(X) is a closed subset of X ;
(8) The pairs (A,S) and (B,T) are weakly compatible;
(4) There exists 1 € ¥ such that

(3) Y (5Fa2,By(t), Fsz,ry(t), s Faz,52(t), s Fpy,my(t)) > 0,

for allz,y € X andt > 0. Then there exists a point z € X such that {z} = {Sz} =
{Tz} = Az = Bz.

Now, we give an example which illustrates Corollary 4.3.

EXAMPLE 4.4 Let X = [0, 2] with the metric d defined by d(x,y) = |« — y| and for
each t € [0, 1] define

—t _ift>0;
F —J T ! ’
w(?) { 0, ift=0.

for all z,y € X. Clearly (X, F,*) be a complete Menger space, where * is defined
as a* b = ab for all a,b € [0,1]. Let ¢ : [0,1]* — R be defined as in Example 3.1
and define A, B,S and T': X — X by

A1}, ifzelo,1]; o) — {1}, ifze]0,1];
oAl e e L e
Ta:’ ifx e B _ -, ifze v+
S(m):{ e if g e (1,2). T(x)_{ 1, if z € (1,2

It is clear that A(X) = {1,2} C T(X) = [1,2], B(X) = {1,%} € S(X) = [1,3].
Here S(X) and T'(X) are closed subsets of X. Then A, B, S and T satisfy all the
conditions of Corollary 4.3 and have a unique common fixed point 1 € X i.e. {1} =
{S(1)} ={T(1)} = A(1) = B(1). It may be noted in this example that the pairs
(A,S) and (B,T) commute at coincidence point 1 € X. So the pairs (4,5) and
(B,T) are weakly compatible. Now we show that the pairs (A, S) and (B, T') are not
compatible, let us consider a sequence {x, } defined as {z,} = {1 -1} wheren > 1,
then =, — 1 as n — oco. Then Ax,,{Sz,} — {1} as n — oo but Fags,, sas, () —
% # 1 asn — oo. Thus the pair (A S) is not compatible. Also Bz, {Tx,} — {1}
as n — oo but Fpry, 7B, (t) — 5t+1 # 1 as n — o0o. So the pair (B,T) is not
compatible. All the mappings involved in this example are discontinuous even at
the common fixed point 1.

By setting A = B and S = T in Corollary 4.3, we get the following result.

COROLLARY 4.5 Let (X, F,*) be a complete Menger space where * is a continuous
t-norm. Let S : X — X be a single-valued mapping and let A : X — B(X) be a
set-valued mapping. If the following conditions are satisfied:
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(1) A(X) C S(X);

(2) S(X) is a closed subset of X ;

(8) The pair (A, S) is weakly compatible;
(4) There exists 1 € U such that

(4) d) (6FAac,Ay (t>7 FSx,Sy (t>7 6FA;C,SQ: (t)7 6FAy,Sy(t)) = 0,

for allz,y € X andt > 0. Then there exists a point z € X such that {z} = {Sz} =

Az.

REMARK 4.6 The conclusions of Theorem 4.1, Corollary 4.3 and Corollary 4.5 re-
main true if the implicit function is replaced by one of the implicit functions as
defined in Examples 3.1-3.6 for all distinct z,y € X. Also, it is noted that the re-
sults obtained by using various implicit functions are new for single-valued mappings

and set-valued mappings in complete Menger spaces.
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