
ANNALES SOCIETATIS MATHEMATICAE POLONAE  
Series I: COMMENTATIONES MATHEMATICAE XXVII (1988) 

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO  
Séria I: PR ACE MATEMATYCZNE XXVII (1988)

L. D r e w n o w s k i (Poznan)

Compact operators on Musielak-Orlicz spaces

Abstract. Let I f  (v) be a Musielak-Orlicz space over a non-atomic ст-finite measure space 
(S, I , v), determined by a Musielak-Orlicz function (p\ R+ x S ->/?+, and let L% (v) be its 
subspace consisting o f v-continuous elements. It is shown that every compact linear operator 
from L£(v) into any complete topological vector space factors through the inclusion map 
Ifa (v) ci» IJ (v) where ф is the convex minorant o f q>. It follows that a non-zero compact operator exists 
on Ifa{v) if and only if

lim infr x<p(r, s) >  0
Г-* 00

on a set of positive measure. Also, the Mackey topology o f L£ (v) is the topology induced from lfa (v). 
This extends some earlier results o f N. J. Kalton concerning ordinary Orlicz function spaces.

1. Musielak-Orlicz spaces. Let (S, I ,  v) be a positive measure space and 
L°(v) the linear space of all v-equivalence classes of measurable scalar-valued 
functions on S. Also, let cp be a Musielak-Orlicz function, by which we mean 
here a function (p: R+ xS -> R+ satisfying the following conditions: q>{r, ■) is 
measurable for each r e R +, and for all s e S the function q>{-, s) is nonde­
creasing and left-continuous on (0, oo), continuous at r =  0 and cp(0, s) =  0. 
Using (p, we define a functional

mv'- L ° (v) -* R+

(called the modular generated by (p) by

m„(x) =  j>(|*(s)|, s)dv(s). 
s

The Musielak-Orlicz space determined by (p is the linear space

L*(v) =  {x eL ° (v ): m^irx) <  oo for some r > 0 }

equipped with the complete semimetrizable linear topology Xv defined by the 
F-seminorm

11*11,, =  inf {r >  0: (r 1 x) ^  r } .
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The sets rB^fi;), where /*, i: >  0 and

Bv(e) =  {x: mv{x) ^  e},

form a base of neighbourhoods of 0 in (L'Tv), xv). Moreover, if 
x, x„eL,p{v) (nelS), then x„ ->x (л^) if and only if гаф(г(х —x„))->0 as 
и —* у. , V /• > 0

The topology is Hausdorff (and so L^v) is an F -space, i.e., a 
complete metrizable topological vector space) if and only if

lim<p(r, s) >  0 for a.a. seS;
r~>OD

we shall say that q> is a strict Musielak-Orlicz function in this case.
Let

L£(v) =  {x e L <p(v): т^Дгх) <  oo for all r >  0].

Then L%(v) is a closed subspace of L<p(v), and if x e L v(v), then the following 
are equivalent:

(a) xeL%(v):
(b) x is order-continuous: 0 ^  x„ <  |.y|, x„J 0=>||x„||v ->0;
(c) x is v-continuous: 1 з А п[,  у (П Л и) =  0 => Hx^JI* ->0;

(d) lim \\xxe\Iv =  0 and Ve >  0, 3 A e Z ,  v{A) <r со: ||x/s A\\v ^  e.
v (E ) ' 0

If cp is convex, i.e., tp{-, s) is convex for a.a. seS, then the topology is 
also defined by the seminorm

Н|х|||„ =  inf {r >  0: m<p{r~1x) ^ 1 }.

Thus if (/) is in addition strict, then L£(v) is a Banach space.
We shall denote by ф the convex minorant of <p, i.e., the Musielak- 

Orlicz function ф: R + x S - * R +  such that, for every seS, ф(-, s) is 
the largest convex function smaller than cp(-, s) on R+. [Measurability of 
ф(г, •) follows from the fact that ф(г, s) =  (p** {r, s), where (p*(r,s) 
=  sup 'qr — (p{q, s): q e Q + \ (</>*(•, s) is the conjugate of </>(•, s) in the sense 
of Young) and (p** =  (</>*)*.]

For more information on Musielak-Orlicz spaces, see [8], [10] and 
[12]; an abstract characterization of such spaces can be found in [11], [7] 
and especially [12].

The following theorem from [2 ] will be of key importance in the proof 
of our main result in the next Section.

T h e o r e m  1. Let (S, I ,  v) be a а-finite measure space and L a linear 
subspace of L°(v), which is assumed to be solid, i.e., if x g L ° (v), y e L  and 
|x| <  fy|, then xe  L.
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Suppose that a functional m: L-->R+ satisfies the following conditions:
(ml) m(0) = 0;
(m2) x, yeL,  j-v) ^  |y| =>m(.v) ^  m{y): in particular, m(x) =  m(|x|):
(m3) x, x„e L (neN)  and 0 ^  xn j  x => m(x„) -+m(x);
(ni4) л, yeL , |.y| л |y| = 0  => m(x + y) = m(x) + m(y).
Then there exists a function ф: R+ xS -*R+ such that ф(г, •) is measur­

able for every r eR +, (•, s) is nondecreasing and left-continuous on (0, x )
and ф(0, s) =  0 for a.a. s e S, and

m(x) =  j*^(|л:(s)|, s)dv(s), V x eL . 
s

Rem ark 1. Additional properties of m imply corresponding properties 
of the representing kernel ф. Thus, for instance.

(a) if m is R+ -valued, then ф(г. м / loi a.a. seS and all r e R + :
(b) if m is convex, then so is ф.

2. Compact linear operators on L£(v). Throughout the remainder of this 
paper we shall assume that the measure space (5 , I ,  v) is nonatomic and o- 
finite and that (p: R+ xS -> R+ is a strict Musielak-Orlicz function. (See, 
however, Remark 3.) We shall write for the topology on (v)
induced from Lf =  Lf(v), and write B^fs) instead of If x e L%, we
write

N x =  \У е Ц :  \y\ ^  М ]  .

Finally, if he L 00 =  L®(v), we let M h denote the multiplication operator x 
-* hx; clearly, it maps continuously and linearly L% into itself, and 
M h(Nx) с  Nx for all xeL% provided that p||x ^  1.

P r o p o s it io n  1. Let Y be a topological vector space, T :  LSa -> Y a con­
tinuous linear operator, and и a strictly positive function in L% (i.e., a weak order 
unit of /.£).

Then the following statements are equivalent :
(a) T (N X) is precompact for every x e L%.
(b) T (NU) is precompact.
(c) T (F) is precompact for every bounded uniformly v-continuous subset F

of Ц .

N ote. The latter assumption on F in (c) means that if 1эА„1  and 
у(ГМ „) =  0, then \\xxa ll<p“ *0  uniformly for x e F. Moreover, if F has this

П
property, then it is bounded in if and only if it is bounded in L° (with the 
topology of convergence in measure on sets of finite measure).

P roo f. (b)=>(c): Let F be a neighbourhood of 0 in У, and choose 
à >  0 so that Txe  V whenever x e L£ and ||x||v ^  ô. Since v is ст-finite and F
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is uniformly v-continuous, we may find A eZ  such that v (A )<oo  and 
||x̂ S' ^  Ô, У x eF .  Next, L°-boundedness of F  implies that v ( jseA:  
|x(s)| >  ku(s)\) -*0  as к —* со, uniformly for xeF .  Therefore, by uniform 
v-continuity of F  again, we may find к so large that, denoting Ax =  |s g A: 
|x(s)| >  ku(s)}, we have \\xxax\\<p ^  <5, У xeF .  Now, for every xeF ,  we have 
x =  xxA\ax GNku, where T (N ku) is precompact by (b), and

T x - T x  =  T{xxa)  +  T (ххБ\а) e V+ V.

Thus for every neighbourhood U of 0 in Y there is a precompact subset P  of 
Y such that T(F)  <= P + U, and so T(F)  itself must be precompact.

A continuous linear operator T: Y such that T ( NX) is precompact
for every x in will be called К -compact. Evidently, if T  is compact (i.e., 
maps a neighbourhood of 0 to a precompact set), then it is X-compact.

Our main result extends Theorem 2.1 in Kalton’s paper [4 ], and is 
obtained by a slight modification of his argument.

Theorem 2. I f  T  : L%->Y is a К -compact operator, where Y is a 
topological vector space, then T is continuous when the topology of L% is 
replaced by the topology induced from 1%сэ Ua.

In consequence, if Y is a complete Hausdorff TVS, then T factors as 
follows

where J is the natural inclusion map and t  is a К -compact operator.

Proof .  Let y be the initial topology on L% for the family of all K- 
compact operators T : L% —> Y, i.e., the weakest linear topology under which 
all these operators are continuous. It follows easily that if A : I%-> L% is a 
linear map such that TA is К -compact whenever T : L%->Y  is К -compact, 
then A: (Ifa, y )-*(L£, y) is continuous. In particular, using the observations 
preceding Proposition 1, we see that M h: (L£, y)->(L%, y) is continuous for 
every /îg L®. Moreover, it is clear that Nx is y-precompact for every xel%.

-------------У
Now, let f  be the linear topology on 1% for which the sets rB  ̂(e) , where 

r, e >  0, form a base of neighbourhoods of 0. Clearly у c  j? c= We are 
going to prove that:

(*) There exists a Musielak-Orlicz function ф: R+ xS -> R+ such that 
ф ^  (p and p =  Хф\l%, and

(**) for a.a. seS the function ф(-, s) is convex.

Define
m: L% —> R+
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by

------ v
m(x) =  inf {e >  0 : x gBv (e) }.

Evidently m ^  . Since, for every £ >  0,

{ x elfa: m{x) ^  г} =  П B9(rj) »
IJ >E

m is y-lower-semicontinuous on L£. Now, observing that 

(s)7 c= { x e L f: m(x) (rj)

if 0 <  £ <  t], we infer that the sets r {x  el%: m(x) <  e} (r, e >  0) form a base 
at 0 for /?.

Thus in order to prove (*) it suffices to find a Musielak-Orlicz function 
ф such that m — This will follow from Theorem 1 if we show that our
functional m satisfies conditions (ml)-(m4), with L = lfa. Since this can be 
done by a verbatim repetition of the arguments used in [4], Lemma 2.1, we 
omit them here. Thus, applying Theorem 1 and Remark 1(a), we get a 
representing function ф: R+ xS -+ R+ possessing properties stated in The­
orem 1 and such that m =  пц on L%. Moreover, m <  is easily seen to im­
ply ф{г, s) ^  (p(r, s) for a.a. seS and all r eR+ ; in particular, ф(-, s) is con­
tinuous at r =  0 for a.a. seS. This proves (*).

Now we pass to (**). In view of Remark 1 (b) it suffices to prove that m 
is convex or, as easily seen, that the function r->m (rx ): R+ -* R+ is convex 
for every xeL%.

Fix an xeL^. Then there exists a countably generated cr-subalgebra 
such that the measure space (S, I x, v| I x) is nonatomic and x as 

well as all the functions q>{r, •) are Immeasurable. We may also assume that 
v(S) <  oo (because it is enough to consider functions x whose support is of 
finite measure). In view of the well-known Carathéodory theorem on 
isomorphic measure spaces, we may therefore assume that our measure space 
(S, I ,  v) is simply the interval [0, 1] with Lebesgue measurable subsets and 
Lebesgue measure.

Let (r„) be the sequence of Rademacher functions on [0, 1], i.e., a 
sequence of independent random variables such that v {r„ =  1 ) =  v {r „ =  —1 ] 
=  Note that rnx e N x, V n eN . We claim that there exist nets (i(o.))aeA and 

{Ka))*eA in N  such that

j  (a) >  i (a) -> oo and {rm  -  rm ) x -> 0 (y) .

Consider the sequence ((r„x, n))neN in the precompact space (N x, y) x R, 
and let A be the directed set ^  x N, where % is a base at 0 for y in L%. Then 
for each a =  (17, k) in A there are i{ix)J{ot)eN  such that j  (a) >  i(a) ^  к and 
rH<z)x — rj(<i)XeU. This proves our claim.
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For every cteA denote

К  =  Is: ri(x)- r m {s) =  0 ],

E? =  Is: rib)- r jM(s) =  2 ],

Eâ = 's: riM - r M )(s) =  - 2 !.

Then S is the disjoint union of these sets and v(E£) =  j,  v (E*) =  v(E^) =  
Fix 0 <  a <  b and set

xa =  bx+ \a(rm - r m )x

=  lbXEO + {b +  a)xE++ (b -a )x E-~\x.
a a a

Then

m(xj = m (b x x Eo) +  m ((b +  a) x x E + ) +  m ((b -  a) x x e - )
я я я

and since xa -+hx (7) and m is y-lower-semicontinuous, we obtain 

( +  ) m{bx) ^  lim infm(xa) .
я

On the other hand, since

XEo hXs, XE+^\Xs> XE-~ *  hXs in ^ (F 00, L 1),
а я a

we have

m (b xxF0) =  |>(b|x(s)|, s)v 0(s)dv{s) -*• 1 |>(b|x(s)|, s)dv(s) 
a s 8 s

=  \m(bx),

and similarly

w((b-ba)x^£ + ) -» ^m((b +  a)x), m ((b -a )x^£_) -> £m ((b -a )x ).
a a

Using ( +  ) we therefore obtain

m(bx) ^  * m(bx) +  jm ((b  +  a)x) + jm ((b  — a)x),

and so

m(hx) ^  1 ш((Ь-И/)х) +  1 m({h — a) x).

Since we already know that the function r ->m(rx) is left-continuous (by 
(m3)), the latter inequality proves that this function is convex on R+. We 
have thus verified (**).

Since у с  Аф\ and ij/(r, s) <  ф(г, s) for a.a. seS and all re R + , the first 
assertion of the theorem follows immediately. Now, if Y is complete, then 
T: {LI, Хф\1%) -*■ Y extends to a continuous linear operator f  : L f  -* Y and
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we obviously have T  =  JT. Finally, by an argument somewhat similar to that 
used in Proposition 1, it is not hard to see that T  is К -compact.

Corollary 1. The following statements are equivalent.
(a) 1% admits a nonzero continuous linear functional.
(b) Ц, admits a nonzero compact operator with values in some TVS.
(c) 1% admits a nonzero К -compact operator with values in some TVS.
(d) lim infr" 1 tp(r, s) >  0 is satisfied on a set of positive measure.

r~+ao

Proo f. (a)=>(b) and (b)=>(c) are trivial. If (c) is assumed, then the 
topology у in the proof of Theorem 2 is indiscrete, hence so are (i and k-. 
Therefore the (measurable) set (seS : lim ф(г, s) — oo] has positive measure.

r -* CO ’

Since ф ^  tp and, by convexity of ф, г - 1  ф(г, s) is nondecreasing, this set is 
certainly contained in \seS: lim infr" 1 tp(r, s) >  0 ] (actually these two sets

Г-+00
are equal). Thus (c)=>(d).

(d) =>(a): If tp satisfies (d), then there exist E e l  with v(E) >  0 and 
constants r0 ^  0 and c >  0 such that

tp(r, s) ^  cr for all seE  and r ^  r0

which implies (using obvious notation) that I%(E) c: L l (E), where the inclu­
sion map is continuous. It follows that !%{E) has a separating dual space, 
and this evidently implies (a). (Shortly: (d) implies that ф is nontrivial, hence, 
using density of Ua in (L f, kf), k~\l% is a nontrivial seminormed topology 
weaker than kv.)

Before proceeding to our next corollary, we recall that if X  is a TVS, 
then the Mackey topology on X  is the finest locally convex topology on X  
yielding the same continuous linear functionals as the original topology of X. 
If X  is semimetrizable, then its Mackey topology is the finest locally convex 
topology weaker than the original topology. Moreover, in this case the 
Mackey topology is semimetrizable and it is a unique semimetrizable locally 
convex topology between the weak topology of X  and the original topology. 
For the description of the Mackey topology on Or liez sequence and function 
spaces see [5 ] (separable case) and [1 ] (general case); the case of Musielak- 
Orlicz sequence spaces is investigated in [9].

Applying Theorem 2 when Y is the space of scalars and using the above 
remarks, we obtain the following

Corollary 2. The Mackey topology p(p of 1% coincides with the semi­
normed topology кф \l% induced from Lf; it is normed if and only if 
lim infr- 1  tp(r, s) >  0 for a.a. seS, and in this case the completion of (I£ , ^ )

r - »  oo

equals L%.

3 — Prace Matematyczne 27.2
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Rem ark 2. The equivalence of (a) and (b) in Corollary 1 does not hold 
for arbitrary F-spaces: There exist F-spaces whose dual space is trivial and 
which admit nontrivial compact operators, cf. [ 6]..

R em ark 3. The assumption that the measure space (S', Г, v) is tr-finite 
is, in fact, superfluous in Theorem 2 (and its corollaries). Although we cannot 
obtain an integral representation of m when v is arbitrary, we nevertheless 
have it for m|L£(£), separately for every E e l  with ^-finite measure. Since, 
moreover, every xeL% is easily seen to have a support of er-finite measure, we 
deduce that m is convex (hence /? is locally convex) and m ^  on L?a. 
Hence fi аАф\Ц, from which the assertions of Theorem 2 follow as before.

(We could arrive at essentially the same result by using the fact that 
every Musielak-Orlicz space is “isomodular” to the direct modular sum of 
Musielak-Orlicz spaces over finite measure spaces or, equivalently, “ isomodu­
lar” to a Musielak-Orlicz space over the direct sum (in the sense of [3], p. 
149) of a family of finite measure spaces, cf. [12], Theorem 5.1. And for such 
measure spaces the representation of m as щ  is available.)
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