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Compact operators on Musielak—Orlicz spaces

Abstract. Let L?(v) be a Musielak—Orlicz space over a non-atomic o-finite measure space
(S, Z, v), determined by a Musielak—Orlicz function ¢: R, xS — R,, and let LZ(v) be its
subspace consisting of v-continuous elements. It is shown that every compact linear operator
from L¢(v) into any complete topological vector space factors through the inclusion map
L% (v) o L% (v) where @ is the convex minorant of ¢. It follows that a non-zero compact operator exists
on I%(v) if and only if

liminfr='o(r, s) >0

r—aw
on a set of positive measure. Also, the Mackey topology of L¢ (v) is the topology induced from E‘; ).

This extends some earlier results of N. J. Kalton concerning ordinary Orlicz function spaces.

1. Musielak-Orlicz spaces. Let (S, 2, v) be a positive measure space and
L°(v) the linear space of all v-equivalence classes of measurable scalar-valued
functions on S. Also, let ¢ be a Musielak—Orlicz function, by which we mean
here a function ¢: K, xS — R, satisfying the following conditions: ¢(r, -) is
measurable for each reR,, and for all seS the function ¢(-, s) is nonde-
creasing and left-continuous on (0, o), continuous at r =0 and ¢ (0, s) = 0.
Using ¢, we define a functional i

m,: L°(v)— R,
(called the modular generated by ¢) by

m,(x) = [@(x(s), s)dv(s).
S

The Musielak-Orlicz space determined by ¢ is the ljnear space
L?(v) = {xe L°(v): m,(rx) <o for some r > 0}

equipped with the complete semimetrizable linear topology 4, defined by the
F-seminorm

lIx|l, = inf {r > 0: m, (r~" x) < 7}.
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The sects rB,(s), where r, ¢ >0 and
B,(e) = {x: m,(x) <&},

form a base of neighbourhoods of 0 in (L?(v), ).q,). Moreover, if
X, X,€L?(v) (neN), then x,—x (4,) if and only if m,(r(x—x,)) >0 as
n—-%.Vr>0

The topology 4, is Hausdorff (and so L?(v) is an F-space, i.e., a
complete metrizable topological vector space) if and only if

lim @(r,s) >0 for a.a. seS;
we shall say that ¢ is a strict Musielak—Orlicz function in this case.
Let

L2 (v) = {xe L?(v): m,(rx) < oo for all r > 0}.

Then L?(v) is a closed subspace of L?(v), and if xe L?(v), then the following
are equivalent:

(a) xeLf(v):

(b) x is order-continuous: 0 < x, < |x[, x, ! 0=|/x,/l, —=0:

(c) x is vcontinuous: Z3A4,|, v(N4,) =0=|lxz,fl, —0:

(d) lim |lxygll, =0 and Ve >0, 34€Z, v(A) < 0 ||xys 4ll, < &.

WE) -0

-

If ¢ is convex, i.e, ¢(-, s) is convex for a.a. se§, then the topology 4, is
also defined by the seminorm

lxlll, = inf {r > 0: m,(r~'x) < 1}.

Thus if ¢ is in addition strict, then L%(v) is a Banach space.

We shall denote by ¢ the convex minorant of ¢, ie., the Musielak—
Orlicz function ¢: R, xS =R, such that, for every seS, ¢(,s) is
the largest convex function smaller than ¢(-, s) on R,. [Measurability of
@(r, ) follows from the fact that ¢(r, s) = ¢**(r,s), where ¢@*(r,s)
=sup 'qr—(q, s): qeQ. ) (¢*(-, s) is the conjugate of ¢(-, s) in the sense
of Young) and o** = (¢*)*.]

For more information on Musielak-Orlicz spaces, see [8], [10] and
[12]; an abstract characterization of such spaces can be found in [11], [7]
and especially [12].

The following theorem from [2] will be of key importance in the proof
of our main result in the next Section.

THEOREM 1. Let (S, X, v) be a o-finite measure space and L a linear
subspace of L°(v), which is assumed to be solid, i.e. if xeL°(v), yeL and
(x| < lyl, then xe L.
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Suppose that a functional m: L— R, satisfies the following conditions:

(ml) m(0) =

(m2) x,yeL, |x| <{y|=m(x) < m(y): in particular, m( m{|x)):

(m3) x, x,eL (neN) and 0< x,Tx=m(x,) >m(x);

(md) x, yel, |x| ~lyl = 0= m(x+y) = m(x)+m(y).

Then there exists a function y: R, xS — R, such that y(r, ) is measur-
able for every reR.,, Y (, s) is nondecreasing and left-continuous on (0, %)
and Y (0, s) =0 for aa. s€S, and

m(x) = [Y(x(s)l, s)dv(s), VxelL.
S
Remark 1. Additional properties of m imply corresponding properties
of the representing kernel . Thus, for instance.
(a) if mis R, -valued, then y (r. s + dor aa. seS and all reR.,:
(b) if m is convex, then so is .

2. Compact linear operators on L?(v). Throughout the remainder of this
paper we shall assume that the measure space (S, Z, v) is nonatomic and o-
finite and that ¢: R, xS — R, is a strict Musielak—Orlicz function. (See,
however, Remark 3.) We shall write 4, for the topology on L§ = L§(v)
induced from L = L*(v), and write B, (e) instead of B,(e) N LY. If xe L], we
write

N, = lyeLs: [yl <IxI}.

Finally, if he L® = L®(v), we let M, denote the multiplication operator x
— hx; clearly, it maps continuously and linearly L? into itself, and
M, (N,) = N, for all xe L? provided that ||h]|, < 1.

ProrosiTioN 1. Let 'Y be a topological vector space, T: LS =Y a con-
tinuous linear operator, and u a strictly positive function in L? (i.e., a weak order
unit of 1%).

Then the fo‘llowing statements are equivalent:

(a) T(N,) is precompact for every xe L.

(b) T(N,) is precompact.

(c) T(F)is precompact for every bounded uniformly v-continuous subset F
of L2,

Note. The latter assumption on F in (c) means that if 234, ] and
v(ﬂA ) =0, then ||xy, Jl, — 0 uniformly for xe F. Moreover, if F has this

property, then it is bounded in L? if and only if it is bounded in L° (w1th the
topology of convergence in measure on sets of finite measure).

Proof. (b)=>(c): Let V¥ be a neighbourhood of 0 in Y, and choose
0 >0 so that Txe V whenever xe L{ and ||x||, < J. Since v is o-finite and F
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is uniformly v-continuous, we may find 4€X such that v(4) < oo and
lIxxs all, <8, VxeF. Next, L°-boundedness of F implies that v({seA:
Ix(s)| > ku(s)}) =0 as k — oo, uniformly for xeF. Therefore, by uniform
v-continuity of F again, we may find k so large that, denoting 4, = {s€A:
[x(s)| > ku(s)}, we have lIxxall, < 8, VxeF. Now, for every xeF, we have
X = xxq\1, € Niw, Where T(N,,) is precompact by (b), and

T~ Tx = T(xxa )+ T(xxsu) €V+V.

Thus for every neighbourhood U of 0 in Y there is a precompact subset P of
Y such that T(F) < P+ U, and so T(F) itself must be precompact.

A continuous linear operator T: L? — Y such that T(N,) is precompact
for every x in L? will be called K-compact. Evidently, if T is compact (ie.,
maps a neighbourhood of 0 to a precompact set), then it is K-compact.

Our main result extends Theorem 2.1 in Kalton’s paper [4], and is
obtained by a slight modification of his argument.

Tueorem 2. If T: L2 —Y is a K-compact operator, where Y is a
topological vector space, then T is continuous when the topology 4, of Lj is
replaced by the topology induced from L¢ > L2.

In consequence, if Y is a complete Hausdorff TVS, then T factors as
follows

.
L4

N

where J is the natural inclusion map and T is a K-compact operator.

Y

Proof. Let y be the initial topology on LY for the family of all K-
compact operators T: L? — Y, i.e., the weakest linear topology under which
all these operators are continuous. It follows easily that if A: LY — L? is a
linear map such that TA is K-compact whenever T: LY — Y is K-compact,
then A: (L%, y) — (L, y) is continuous. In particular, using the observations
preceding Proposition 1, we see that M,: (L¢, y) — (L%, y) is continuous for
every hel®. Moreover, it is clear that N, is y-precompact for every xeL.

Now, let B be the linear topology on L for which the sets rB, (¢) y, where
r,& >0, form a base of neighbourhoods of 0. Clearly y = g = 4,. We are
going to prove that:

(*x) There exists a Musielak—Orlicz function y: R, xS — R, such that
Y < ¢ and p=4,|L7, and

(»x) for a.a. se S the function (-, s) is convex.

Define
m: LY - R,
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by

m(x) = inf {&¢ > 0: x €B, (¢) 7)}.

Evidently m < m,. Since, for every ¢ > 0,

{x EL‘:: m(x) < 8} = ﬂ qu(ﬂ)y,

ﬂ>£

m is y-lower-semicontinuous on L. Now, observing that

B,() < {xeL? m(x)<e) B,
if 0 <& <n, we infer that the sets r {x €L&: m(x) <&} (r, ¢ > 0) form a base
at 0 for B.

Thus in order to prove () it suffices to find a Musielak—Orlicz function
¥ such that m = m, |L§. This will follow from Theorem 1 if we show that our
functional m satisfies conditions (ml)—(m4), with L= L?. Since this can be
done by a verbatim repetition of the arguments used in [4], Lemma 2.1, we
omit them here. Thus, applying Theorem 1 and Remark 1(a), we get a
representing function y: R, xS — R, possessing properties stated in The-
orem 1 and such that m = m, on L?. Moreover, m < m, is easily seen to im-
ply Y (r, s) < @(r, s) for a.a. seS and all reR, ; in particular, ¥ (-, s) is con-
tinuous at r = 0 for a.a. se€S. This proves (x).

Now we pass to (+*). In view of Remark 1 (b) it suffices to prove that m
is convex or, as easily seen, that the function r — m(rx): R, — R, is convex
for every xeL?.

Fix an xeL?. Then there exists a countably generated ¢-subalgebra
2. < X such that the measure space (S, 2, v| Z,) is nonatomic and x as
well as all the functions ¢ (r, -) are X,-measurable. We may also assume that
v(S) < oo (because it is enough to consider functions x whose support is of
finite measure). In view of the well-kknown Carathéodory theorem on
isomorphic measure spaces, we may therefore assume that our measure space
(S, Z, v) is simply the interval [0, 1] with Lebesgue measurable subsets and
Lebesgue measure.

Let (r,) be the sequence of Rademacher functions on [0, 1], ie, a
sequence of independent random variables such that v {r, =1} =vir, = —1}
= 1. Note that r,xeN,, VneN. We claim that there exist nets (i()),., and
(J(@)ses in N such that

j@)>i(@—o0 and (rm—Tixm)x—0 (7).

Consider the sequence ((r, X, n)),.n in the precompact space (N, y) x R,
and let 4 be the directed set % x N, where % is a base at O for y in L§. Then
for each o = (U, k) in A there are i(a), j(x)e N such that j(a) >i(x) > k and
Tiwy X—Tjqx€ U. This proves our claim.
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For every ae A denote
EY = st Fiw—"jw(s) = 0},
ES = 1S i —riw(s) = 2},
E; =" riyg—rjn(s) = 2.

Then S is the disjoint union of these sets and v(EQ) = §, v(E]) = v(E;) = L.
Fix 0 <a < b and set

X, = bx+ Y a(tig —rjw) X

= [bXE£+(b+a)XE: +(b—a)XEa-]x.

Then
m(x,) = m(bxygo)+m((b+a) xyp+)+m((b—a) xyz-)

and since x, = hx () and m is y-lower-semicontinuous, we obtain

i/

(+) m(bx) < liminfm(x,).

a

On the other hand, since
Xgo = Flss  Xgs —dXs»  Xp- — iXs  in (L%, LY,
we have ’ ’ ’
m(bxygo) = _sfl//(bIX(S)l, S)XES(S) dv(s) » ’:il//(bIX(S)I, s)dv (s)
= sm(bx),
and similarly
m((b+a)x;(E+) — im((b+a)x), m((b—a)xXE_) — ym((b—a)x).
Using (+) we the:efore obtain ’
m(bx) < Im(bx)+ im((b+a) x)+ i m((b—a)x),
and so

m(bx) < ' m(h+a)x)+ {m((b—a)x).

Since we already know that the function r —m(rx) is left-continuous (by
(m3)), the latter inequality proves that this function is convex on R,.. We
have thus verified (xx).

Since y < A, |L% and ¢ (r, s) < @(r, s) for a.a. se S and all re R, the first
assertion of the theorem follows immediately. Now, if Y is complete, then
T: (L%, A;1LY) — Y extends to a continuous linear operator T: L? »Y and
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we obviously have T = JT. Finally, by an argument somewhat similar to that
used in Proposition 1, it is not hard to see that T is K-compact.

CoroLLARY 1. The following statements are equivalent.

(a) L? admits a nonzero continuous linear functional.

(b) L¢ admits a nonzero compact operator with values in some TVS.

(c) LY admits a nonzero K-compact operator with values in some TVS.

(d) liminfr~ @ (r, s) > 0 is satisfied on a set of positive measure.

Proof. (a)=-(b) and (b)=-(c) are trivial. If (c) is assumed, then the
topology 7 in the proof of Theorem 2 is indiscrete, hence so are f and 4.
Therefore the (measurable) set {s€S: lim @(r, s) = oo} has positive measure.

row
Since ¢ < ¢ and, by convexity of ¢, r~! @(r, s) is nondecreasing, this set is
certainly contained in {s€S: liminfr™'¢(r, s) > 0} (actually these two sets

r =

are equal). Thus (c)=(d). ‘
(d)y=(a): If ¢ satisfies {d), then there exist E€X with v(E) >0 and
constants ro = 0 and ¢ > 0 such that

@(r,s)=cr for all seE and r>r,

which implies (using obvious notation) that L¢(E) L' (E), where the inclu-
sion map is continuous. It follows that L¢(E) has a separating dual space,
and this evidently implies (a). (Shortly: (d) implies that ¢ is nontrivial, hence,
using density of L¢ in (L?, 4;), 4;|L¢ is a nontrivial seminormed topology
weaker than 4,.)

Before proceeding to our next corollary, we recall that if X is a TVS,
then the Mackey topology on X is the finest locally convex topology on X
yielding the same continuous linear functionals as the original topology of X.
If X is semimetrizable, then its Mackey topology is the finest locally convex
topology weaker than the original topology. Moreover, in this case the
Mackey topology is semimetrizable and it is a unique semimetrizable locally
convex topology between the weak topology of X and the original topology.
For the description of the Mackey topology on Orlicz sequence and function
spaces see [5] (separable case) and [1] (general case); the case of Musielak—
Orlicz sequence spaces is investigated in [9].

Applying Theorem 2 when Y is the space of scalars and using the above
remarks, we obtain the following

CorOLLARY 2. The Mackey topology p, of L coincides with the semi-
normed topology A;|L¢ induced from L%; it is normed if and only if
liminfr=!¢(r, s) > O for a.a. s€S, and in this case the completion of (L}, p,)

r—ao

equals L.

3 — Prace Matematyczne 272
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Remark 2. The equivalence of (a) and (b) in Corollary 1 does not hold
for arbitrary F-spaces: There exist F-spaces whose dual space is trivial and
which admit nontrivial compact operators, cf. [6].,

Remark 3. The assumption that the measure space (S, X, v) is o-finite
is, in fact, superfluous in Theorem 2 (and its corollaries). Although we cannot
obtain an integral representation of m when v is arbitrary, we nevertheless
have it for m|L?(E), separately for every Ee X with o-finite measure. Since,
moreover, every xe L? is easily seen to have a support of o-finite measure, we
deduce that m is convex (hence B is locally convex) and m < m; on L.
Hence B < 4;|L¢, from which the assertions of Theorem 2 follow as before.

(We could arrive at essentially the same result by using the fact that
every Musielak—Orlicz space is “isomodular” to the direct modular sum of
Musielak—Orlicz spaces over finite measure spaces or, equivalently, “isomodu-
lar” to a Musielak—Orlicz space over the direct sum (in the sense of [3], p.
149) of a family of finite measure spaces, cf. [12], Theorem 5.1. And for such
measure spaces the representation of m as m, is available.)
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