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The density property in algebras of A-valued
continuous functions

1. Introduction. Let F denote either the field K of reals or field ¢
of complex numbers. For a topological space X and a locally convex
space (a locally convex algebra) A over ¥ let C(X, A) denote the set
of all continuous A-valued functions defined on X. The subset of C(X, A4)
consisting of all bounded functions, i.e., of all functions for which f(X)
is a bounded set in A, we denote by C* (X, 4). With respect to the pointwise
addition and scalar multiplication of functions, 0(X, 4) and C*(X, A)
are linear spaces. In particular, when A is an algebra, C(X, 4) and
0" (X, A) are also algebras with respect to the pointwise algebraic opera-
tions on functions.

Let @ denote the family of all continuous seminorms generating
the topology for A and let K denote the set of all compact non-empty
subsets of X. We endow the spaces C(X, 4) and C*(X, A) with locally
convex topology defined respectively by seminorms {p,,: ¢€@,k ¢ K}
and {p,: ¢eQ}, where p.(f) =suple(f(®): vk} and p,(f)
= sup {§(f(«)): « € X}. Then C(X, A) coincides with C*(X, 4), if X is
a compact space (cf. [11]).

Let now X be a locally compact space. We shall say that f e 0*(X, 4)
vanishes at infinity if for any given ¢ > 0 and ¢ € @ there exists a compact
set k,, = X such that ¢ (f(«)) < e for each @ ¢ &, ,. The subset of C*(X, A)
consisting of all functions which vanish at infinity we shall denote by
0y(X, A) and endow with relative topology of C*(X, A).

Numerous generalizations of Stone~Weierstrass theorem for (X, 4),
C*(X, A) and Cy(X, A) are known (cf. [22], p. 119). For a compact
Hausdorff space X and a locally convex space A these generalizations
are considered in [8], [11], [20] and [21]. Moreover, for completely regular
space X and a B,-algebra with involution A the generalization of Stone—
Weierstrass theorem is considered in [26] and for a topological space X
and a B*-algebra 4 — in [2].

Generalizations of Stone—Weierstrass theorem for (X, A) are con-
sidered in [16] (when A is a C*-algebra) in [6] (when A is a B*-algebra)
and with respect to the topology of (X, 4) — in [8] and [25].
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A generalization of Stone-Weierstrass theorem for ¢(X, 4) when X
is not a compact Hausdorff space has been given without proof in [27].

In the present paper in Section 2 the Stone-Weierstrass theorem
is generalized for ¢(X, A) when X is a Hausdorff space and A is a locally
convex algebra over F using the Nagata’s generalization of Stone—Weier-
strass theorem (cf. [17], p. 268). In Section 3 the generalizations of Stone—
Weierstrass theorem for 0*(X, A) is considered when either X is a pseu-
docompact space and A is a normed space (algebra) over F or X is a topo-
logical space and A is a finite dimensional normed space (algebra) over F.
We prove a generalization of Holladay—Hausner’s theorem [13], [15]
using the Nel’s generalization of Stone-Weierstrass theorem [19].

In Section 4 we consider generalizations of Stone—~Weierstrass theorem
for C,(X, A), when A is a locally convex algebra over F. A generaliza-
tion of Kaplansky’s theorem (cf. [16], p. 233) is proved.

The results mentioned above are applied to tensor products in
Section 5. A generalization of Bourbaki’s result (cf. [7], p. 315) for C(X, A4)
and Cy(X, 4) when 4 is a locally convex space (algebra) over F, is proved.
Moreover, we prove an analogue of Grothendieck’s theorem (cf. [14],
p. 128) for C*(X, 4) when either X is a psendocompact space and A
is a Banach space over I or X is a topological space and A is a finite
dimensional Banach space over F.

In Section 6 we find the conditions, when C*(X, 4) is homomorphic
with dense subalgebra of C*(Y, B) for topological spaces X and ¥ and
Banach algebras A and B with unit. Moreover, it is proved that the al-
gebras (1) 0*(X, A) and 0*(X, A) are isometrically isomorphic if either
X is a pseudocompact space and A be a Banach algebra with unit or X
is a completely regular T',-space and A is a finite dimensional Banach
algebra with unit.

2. The dense subspaces and subalgebras of C(X, 4). Let X be a
topological space and A a locally convex algebra over F. By f, we shall
denote the constant functions with value a e A4, ie., f,(#) =a on X,
and by af, — the functions z—>a(x)a, where a € (X, F) and a € A.

We have

ProrosITION 1. Let X be a topological space and A be a locally convex
space over F. If W is a linear subspace of C(X, A) which for every a € C(X, R)
ond a € A contains af,, then A is dense in C(X, A).

Proof. Let feC(X,A), qe@Q, ke K and &> 0. It is sufficient to
show that there exists g € A such that '

pk,q(g—f) <e.

(1) By X we denote the Stone~Cech compactification of space X.
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Let O(a, ¢) denote the e-neighborhood of @ € A defined by ¢. Then
the sets {O(a, ¢): a €f(k)} cover f(k). As f(k) is compact, there exists
a finite cover {O(a;,¢), a,ef(k), 1 =1,2,...,n} of F(k). In view of
this, there exist u,, pa, ..., b, € C{f(k), [0,1]} such that u(a) =0 if

a ¢ 0(a,,e) for each » =1,2,...,n and ) u.(a) =1 on f(k) (cf. [18]).
r=1 ’

As every locally convex space is completely regular [14], f(X) is also
a completely regular space. Hence s, has an extension g, € C(f(X), R)
for each + = 1,2, ..., n (cf. [10], p. 43).
Let now h, = (@0f)f, for each r =1,2,...,n As a,€4 and
n
#,of € C(X, R) for each r = 1,2,.7., n then > h, €U by our assumption.
Moreover, for each %€k we have r=1

q [( Znhr~f) (00)] = q[ﬁ (@,0f)(@) (e, —f(w))]
< Zn: (#,0f) (®) gla, — f (@)

) . <e Mr(f(m)) = £.

r=1

Pea| Sy —1) < e.
r=1

This completes the proof.

In [12], p. 28, Proposition 1 has been proved for compact space X.

THEOREM 1. Let X be a Hausdorff space and A be a locally convex
algebra over R with unit e,. If A is a subalgebra of C(X, A) such that

1% all A-valued constant functions belong to W and

2° for every pair @,y of distinet points of X there is a function Uy
.€ C(X, R) which separates the points x and y (i.6., a,,(v) # a,,(y)) and
such that a,f, €A, then A is dense in O(X, 4).

Proof. Let ¢ =fe,- It is clear that

o = {a e O(X, R): ae € A}

Consequently,

is a subalgebra of ¢(X, R) which contains a unit and separates the points
of X. Hence, by Nagata’s generalization of Stone—Weierstrass theorem
(ef. [17], p. 286), A, is dense in C(X, R).

Let now § be an arbitrary function in (X, R). For any given q € Q,
ke K and ¢£> 0 there exists a e, such that

€ . -

q{e4)

pela—B) <
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(here p,(a) = sup ja(»)] for every a e C(X, R) and % € X). Since

xek
" Puglae—af) = pula—Fales) < e

fe bélongs to the closure cl¥ of A with respect to the topology of O(X, 4).

As ¢l satisfies the condition of Proposition 1, then ¢l = C(X, #).
THEOREM 1’. Let X be a Hausdorff space and A be & locally convex

algebra over C with unit e . If A is a subalgebra of C(X, A) such that

1° all A-valued constanié functions belong to U,

2° for every pair x,y of distinct poinis of X there is an a, € C(X, O)
separating the poinis » and y and such that a,,e6, €,

3% if ae0(X, 0) and ae, €U, then ae, € W (where @ 18 the complex-
conjugate of the fumction a),
then W is dense in C(X, A). -

Proof. As in Theorem 1, Wy = {a € C(X,C): aecU} is a sub-
algebra of C(X, C). Let U; denote the subalgebra of all real-valued func-
tions of UA,. Since U, contains the unit and by our assumption separates
the points of X, then U, is dense in C(X, R) as above. Now fe, € ¢l
for every peC(X, E) and by Proposition 1, el = C(X, 4).

3. The dense subspaces and subalgebras of C*(X, A). Let X be
a compact Hausdorff space and A4 be a locally convex algebra over F.
Then Theorem 1 and Theorem 1’ are true also for ¢*(X, 4). Moreover,

we have

PrOPOSITION 2. Let one of the following conditions hold:

(a) X is a pseudocompact space and A is & normed space over F;

(b) X is a topological space and A is a finite dimensional normed space
over I.

If % is a linear subspace of C*(X, A) which for any aeC*(X, R)
and a € A contains af,, then A is dense in C*(X, A).

Proof. In case (a) f(X) is a compact subset of A (cf. [24], Theorem 2.3)
for every fe C*(X, 4) and in case (b)

{aeA: llally < |flosx,a}

is a compact subset of A for every fe 0*(X, A). Therefore, in the same
way as in the proof of Proposition 1, we prove that there exists ge U
such that

19 —Fllovx,2) < &

Consequently, U is dense in C*(X, A).
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THEOREM 2. Let X be a pseudocompact space (2) and A be & mormed
algebra over F with unit 6. If U is a subalgebra of C*(X, A) containing all
A-valued constant functions omd for any a € C*(X,R) the funclion ae,
then U is dense in C* (X, A).

Proof. It is obvious by Proposition 2.

Holladay [15] and Hausner [13] have generalized the Stone-Weier-
strass theorem for C*(X, A) (assuming that X is a compact Hausdorff
space) when, respectively, 4 is the skew field of real quaternions and
the real Cayley-Dickson’s type algebra of dimension 2" (n > 1) or real
Clifford algebra of dimension 2" (n even).

Using Proposition 2, we shall prove a generalization of Holladay-
Hausner’s result.

THEOREM 3. Let X be a topological space and A be a finite dimen-
sional normed algebra over R with unit 6. If %A is & subalgebra of O* (X, A)
such that

1° all A-valued constant functions belong to U,

2° for every pair z,,z, of disjoint zero-sets in X there ewists an
ae0*(X,R) such that cla(z;)Necla(z,) =B and ae e,
then A is dense in C*(X, A).

Proof. It is clear that N, = {a-e C*(X, R): ae € A} is a subalgebra
of C*(X, R) which by our assumption contains the unit and separates
the disjoint non-empty zero-sets of X. Hence, by Nel’s generalization
of Stone-Weierstrass theorem (cf. [19], p. 229), ¥, is dense in C*(X, R).
Now it is easy to show in the same way as in the proof of Theorem 1
that Be belongs to the closure ¢l of with respect to the topology of
C* (X, A) for every g e C*(X, R). Consequently, cl¥ satisfies the condi-
tion of Proposition 2(b) and cl¥A = C*(X, 4).

4. The dense subspaces and subalgebras of C (X, A). In this section
we shall generalize the Stone—-Weierstrass theorem for Cy(X, 4), when A4
is a locally convex algebra over F.

PropogITION 3. Let X be a locally compact Hausdorff space and A
be a locally convex space over F. If W is a linear subspace of Cy(X, A)
and A contains all the functions af,, where a € Cy(X, R), a € A, then A
18 dense in Cy(X, A).

Proof. Let feCy(X, A), g€@ and ¢> 0. Let k,, denote the com-
pact subset of X such that ¢(f(x)) < e for all » ¢ ky . and v, denote

(3) The space X is called pseudocompact if it is- T)-space and every complex-
valued continuous function defined on X is bounded.
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a neighborhood of » € k, , which elosure is compact set in X. Then {U, ,(#):
x ek, ,}, where

Uys(@) = 0,0 {o € X: q(f(a')—f(2)) < e},

is an open cover of k, ., which contains a finite cover {U, (7;): #, €k, .,
E=1,2,...,n} _
Let X, denote the one-point compactification of X. As for each
k=1,2,...,n the sets U, (w) and X\Fk,, are open in X, and cover
X, there exist continuous real-valued positive functions @, say ..oy iy
on X such that p,(®) =0 if x ¢ U, (@) for each k¥ =1,2,...,n and

n+1
P (@) = 0 if ® ek, . Moreover, > u,(#) =1 on X, and u, vanishes
k=1

outside of the compact set ¢l U, (o,) for each k =1,2,...,n. Conse-
quently, u, e Cy(X, R) for each k =1,2,...,n and by our assumption

where h, = u,fa, and a; = f(z,) for ecach k¥ =1,2,...,n. As

k=1

a( X m(@) —f@) = | X ml@)f @) =F @) = i (@ ()]
k=1

< D (@)l f (@) = F (@) + o (@) 4 ()

“for each z € X, then
n
pq( th_f) < e.
k=1

Consequently, % is dense in Co(X, A).

THEOREM 4. Let X be a locally compact Hausdorff space and A be
a locally convex algebra over R with unit 6. If A is a subalgebra of Cy(X, 4)
sueh that

1° for every x € X there is an a, € C(X, R) with a,(x) #~ 0 and a,¢ €U,

2° for each pair », y of distinet points of X there exists an a,, € Co(X, R)
separating the points x and y and such that a6 e,

3° for every ae A, a € Cy(X, R), the condition aecW implies af, €Y,
then U is dense in Cy(X, 4).

Proof. It is clear that Wy, = {a € Cy(X, R): ae €U} is a subalgehra
of Cy(X, R), which satisfies the conditions of Stone-Weierstrass theorem
for Cy(X, R). Hence U, is dense in Oy (X, R).
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Let B e Cy(X, R). Then for any given qe@, ae A and &> 0 there
exists a a €W, such that

&
Pela—p) < my

pq(afa_ﬁfa) = pz(a'—ﬁ)Q(a’) <e

then by condition (c) ff, belongs to the closure of A with respect to the
topology of Cy(X, A). Consequently, by Proposition 3, U is dense in
Co(X, 4). . ‘ _

In [16], p. 233 (cf. also [18], p. 406), Kaplansky has generalized
the Stone-Weierstrags theorem for €,(X, A) when A is a C*-algebra.
The following theorem is a generalization of Kaplansky’s result:

THEOREM 4'. Let X be a locally compact Hausdorff space and A be
a locally convex algebra over C with unit. If A is a subalgebra of Cy(X, A)
such that

1° for every » € X there is an a, € O(X, R) with a,(x) # 0 and a6 c .

2° for each pair x, y of distinet poinis of X there ewists an a,, € Co(X, C)
separating » and y and such that a6 <,

3° for every a € A, a e 0y(X, 0), the condition ae €W implies af, €N,
then A is dense in Cy(X, 4).

Proof. In the same way as in Theorem 1’, by the Stone-Weierstrass

theorem for C,(X, R) and Proposition 3, we show that U is dense in
Oy(X, 4).

5. Applications to temsor products. Let X be a topological space, 4
be a linear topological space (a topological algebra) over F and let A
and B be linear subspaces (subalgebras) of C(X, F) and A, respectively.
Denote by U @A the algebraic tensor product of U and B and by = the
mapping

n n
Y
Z ar®br_>2arfb,.7
r=1 r=1
where a4, @y, ..., a, and by, by, ..., b, €B. It is clear that ~» is a linear

injection (respecfively, an isomorphism) from A QB into C(X, 4). We
have

PropPOSITION 4. Let X be a Hausdorff space and A be a locally convew
space (@ locally convex algebra) over F. If W and B are linear dense sub-
spaces (dense subalgebras) of O(X, F) and A respectively, then w is a linear
injection (an isomorphism) from AW R A into a dense subspace (a dense sub-
algebra) of C(X, A).
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Proof. It is sufficient to show that »(A RVB) is dense in C(X, 4).
Let feC(X, 4), ge@, ke K and £ > 0. Proving Proposition 1, we have
shown that there exist u,, p,, ..., 4, € C(X, F') and a,, a,, ..., a, € 4 such
that

(1) Pr,o (f_ Zl"rfa,) <e
(If A is an algebra, it is also true.) In view of our hypothesis, for each
k= .., there exists «, €W such that
£
(2) Prclay— ) < —
2 4(a)
and an b, € B such that
€
3) ' q(by— ) < ———.
2 Prley
=1
Asg
n
f@)— D ap(@)b,
k=1

= @)= D m@a+ D (@) — a (@) o+ D) g (@) (a,— by)
k=1 k=1 k=1

for each x € X, then
g(f(@)— Zakw)bk)
k=

<1’k,q( Z/‘kfak) {-/ — ) ¢ () + Zpk(ak)q % — br)

for each x ek%. Now by (1), (2) and (3)

pk,q(f" jakfbk) < 3e.
k=1

Consequently, z(ARYB) is dense in C(X, 4).

In the case, when ¥ = C(X, F) and B = A Proposition 4 is known
(cf. [9], p. 206).

CoROLLARY 1. Let X be a compact Hausdorff space and A be a locally
convexr space (o locally convex algebra) over F. If U and B are linear dense
subspaces (dense subalgebras) of C*(X, F) and A respectively, then = is
a linear injection (an isomorphism) from A @B onto a dense subspace (a dense
subalgebra) of C*(X, A).
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In the case when A =B is a normed space over R, Corollary 1 is
known (cf. [7], p. 315). Moreover, when A is a Banach algebra % = 0*(X, 0)
and B = 4, Corollary 1 has been proved in [12] and for pseudocompact
space X in [3]. When compact space X has a finite covering dimension,
then the last result has been generalized in [23] for linear topological
space A.

PropPOSITION 5. Let X be & locally compact Hausdorff space and A
be a locally convex space (a locally convex algebra) over F. If N, and B are
linear dense subspaces (dense subalgebras) of Co(X, F) and A, respectively,
then m is a linear injection (an isomorphism) from W RV onto a dense sub-
space (a dense subalgebra) of Co(X, A).

Proof is analogous to the proof of Proposition 4.

“Let now A be a Banach space (a2 Banach algebra). By C*(X, F) A

we denote the completion of algebraic tensor product C* (X, F)®4 with
respect to the weakest tensor product norm || ||* (cf. [23], p. 355). It is

. known, that
” Znak(gak‘: _ “n( Zak®ak)
k=1 k=1

for every element of C*(X, F) ®A. Therefore = is a linear isometry (an
isometric isomorphism). Since C*(X, A) is a Banach space, then =
has a linear isometric (an isomorphically isometric) extension = from
C*(X, F)®A onto the closure of =(C*(X,F)®A) with respect to the

topology *of C*(X, A). We shall prove the following analogue of Gro-
thendieck’s theorem [11], p. 128.

THEOREM 5. Let one of the following conditions hold:

(a) X is a pseudocompact space and A is a Banach space (Banach
algebra) over F;

(b) X is a topological space and A is a finite dimensional Banach
- space (Banach algebra) over F.

Then C*(X, F) QA and 0" (X, A) are linearly isometric spaces (iso-
. morphic and isometric algebras).

C*X, 4)

Proof. According to the preceding arguments, we must show only
that #(C* (X, F) @A) is dense in C*(X, 4). As of, = n(a®a) e x(C* (X, F)
®4) for every aeC*(X,R) and' aed, then, by Proposition 2,
#(C* (X, F)QA) is dense in C*(X, A).

6. Homomorphisms from C*(X, A) onto a dense subalgebra of
C*(Y, B). Let X and Y be two topological spaces, A and B be two Banach
algebras, ¢: A—>B be a continuous homomorphism and »: ¥Y—>X be
a continuous mapping. Denote by F, , the mapping f—gofoy for every
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feC*(X,A). As F,, (f)eC*(Y, B) for each feC*(X, A), then F,, is
& homomorphism with

kerF,, = {fe C*(X, A): f(w) ekergp, s c p(Y)}.
The properties of I, , are considered in [5]. In this section as an

application of Theorem 2, we have

"PROPOSITION 6. Let X be o topological space, Y be a pseudocompact
space, A and B be two Banach algebras with unit, p: A—>B be a continuwous
homomorphism with ¢ (A) dense in B and p: Y—>X be a continuous mepping.
If every a € C* (y(X), R) has an eviension a € C* (X, R), then F, ,(C* (X, A))
is dense in C*(Y, B).

Proof. Let b € B. For any ¢> 0 there exists an a € A such that
b —@(a)lz< e As f,eC*(X, Ad) and

”fb _Ftp,w(fa)”(}-‘(l’.B) = ”b *q)(a).”B’

then f, for every beB belongs to the closure clF, ,(C*(X, 4)) of
F,,(0*(X, A)) with respect to the topology of C*(Y, B).

Let 8 € C*(Y, R). Then by our assumption oy € C*(p(¥), R) has
an extension foyp~!e0*(X, R). As foy 'fe, e (*(X, A) and

Fo,(Boy™ fei)(y) = Bov™ (p(y))fes = Bfen(y)

for each y € ¥, then ffeg € clF, (C*(X, A)) for each g e C*(Y, R). Con-
sequently, by Theorem 2,

]

clF,,(C*(X, 4)) - o*(Y, B).

When either X is a completely regular space and Y is a compact
Hausdorftf sp'ace or X is a metric space and Y is a pseudocompact space,
the conditions of Proposition 6 are fulfilled (ef. [10], p. 43).

COROLLARY 2. Let X be a pseudocompact space, A and B be two Banach
algebras with unit and @: A—>B be a continuous injective homomorphism.
Then C*(X, A) is homomorphic with & dense subalgebra of O*(X, B).

Proof is obvious by Proposition 6.

Let rad A denote the radical of A, let ¢ denote the identity mapping
on X and let ¢ be the canonical homomorphism from 4 onto A radA4.
It is clear that ker#,, = C*(X,rad 4). Moreover, radC*(X, 4) = C*(X,
rad A) if X is a pscudocompact spéce (cf. [4]). So, by Corollary 2, we
have

COROLLARY 3. Let X be a pseudocompact space and A be & Banach
algebra with unit. Then C* (X, A) is homomorphic and C* (X, A) [rad 0" (X, A)
is isomorphic with a dense subalgebra of C*(X, Arad A).

In the same way as in Proposition 6, by Proposition 5, we have
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PROPOSITION 6'. Let X and Y be two topological spaces, A be a finite
dimensional Banach algebra with unit and v: Y—>X be a homomorphism.
If every a € C*(y(Y), R) has an evtension a € C*(X, R), then F, (C*(X, A))
is dense in O*(Y, 4). '

Let now X be a completely regular T',-space. It is well known that
there exists a homeomorphism p: X—pX and every « € 0*(1p(X ), R) has
an extension a € C*(X, R). Let ¢ denote the identity map on Banach
algebra 4 with unit. It is proved in [5] that F,, is an isometric iso-
morphism from C*(8X, A) onto a closed subalgebra of C*(X,A). In
view of this, by Proposition 6 and Proposition 6’, we have

COROLLARY 4. Let one of the following conditions hold:

(a) X is a pseudocompact space and A is & Banach algebra with unit.

(b) X is a completely reqular T,-space and A is a finite dimensional
Banach algebra with unit.

Then the algebras C* (X, A) and C* (X, A) are isometrically isomorphic.
When A is a B-algebra, Corollary 4 is known (ef. [1], Corollary 13).
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