
ANNALES SOCIETATIS MATHEMATICAE POLONAE 
Series I: COMMENTATIONES MATHEMATICAE XX (1978) 

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO 
Séria I: PRACE MATEMATYOZNE X X  (1978)

M. Abel (Tallinn)

The density property in algebras oî d,-valued 
continuous functions

1. Introduction. Let F  denote either the field В  of reals or field G 
of complex numbers. For a topological space X  and a locally convex 
space (a locally convex algebra) A  over F  let C(X,  A)  denote the set 
of all continuous A-valued functions defined on X.  The subset of G(X, A)  
consisting of all bounded functions, i.e., of all functions for which f {X)  
is a bounded set in A , we denote by G*(X,  A). With respect to the pointwise 
addition and scalar multiplication of functions, G{X, A)  and G*(X, A) 
are linear spaces. In  particular, when A  is an algebra, G{X,  A) and 
G*(X, A)  are also algebras with respect to the pointwise algebraic opera­
tions on functions.

Let Q denote the family of all continuous seminorms generating 
the topology for A and let К  denote the set of all compact non-empty 
subsets of X.  We endow the spaces G{X, A) and G*(Xt A) with locally 
convex topology defined respectively by seminorms {pktq: q e Q , h e K }  
and {pq: qeQ},  where Pk,q(f) =  SUP {<z(/(^)): x e k ]  and pq(f) 
= sup {#(/(#)): x e X }. Then G(X, A)  coincides with G*(X,A),  if X  is 
a compact space (cf. [1 1 ]).

Let now X  be a locally compact space. We shall say tha t f  e G*(X, A)  
vanishes at infinity if for any given s >  0 and q e Q there exists a compact 
set Tcqe e  X  such that q (f(x)j <  s for each og ф hq>8. The subset of G*(X, A) 
consisting of all functions which vanish a t infinity we shall denote by 
G0{ X , A )  and endow with relative topology of G*(X,A).

Numerous generalizations of Stone-Weierstrass theorem for G{X,  A), 
<7*(X ,A ) and G0( X , A )  are known (cf. [22], p. 119). For a compact 
Hausdorff space X  and a locally convex space A these generalizations 
are considered in [8], [11], [20] and [2 1 ]. Moreover, for completely regular 
space X  and a _B0-algebra with involution A the generalization of Stone- 
Weierstrass theorem is considered in [26] and for a topological space X  
and a S*-algebra A — in [2 ].
» Generalizations of Stone-Weierstrass theorem for G0(X,  A) are con­
sidered in [16] (when A is a 0*-algebra) in [6] (when A is а Б*-algebra) 
and with respect to the topology of G0{X,  A) — in [8] and [26].
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A generalization of Stone-Weierstrass theorem for G{X, A)  when X  
is not a compact Hansdorff space has been given without proof in [27].

In the present paper in Section 2 the Stone-Weierstrass theorem 
is generalized for G(X, A)  when X  is a Hansdorff space and A  is a locally 
convex algebra over F  using the Nagata’s generalization of Stone-Weier­
strass theorem (cf. [17], p. 268). In Section 3 the generalizations of Stone- 
Weierstrass theorem for C*(X, A)  is considered when either X  is a pseu­
docompact space and A is a normed space (algebra) over F  or X  is a topo­
logical space and A is a finite dimensional normed space (algebra) over F. 
We prove a generalization of Holladay-Hausner’s theorem [13], [15] 
using the Hel’s generalization of Stone-Weierstrass theorem [19].

In Section 4 we consider generalizations of Stone-Weierstrass theorem 
for G0(X,A) )  when A is a locally convex algebra over F. A generaliza­
tion of Kaplansky’s theorem (cf. [16], p. 233) is proved.

The results mentioned above are applied to tensor products in 
Section 5. A generalization of Bourbaki’s result (cf. [7], p. 315) for G(X, A) 
and <70(X, A)  when A is a locally convex space (algebra) over F,  is proved. 
Moreover, we prove an analogue of Grothendieck’s theorem (cf. [14], 
p. 128) for G* (X , A ) when either X is a pseudocompact space and A 
is a Banach space over F  dr X  is a topological space and A is a finite 
dimensional Banach space over F.

In Section 6 we find the conditions, when G*(X, A) is homomorphic 
with dense subalgebra of G*{Y,B)  for topological spaces X  and Y  and 
Banach algebras A and В  with unit. Moreover, it is proved that the al­
gebras (x) C*(ftX, A) and G*(X, A) are isometrically isomorphic if either 
X  is a pseudocompact space and A be a Banach algebra with unit or X  
is a completely regular Tr space and A is a finite dimensional Banach 
algebra with unit.

2. The dense subspaces and subalgebras of C{X,‘A).  Let X  be a
topological space and A a locally convex algebra over F. By f a we shall 
denote the constant functions with value a g A, i.e., f a(x) = a on X, 
and by afa — the functions x->a(x)a, where a e G ( X , F )  and a e A.

We have
Proposition 1. Let X  be a topological space and A  be a locally convex 

space over F. I f  % is a linear subspace of G{X, A) which for every a e G(X, В) 
and a g A contains afa, then A is dense in G(X,  A).

P roo f. Let /  g G(X,  A), qeQ,  Тс e К  and e >  0. I t  is sufficient to 
show that there exists g e A  such that

Pk,a( 9 - f ) < £ -

(x) By (iX  we denote the Stone-Ceeh compactification of space X .
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Let 0(a,  s) denote the e-neighborhood of a e i  defined by q. Then 
the sets {0{a, e): aef(Tc)} cover /(&). As f(h) is compact, there exists 
a finite cover {0(аг, e), щ e/(fc), l = 1 ,2 , . . . ,% }  of jf(fc). In  view of 
this, there exist /лг, /л2, . . . ,  pn e C(f{k), [0 , 1 ]) such that pr{a) =  0 if

П
а ф 0(ar , e) for each r =  1 , 2 , . . . ,  n and pr(a) = 1  on f{Jc) (cf. [18]).

r— 1
As every locally convex space is completely regular [14], /(X ) is also 
a completely regular space. Hence pr has an extension jir e G (/(X ), В) 
for each r = 1, 2, . . . ,  n (cf. [10], p. 43).

Let now hr = (jXro f ) f a for each r =  1 ,2 , ...,% . As ar e A  and
П

ÿro f  e 0(X , B) for each r = 1 , 2 , .T., n then JT1 hr e 5Ï by our assumption. 
Moreover, for each x eh  we have r=1

П П
= 4 [ ^ ( P r 0f)(æ)(ar~f(^))]

r—l r=1
n

<  X i ^ rof){(0)q(ar-f{x))
Г— 1

n
<  e l*r[f{x)) = «•

Г— 1
Consequently,

П
Pk , q{£K  - / ) <  e. 

r= l
This completes the proof.

In [12], p. 28, Proposition 1  has been proved for compact space X. 
Theorem 1. Let X  be a Hausdorff space and A  be a locally convex 

algebra over R  with unit eA . I f  51 is a subalgebra of C{X, A) such that 
1 ° all А -valued constant functions belong to and 
2° for every pair x, у of distinct points of X  there is a function axy 

t e C ( X , B )  which separates the points x and у (i.e., axy(x) #  <*xy(y)) and 
such that axyf e e51, then 51 is dense in С(X, A).

Proof. Let e =  f e . I t  is clear that

5I0 =  { aeC{ X, B) :  ctee51}

is a subalgebra of C(X,  B) which contains a unit and separates the points 
of X. Hence, by Eagata’s generalization of Stone-Weierstrass theorem 
(cf. [17], p. 286), 510 is dense in C(X,R) .

Let now ft be an arbitrary function in 0(X , B). Por any given q e Q, 
Тс e К  and s > 0 there exists a e 5I0 such that

s . -
Pkia - P ) <
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(here pk{a) =  sup | a (x) | for every a e C(X,  B) and TceX). Since
xek

Pk,q{ae~ aP) =  Рк(«-Р)й(*А)< ei

fie belongs to the closure сЩ of 9Ï with respect to the topology of G(X, A). 
As сШ satisfies the condition of Proposition 1, then сЩ = G{X, A).

Theorem 1 '. Let X  be a Hausdorff space and A  be a locally convex 
algebra over G with unit eA . I f  % is a subalgebra of G(X,  A) such that

1 ° all А -valued constant functions belong to 91,
2° for every pair x, y of distinct points of X  there is an axy e 0 ( X ,  G) 

separating the points x and y and such that axyeA e 91,
3° i f  a eG{X,  G) and aeA e9ï, then aeA e9l (where a is the complex- 

conjugate of the function a), 
then 91 is dense in G(X,A) .  /

JProof. As in Theorem 1, 910 =  {a e G(X, G): себе 91} is a sub- 
algebra of G(X, G). Let 9tx denote the subalgebra of all real-valued func­
tions of 9t0. Since 9lx contains the unit and by our assumption separates 
the points of X, then 9TX is dense in G{X,B)  as above. Now fieA e сЩ 
for every p e G ( X , B )  and by Proposition 1 , cl91 =  G(X, A).

3. The dense subspaces and subalgebras of G*(X,A).  Let X  be 
a compact Hausdorff space and A be a locally convex algebra over F. 
Then Theorem 1 and Theorem 1' are true also for G*(X, A). Moreover, 
we have

P roposition 2. Let one of the following conditions hold:
(a) X  is a pseudocompact space and A  is a normed space over F\
(b) X  is a topological space and A  is a finite dimensional normed space 

over F.
I f  91 is a linear subspace of G*(X,A)  which for any aeG*{X, B)  

and a e A  contains afa, then 9t is dense in G*(X,A).
P roof. In  case (a)/(X) is a compact subset of A  (cf. [24], Theorem 2.3) 

for every f  eG*(X,  A)  and in case (b)

{aeA:  |Н|д^  ll/llo*(x,̂ )}

is a compact subset of A  for every f  e G*(X, A).  Therefore, in the same 
way as in the proof of Proposition 1, we prove tha t there exists g e 91 
such that

\\9 — f \ \o * (X ,A )  ^  e -

Consequently, 91 is dense in G*(Xf A).



А -valued continuous functions 239

Theorem 2. Let X  be a pseudocompact space (2) and A  be a normed 
algebra over F  with unit e. I f  % is a subalgebra of G*(X, A) containing all 
А -valued constant functions <md for any a eG*{X,B)  the function ae, 
then 51 is dense in G*(X, A).

Proof. I t  is obvious by Proposition 2.
Holladay [15] and Hausner [13] have generalized the Stone-Weier- 

strass theorem for G*(X, A)  (assuming tha t X  is a compact Hausdorff 
space) when, respectively, A  is the skew field of real quaternions and 
the real Cayley-Dickson’s type algebra of dimension 2n (n >  1) or real 
Clifford algebra of dimension 2n (n even).

Using Proposition 2, we shall prove a generalization of Holladay- 
Hausner’s result.

Theorem 3. Let X  be a topological space and A be a finite dimen­
sional normed algebra over В with unit e. I f  % is a subalgebra of G*(X, A)  
such that

1° all А -valued constant functions belong to 51,

2° for every pair zx, zz of disjoint zero-sets in X  there exists an 
a eC*(X,R)  such that c l a ^ n c l a ^ )  =  0  and ae e 51, 
then 51 is dense in G*(X,A).

P roof. I t  is clear that 510 =  {aeG*{X,  B): ae e 51} is a subalgebra 
of C*(X,B)  which by our assumption contains the unit and separates 
the disjoint non-empty zero-sets of X.  Hence, by Nel’s generalization 
of Stone-Weierstrass theorem (cf. [19], p. 229), 510 is dense in G*(X,B).  
Now it is easy to show in the same way as in the proof of Theorem 1 
that fie belongs to the closure cl51 of with respect to the topology of 
G*(X,A)  for every /? e G*(X, B). Consequently, cl51 satisfies the condi­
tion of Proposition 2(b) and cl51 — G*(X, A).

4. The dense subspaces and subalgebras of G0{X, A).  In  this section 
we shall generalize the Stone-Weierstrass theorem for G0{X, A),  when A  
is a locally convex algebra over F.

Proposition 3. Let X  be a locally compact Hausdorff space and A  
be a locally convex space over F. I f  51 is a linear subspace of G0( X , A) 
and 51 contains all the functions afa, where a e G0( X , B), a e A, then 51 
is dense in G0(X ,A) .

P roof. Let /  e G0(X,  J.), q eQ and e > 0. Let Jcq 8 denote the com­
pact subset of X  such that q(f{x))< e for all x ф kQ E, and vx denote

(2) The space X  is called pseudocompact if it is-Tj-space and every complex­
valued continuous function defined on X  is bounded.
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a neighborhood of x e kqe which closure is compact set in X.  Then {UQt,(x) : 
x g \ yS], where

Uq>e{x) = vxn \x ' e X :  q( f ( x ' ) - f ( x ) )<e} ,

is an open cover of kqe, which contains a finite cover {Uq>e{xk): xk g kqe, 
к =■ 1 , 2 , . . . , n } .

Let X oo denote the one-point compactification of X.  As for each 
к =  1, 2, . . . , n  the sets Uqe(xk) and X \ k q>e are open in X œ and cover 

there exist continuous real-valued positive functions /лг, /i2, . y n+i 
on X œ such that pk(x) = 0 it x $ Uq e \xk) for each к — 1, 2, n and

n+1
pn+1{x) =  0 if x e k q s. Moreover, pk{x) =  1  on X ^  and y k vanishes

*=i
outside of the compact set cl Uq>e(xk) for each к = 1 , 2 Conse­
quently, (лк e  G0(X,  B) for each к — 1 , 2 , . . . , n  and by our assumption

П
у * *  e я ,

k = 1

where hk — pkfak and ak =  f (xk) for each к = 1, 2 , . . . ,  n. As
П П

q( £ =  q[ £ Pk(®)(f(®k)-f(°°))-
k*= 1 1

n

k = 1
M + 1

<  e £  =  e
&=i

'for each x e X,  then
П

Pa(
k = l

Consequently, 51 is dense in C0(X,  A).
Theorem 4. Let X  be a locally compact Hausdorff space and A be 

a locally convex algebra over В  with unit e. I f  51 is a subalgebra of G0{X, A) 
such that

1° for every x e X  there is an ax e G(X,  B) with ax(x) Ф 0 and axe e 51, 
2° for each pair x, у of distinct points of X  there exists an axy e G0(X,  B) 

separating the points x and у and such that axye e 51,
3° for every a e A, a e G0( X , B), the condition ae еЖ implies afa e5I, 

then 51 is dense in G0( X , A).
P roof. I t  is clear that 5t0 =  {a eG0{X, B): ae e 51} is a subalgebra 

of G0(X,  B), which satisfies the conditions of Stone-Weierstrass theorem 
for G0{X, B). Hence 5t0 is dense in G0(X,  B).
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Let fi e O0(X, B). Then for any given q eQ, a e A  and s >  0 there 
exists a a e 5I0 such that

Px(a-P) < -7~rq(a)
as

P q ( < * f a - P f a )  =  P x i < * - P )  V ( a ) <  e

then by condition (c) fifa belongs to the closure of 51 with respect to the 
topology of G0(X,  A). Consequently, by Proposition 3, 21 is dense in 
C0(X,A) .  .

In [16], p. 233 (cf. also [18], p. 406), Kaplansky has generalized 
the Stone-Weierstrass theorem for G0(X,  A)  when A  is a (7*-algebra. 
The following theorem is a generalization of Kaplansky’s result:

Theorem 4'. Let X  be a locally compact Hausdorff space and A  be 
a locally convex algebra over G with unit. I f  5t is a subalgebra of (70(X, A) 
such that

1 ° for every x e X  there is an ax e G(X, В) with ax(x) Ф 0 and axe e 51. 
2° for each pair x, у of distinct points of X  there exists an axy e G0(X,  G) 

separating x and у and such that axye e 51,
3° for every a e A , a e G0( X , G), the condition ae e 51 implies afa e 51, 

then 51 is dense in G0(X,  A).
Proof. In the same way as in Theorem 1', by the Stone-Weierstrass 

theorem for G0(X,  B) and Proposition 3, we show that 5t is dense in 
Gq( X , A).

5. Applications to tensor products. Let X  be a topological space, A  
be a linear topological space (a topological algebra) over F  and let 51 
and 23 be linear subspaces (subalgebras) of G(X,F)  and A, respectively. 
Denote by 51 <S)A the algebraic tensor product of 51 and 23 and by я the 
mapping

П П
® br~+ &rfbr )

r = 1 r = 1

where cq, a2, .. . ,  an and bx, &2> • • • ? bn e 23. I t  is clear that я is a linear 
injection (respectively, an isomorphism) from 51053 into G(X,A) .  We 
have

Proposition 4. Let X  be a Hausdorff space and A be a locally convex 
space (a locally convex algebra) over F. I f  51 and 23 are linear dense sub­
spaces (dense subalgebras) of G(X,  F) and A  respectively, then я is a linear 
injection (an isomorphism) from 5t 0 A into a dense subspace (a dense sub­
algebra) of G(X,  A).
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Proof. I t  is sufficient to show that ?r(2f®23) is dense in C(X,  A).  
Let /  6 C(X,  A) t qeQ,  h e К  and e > 0. Proving Proposition 1 , we have 
shown that there exist /л2, . . . ,  pn e C(X,  F) and at , a2, . . . ,  an e A  such 
that

# П
(1) Pk,q(f -  ]£t*rfar) <  e-

r —1

(If A  is an algebra, it is also true.) In  view of our hypothesis, for each 
iк =  1 , 2 , . . . , n  there exists ak G% such that

(2) Pk(<*k - f*k) <  “
È a Mr—l

and an bk g i8 such that

(3) ’ Q.(bk~ak)<̂  n •
È P k Mk = t

As
n

/ И -  £ a k(x)bk
k  = l

n n n

=  / ( » ) - - «*( ») ) «*+ ^ a k{æ)(ak - b k)
Zc=l k = l  fe=l

for each x e X,  then
П

к —l
n n n

<Pk, q( f -  %Pkfak) + У}рк(ак-Рк)й(ак)+ £Pk(<*k)S(<*k-h)
k —1 k = 1 k = 1

for each x g Jc. Now by (1), (2) and (3)
n

Pk,g( f -  Z « J b k) <  3e.
*=i

Consequently, :/t(21®23) is dense in C(X,A) .
In  the case, when Ж =  C(X,  F) and 23 =  A  Proposition 4 is known 

(cf. [9], p. 206).
Corollary 1. Let X  be a compact Hausdorff space and A  be a locally 

convex space (a locally convex algebra) over F. I f  21 and 23 are linear dense 
subspaces (dense subalgebras) of G*(X,F) and A  respectively, then л  is 
a linear injection (an isomorphism) from 21 ®23 onto a dense subspace (a dense 
subalgebra) of C*(X,A).
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In the ease when A — 23 is a normed space over R, Corollary 1 is 
known (ef. [7], p. 315). Moreover, when A  is a Banach algebra =  G* ( X , G) 
and © == A, Corollary 1 has been proved in [12 ] and for psendocompact 
space X  in [3]. When compact space X  has a finite covering dimension, 
then the last result has been generalized in [23] for linear topological 
space A.

Proposition 5. Let X  be a locally compact Hausdorff space and A  
be a locally convex space {a locally convex algebra) over F. I f  5X0 «wd © are 
linear dense subspaces (dense subalgebras) of G0( X , F) and A,  respectively, 
then л  is a linear infection (an isomorphism) from 510© onto a dense sub- 
space (a dense subalgebra) of G0(X,A) .

Proof is analogous to the proof of Proposition 4.
'Let now A  be a Banach space (a Banach algebra). By G*(X, F)<g>A 

we denote the completion of algebraic tensor product G*(X, F) ®A with 
respect to the weakest tensor product norm || ||s (cf. [23], p. 355). I t  is 
known, that

П П
II , £ а*® л*Г =  I N  ^ « * ® а»)||о.(х,Л)A=1 *=1

for every element of G*(X,F)<g>A. Therefore л  is a linear isometry (an 
isometric isomorphism). Since G*(X,A)  is a Banach space, then л  
has a linear isometric (an isomorphically isometric) extension л  from
G* ( X , F) ®A onto the closure of л  (G*(X, F) ®A) with respect to the 
topology^of G*(X,A).  We shall prove the following analogue of G-ro- 
thendieck’s theorem [1 1 ], p. 128.

Theorem 5. Let one of the following conditions hold:
(a) X  is a pseudocompact space and A  is a Banach space (Banach 

algebra) over F;
(b) X  is a topological space and A  is a finite dimensional Banach 

space (Banach algebra) over F.
Then G*(X,F)<S>A and G*(X,A) are linearly isometric spaces (iso­

morphic and isometric algebras).
Proof. According to the preceding arguments, we must show only 

that л(С*(Х, F)®A)  is dense in G*(X, A). As afa = л(а®а)  e л(С*(Х, F) 
®A) for every a e С* ( X , It) and* « e l ,  then, by Proposition 2, 
л  (G*( X , F) <g>A) is dense in C*(X,A).

6. Homomorphisme from G*(X, A) onto a dense subalgebra of
G*(Y, B).  Let X  and Y  be two topological spaces, A  and В  be two Banach 
algebras, 9?: A->B be a continuous homomorphism and ip: Y-+X  be 
a continuous mapping. Denote by Fv>v the mapping f->q>ofoip for every
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f  eG*(X,  A). As. F VtV (/) eG*(Y,B)  for each f  eC*(X,  A), then is 
a homomorphism with

k e r j =  { feG*{X,A) :  f(x) e ker<p, x e y>{Y)}.

The properties of F 9tV are considered in [5]. In this section as an 
application of Theorem 2, we have

Proposition 6. Let X  be a topological space, Y  be a pseudocompact 
space, A emd В be two Banach algebras with wait, <p: A->2? be a continuous 
homomorphism with у [A) dense in В and ip: Y->X be a continuous mapping. 
I f  every a e G* (ip(Y) , B) has an extension a e G* (X , B), then F v>v (G* (X , A)) 
is dense in G*(Y,B).

P roof. Let b e B .  For any s > 0  there exists an a g A  snch that 
||6 — <p(a)Ид <  e. As f a e G*(X, A) and

II fb~~-̂ <p,y)(fa)\\c*(r,B) =  ||& — <р{а>\\\в)

then f b for every b e B  belongs to the closure clFVtV{G* (X , A)) of 
F <P>4,(G*(X, A)) with respect to the topology of G*{Y,B).

Let /? g G* (Y ,  B). Then by our assumption @oip~l e G* (ip(Y), B) has 
an extension ($oip~l e G*(X, B). As (3oip~lfeA eG*(X,A)  and

F <p,4,(^oip~1feA){y) =  (y{y))feB =  pfeB(y)

for each y e Y,  then ffeB e clF <p>y){G*{X, A)) for each fi eC*(Y,  B). Con­
sequently, by Theorem 2,

cl F 9„(C*(X,A)) = < T( Y , B) .

When either X  is a completely regular space and Y is a compact 
Hausdorff space or X  is a metric space and Y is a pseudocompact space, 
the conditions of Proposition 6 are fulfilled (cf. [10], p. 43).

Corollary 2. Let X  be a pseudocompaet space, A  and В be two Banach 
algebras with unit and cp: A-+B be a continuous injective homomorphism. 
Then G*(X,A)  is homomorphic with a dense subalgebra of G*( X , B).

Proof is obvious by Proposition 6.
Let rad A denote the radical of A, let £ denote the identity mapping 

on X  and let q be the canonical homomorphism from A onto A/rad A. 
I t  is clear that ker F e>s = G*(X, rad A). Moreover, rad(7*(X, A) =  G*(X, 
radA) if X  is a pseudocompact space (cf. [4]). So, by Corollary 2, we 
have

Corollary 3. Let X  be a pseudocompact space and A  be a Banach 
algebra with unit. Then G*(X, A) is homomorphic and G*(X, A ) /radO*(X, A) 
is isomorphic with a dense subalgebra of G* (X, A /radA).

In the same way as in Proposition 6, by Proposition 5, we have
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Proposition 6'. Let X  and Y  be two topological spaces, A  be a finite 
dimensional Banach algebra with unit and ip: Y-+X be a homomorphism. 
I f  every a e C*[ip(Y), B) has an extension a eC*{X, B), then FVfV\C*(X, A)) 
is dense in G*(Y,A).

Let now X  be a completely regular Tr space. I t  is Veil known that 
there exists a homeomorphism ip: X->{3X and every a s C*[ip(X), B) has 
an extension aeC*( X, B) .  Let rp denote the identity map on Banach 
algebra A  with nnit. I t  is proved in [5] tha t Fv>v is an isometric iso­
morphism from C*(PX,A)  onto a closed snbalgebra of C*{X,A).  In 
view of this, by Proposition 6 and Proposition 6', we have

Corollary 4. Let one of the following conditions hold:
(a) X  is a pseudocompact space and A is a Banach algebra with unit.
(b ) X  is a completely regular T x-space and A  is a finite dimensional 

Banach algebra with unit.
Then the algebras C*(ftX, A) and C*(X, A) are isometrically isomorphic.
When A  is a В-algebra, Corollary 4 is known (cf. [1], Corollary 13).
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