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Inverse theorems for Favard operators
in polynomial weight spaces

1. Introduction. The aim of this note is to establish a complete equivalence
theorem concerning the rate of -convergence for operators introduced by
Favard (cf. [6]) in 1944, namely

i k
. :Z_ © .f <_n—) q;;,n (X) )

(ynn) ™12 exp (—i(f——x>2>,
y \n

where y > 0, neN (= the set of positive integers). The functions to be
approximated are defined on the whole real axis R and are allowed to
have polynomial growth at infinity. To this end we consider the spaces
C,y given via (NeP := Nu {0})

wo(x) i= 1,  way(x):= (1+x*¥)"' (xeR, NeN),

It

Fof(x):
(1)

If

Qien (X)

C,y := {f€ C(R); w,y f uniformly continuous and bounded on R},

IS oy := wan S 2= Sup wan (X).f ()],

C(R) being the set of all continuous functions on R. Correspondingly,
Lipschitz classes are given for 0 < a < 2 by

Lip, oy i = {f€Cayn; @y on(f; 0) = 0(6),0 >0+,
where ‘

w2,on (f3 8) := sup {43 fllons Aff(x) = f(x+h)=2f (X)+1 (x—h).

0<h<d
Then we have the following result.

THEOREM 1. Let NeP, feC,y, a€(0;,2]. The following assertions are
equivalent: ’

() IFy f~fllaw = O(n™*)  (n— ),
() feLipy v a.
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Whereas [6] is mainly concerned with (pure) convergence assertions, the
equivalenice for the saturation case « = 2 was established in [4]. Moreover,
the direct part (3)=>(2) for 0 < a < 2 follows from [1] (compare the remarks
in Section 3 for some additional details). Thus there remains to prove the
inverse part (2) = (3) for the case of nonoptimal approximation. The proof
in Section 3 rests mainly on a suitable representation and estimation of
the second derivative of F) f, which will be derived in Section 2. Analogous
results for Szasz—Mirakjan and Baskakov operators have been established
in [3]. The approximation of functions exhibiting exponential growth will be
the subject of a further note (cf. [4], Section 5).

The material of this paper forms part of the author’s doctoral dissertation.
The author wishes to express his sincere gratitude to Professor R.J. Nessel,
his dissertation adviser, for his constant encouragement and helpful remarks,
and for his critical reading of the manuscript.

2. Basic estimates. In this section the results of Section 2 in [4] will
be extended and improved in order to derive -an estimation for (F} f)”. First
recall (xeR, neN, reP)

4) Fll(x) = Z ga(x) =142 Z exp (—nyn?j?) cos (2nnjx),

k= —o j=1

e k r
) T, (x) = F(t—x); x) = X (7—X> G (%)-

LEMMA 2. For o > 0, neN let -

8

Sy := Z] exp (—nyn?j?), AY:=(eV"2—1)‘1.
=

There hold the following estimates:

(6) S, < (OC/‘}’TCZ e)a/z (emz _ 1)~1 n-%2 < Ay (oc/yn2 e)a/z n
ea®/?
“ —aj2—A j, 1
(7) Sa < (ynz e)a/2+A ( > )9

A, (afyr?e)?n~%2"% (0 < 1<),
Proof. Defining f,,(x) := x* exp (—nyn®x(x—1)) we have
Ity S, = Y. J* exp (—nyn®j2 +nyn? j) exp (—nyn?j)
j=t

< max f.() @™ =171,
jz
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so that (6) would follow from

© max foq(x) < (a/yn®ef’? n=*2,

To prove (9), note that the function f,, attains its maximal value for
X, := (L+(1+8a/nyn?)'?)/4. For n > n, := a/6yn? we have x, <2, and
therefore

m>a;( f;n,a (x) = fn,a (2) = 2% exp (“2"‘))7'52).

Observing that x*2 exp (—2xyn?) is maximal for x = a/4yn?, this delivers
(9) for n = ny. For n < n, we have x, > 2, thus x?—x, > x2/2, so that

Max foo(9) = foa (%)< X3 exp (—myn? x2/2).

This implies (9) for n < n, since x*exp (—nyn?x?%/2) attains its maximal
value for x = (a/nyn?)/2.

For the proof of (7) define g, (x) := x*(exp (yn*x)—1)"!. We first show
e(i/yn*e) (A >1),

<
(10) max ¢ (x) { A, 0 <A<,

For g, to have a maximum at a point x, we must have that

(1) A = xoym? exp (xo771%) (exp (xo y1%) — 1) L.

As ye’(@—1)"! > 1 is an increasing function, this only can happen for
A > 1. In this case by (11)

- Ao
91 (x0) = x5 (exp (xoyn?)—1)7" = - Xo ' exp (—xoym’).

As x*7!exp (—xyn?) attains its maximal value for x = (A—1)/yn?, there
follows

m>az( 93 (%) < ga(xo) < A(yn®) *(A—1)1 "1t 72

= e(A/ym? e (1 —=1/A* ! < e(Afyn? e} .

This proves (10) for 4 > 1, while for 4 < 1 we note that g, is decreasing,
thus g,(x) < g,(1) = 4,. Now (7) is an easy consequence of (6), (10) in
view of '

Sx < max g, (x)(a/yn® e n~*274. o
x21
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Let us mention that Lemma 2 extends Lemma 2.2 in [4] by providing
precise constants. From (7) we see that S, can be majorized by an arbitrary
power of 1/n.

THEOREM 3. For every n,reN, x€R there holds

7\ [r/2) oy i
(12) T, (x) = (—27,-> (Fr1)"(x)+ ,;1 Cr.j (—2-”—) T -2;(x)

with constants

!

(13) ¢, ;= (—1y*! Z—jm

(1 <j<[/2D.

Proof. This is essentially Theorem 2.4 of [4] except that the sum-
mation in (12) is reversed and the constants are evaluated via (13). Indeed,
using

d 2n
N T;e,r(x) = 7:!,7+1 (X)+ rT;:,r-— 1 (x)
dx y

gives (in the following proofs we omit the index 7)

(14 Trr () = 5 (T () +1T,o 1 (0]

,y r+1 y
={=—] FED*VX)+0+c, 1)(—- L, - (0)+

2n ’ 2n
{r/2] y j

+ z (Cr,j"(”‘l’z“zj)cr,j-l)(—z““) Tor+1-2;(x)—
j=2 . h

.y [ri2)+1
—(r=2[0r/2D)c, 12y (3;) T air2-1 (%)

From this representation the theorem follows by induction. o
THEOREM 4. For every re P, neN, xeR there holds

(15) IT?, (x)] < 75 max {4,, 1} (y/ey*rin="%.

Proof. By (4) and Lemma 2 one has
|Tho(X)] = |Fa1(x)] < 1428y < 1424, < 2max {4,, 1},

y y \12
1T, () = S [ Iy () < 2my8, < 24, (7) n=t2.
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This gives (15) for r = 0, 1. Now let us proceed via induction, i.e suppose
(15) to be valid for 0 < r < s. Then one has

Is/2]

J
16 % leot (L) 1Tousy 0

=1
Is/21

s! y \J ¥y \$/2—]J .
75 max {4, 1} Z =201 <) <?) (s—2j)n~s2%i

i=
1120 1/ o \J
75 max {4., 1 < ) s'n‘mz ( )
=gt

75 max {A., 1} ) stn™%2 (exp (e/4)—1)

N

m[e

/N

s/2
< 73 max {4, 1}( ) stn™s2,

Furthermore, (4) and Lemma 2 deliver
. / s s/2 :
(17) (J’—) (F, ) (0] = 2(myFS, - 24 <ys) =52,
2n e
In view of s*/2
for r = s.

< s! estimates (16), (17) together with Theorem 3 imply (15)

The next theorem provides the desired estimations for (F, f)"” (constants
M.\ may have different values at each occurrence).

THEOREM 5. For y > 0, NeP there exist constants M.\ and ny(y)eN
such that for all fe C,,

(18) 15 £ N2y = aM (N fllay (neEN),

S M xlflav (0= ng).

(19) ”(1",.)”)”()6)—"2 Z Au..f(g)q;,..(X)

k=—w

2N

Proof. By straightforward computations we obtain

o Erw= () 5 (e=n) =2 |7 () o,

Qi+ 1,0 (X) = 2qp 0 (X) + Gi— 1,0 ()

winfo 2 () ven (22
s ([ o

2 (=1 tl2l . k 2
+ ; ( /'Y}’ Z (i)22‘+1(7_x) nz'*’}.

i=0

i
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These identities deliver

< k
n Y A (7{) Gun ()= (F, fY' ()

k=-w

— )2 F, 9+ ¥ S (J)4in¥IF, (-0 £ @) %),

j=3 . i=0

i
i
so that »
i k
Q1 |n? k;_j a3, f <7) Qi ()= (F £ ()| 23

<Y 2 NF flan+ 20 f 2w Sy (),

© pr b2 .
S 1= 3 2 @4 [F (=0 )
i= . i=
By Theorem 4 one has | .
@ k 2i k 2N 2N N
wan (x) k_z_ (7— x) (1 + (7) ) Gin(X)| < Zo ( m ) [T5, 2 +m (X)]

W[y ‘
<M, Y ( )(?) (Ri+m)lp~i—m2

m=0 m
2N -
< M, Qi+2N)(y/ne) Y (V) (y/neym2.

m=0
Hence
(22) 1FA (£ —=%)* (A +12Y); xX)llow < My, x (2i+2N)! (v/ne)'.
In particular, there follows '
(23) [Fn fllay < IFa(L+2Y5 X)an 1 flan < Myn (1 f]2n-

Now (18) is an easy consequence of (20), (22); indeed, one has
" f(2n\? 2 2N .
NFu fY llan < I1f Nl2n 3 IF, (= x)* (1+22Y); x) o0+
l 2n 2N
+TI|Fn(1+t 5 XMavp < nMy | fllan-

Therefore in view of (21), (23) there remains to show that

Syn(m) < M,y (n = ng(y)).
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To this end, using (22) one has
®  pmi U2
Sy,N(n) < Z J’ Z (2’) (21+2N 4'})/e)l 2+i—j

ji=3 Voi=o0

© (]+2N) Li/21
N T
1=3

w 2+1i21-j Z )4y/e)'

M i +2N) [(1+2 / e 1/2/V]J 2+Li21-J
Noting n?*/2~J = min {l,nz“’/z} < n~ %05 for j > 20, one obtains

c (l+2)

S,n(n) < M, v+ M. 5 z U0 L1 +2/5e) 2 pmsY < M,

for n = ny(y) (where n, is chosen such that the term in square brackets
is smaller than 1). This completes the proof of (19). =

3. Proof of the inverse theorem. To establish the equivalence theorem
we have to prove the inverse part for the case of non-optimal approximation.

THEOREM 6. Let NeP, fe C,y, a€(0,2). Then the rate of approximation
(24) IFs f=fllay = O(0™*%)  (n— o0)
implies feLip, ,y .

Proof. Let feC,y satisfy (24). Following the elementary argument of
[5], p. 694-696, it is sufficient to show that

(25) Wz on (f; h) < M8 +h%+(h/0)? 0, 58 (f; 0)].
From (24) there follows for all sufficiently large n and he(0, 1]
(26) 147 fll2n < 1147 [f—F San+ 145 0Fy f1ll2n

h/2
< Mylf=Fuflian+1 _fh/fz (Fa f)" (x+s+0)dsdt] 5y
< Myn™"2+ My h* |[(F, f)"ll2n-

Introducing the Steklov means
/2
fi(x) =072 || f(x+s+t)dsdt,

, Zor2

in view of the inequality
W2N(x)/W2N(xi5) < (1+5)2N < 4N (0 < 5 < 1)
one has that (cf. [2], p. 13)
If=follaw < 4¥waon(fi 0)s 15 2w < 4V 072 wa o0 (f3 ).
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Together with Theorem 5 this delivers for n > n,

Q7 NE Y Nen < WEL LD Nen +

] 1/2n

+ln2 Y [ S (kfnts+t)dsdegy (X)) 2y +

k=—o —1/2n
+I(Fu f3)" (x)—n k;_ A% f5(k/1) Gun () 25
< "M;»,N I f=Fsll2x +M;‘,N(||fo’”||2;\'+ I f5ll2n)
< M. [("+5_2)w2,24\'(f§ o)+ I/ 121

By choosing n such that (n+1)"'2 < 6 < n~ Y2 we obtain (25) from (26),
(27) for 0 < h <1, 0 < 6 < §,. This proves the assertion.

Let us add two remarks about the remaining parts of Theorem 1.

Remark 3.1. The saturation result, i.e. the equivalence of (2), (3) for
o = 2, follows from [4], where the spaces

Xy = {feC(R); wan(x) f(x) = o(1), |x] > oo}

were considered. All arguments, however, carry over immediately. The same
holds true for the direct parts for 0 < a < 2 in [1], which treats the
particular case y = 1. To consider y # 1, however, means just modified
constants.

Remark 3.2. Remark 3.1 also holds true for the case N = 0, ie. for
functions uniformly continuous and bounded on R. Let us only mention
Lemma 4.4 in [4], which states that (setting ¢ (y) := (ayy/i)+1)

£ = {f (00)~ 2 {x/o W)Y exp (= y—ax?/e (1)) dy

satisfies the equation
M) = (/) £ () = X exp (—ax?) (€ {0, 1}).

For N =0 it remains to show that f;,f; belong to Dy (B):= {f€X,;
f', f”€ X,}. To this end, note that h(y) := —y/2—ax?/¢p(y) attains its maximal

value at y, := —A/ay+|x| \/ﬂﬁ, so that

g(x) := exp (4/2ay—|x|\/24/y) = exp (h ()
for y > 0. This implies that the integrals (meN, f > 0)

x" o ()" exp (—y/2+h()dy < x"g(x)A™} g exp (—y/2)dy

Ot— 8

1
A
vanish for |x| —» oo, and therefore f,, f1 € Dy (B), since f,,f; and their deriva-
tives are (sums of) such integrals.
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