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Boundaries of upper semicontinuous set valued maps
( Pracę tę poświęcam pamięci Pawła Szeptyckiego )

Abstract. Let x0 be a q-point of a regular space X, Y a Hausdorff space whose
relatively countably compact subsets are relatively compact and let F : X ⇒ Y be an
upper semicontinuous set valued map. Then the active boundary Frac F (x0) is the
smallest compact kernel of F at x0.
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1. Introduction. Let Y be a topological space, A, B families of its subsets.
We write A#B and say that A meshes with B if, for each A ∈ A and each B ∈ B,
A ∩B 6= ∅.

Let B be a filter base. Following [10], we write B  A and say that B aims at
A, if, for each neighborhood V of A there exists B in B such that B ⊂ V .

Let X be another topological space and let F : X ⇒ Y be a set-valued map.
F is said to be upper semicontinuous at x ∈ X (usc at x), if, for each open set V
containing F (x), there exists a neighborhood U of x such that F (U) ⊂ V . F is
upper semicontinuous (usc) if it is upper semicontinuous at x for each x ∈ X.

Let now x0 ∈ X and F : X ⇒ Y be fixed. The external part or map (of F at x0)
is the map E( . ) := F ( . )\F (x0). Let U = U(x0) be the filter of all neighborhoods of
x0 and let N be any filter base contained in U . Then E(N ) is the image filter base
of N by the external map, that is, {F (N)\F (x0) : N ∈ N}. The external filter, i.e.
the filter generated by this base, is still denoted by E(N ). We call it external filter
of F at x0 relative to N . If N = U , we drop U , and refer to it as the external filter.
It may be degenerate, that is, may contain the empty set. However, if it does, x0 is
not interesting from our point of view and is discarded from further considerations.
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A set K ⊂ Y is said to be N -kernel of F at x0 if E(N )  K. If N = U , we
drop N and speak about the kernel of F at x0. If, moreover, K ⊂ F (N •), where
N • =

⋂
N , then we refer to K as Choquet N -kernel (and Choquet kernel if N = U).

The active N -boundary of F at x0 is defined as the adherence of E(N ), that is,

FracN F (x0) =
⋂

N∈N
{F (N) \ F (x0)}.

Again, if N = U(x0), we drop the subscript and speak about the active boundary.
The name FracF (x0) originates from French ‘frontière active’. The notion was

introduced by Dolecki in order to prove that if X,Y are metric spaces and F is usc
at x0, then its active boundary is the smallest compact Choquet kernel (for F at x0).

For historical reasons, we call theorems of this type Văıns̆tĕın-Choquet-Dolecki
Theorems (VCD-Theorems). Improving upon [8] and [11], some of the strongest
VCD-Theorems in the case of a point x0 of countable character were obtained in
[13]. However, in [11] also a more general case of a so-called q-point was studied
albeit with apparently different techniques and with less success. In the present
paper both cases are covered in a unified approach and the results improve upon
both [13] and [11].

Our topological reference is Kelley [12]. In particular, a topological space Y is
compact if it satisfies the familiar Borel-Lebesgue axiom, and Y is regular if, for each
point y in Y , its neighborhood filter has a base consisting of closed neighborhoods.
Hausdorffness is not presupposed. Throughout the paper the word space refers to a
topological space.

2. Compactness of filter bases. Let B be a filter base in a space Y . The
adherence of B is defined by

adhB =
⋂
{B : B ∈ B}.

Let A be a family of subsets of Y and let D denote a class of filters on Y . We
say that B is D-compact at A, if

D ∈ D,D#B =⇒ adhB#A.

If A = {A}, we speak about compactness at A. If A = Y , we often drop Y and
speak about compactness provided no ambiguity about the space can arise (otherwise
the term of relative compactness is used).

Let ℵ be a cardinal. We denote by Fℵ the class of all filters that admit a base of
cardinality (strictly) less than ℵ. B is said to be ℵ-compact at A, if it is Fℵ-compact
at A.

In the just introduced terminology the ‘full’ properties are obtained by dropping
ℵ. Thus, F is the class of all filters (on Y ) and, for instance, B is compact at A
(that is, at the family A composed of one set A), if it is F-compact at A. This, of
course, happens, if B is ℵ-compact at A for each ℵ or, for a fixed B, whenever ℵ
is sufficiently large. For this reason ‘full statements’, that is, statements that are
obtained ‘by dropping ℵ’, do not need to be formulated separately.
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Dealing with cardinals, we use strict inequalities to capture the finitely compact
case: we refer to ℵ0-compactness as finite compactness. Finite compactness may
seem a trivial notion. Yet, it is important because of the following observation [7]:

Lemma 2.1 B aims at A if and only if B is finitely compact at A.

Hence, if N is any filter base contained in U(x0), we have

Lemma 2.2 A set K is an N -kernel of F at x0 if and only if the external filter
relative to N , E(N ), is finitely compact at K.

On the other hand, it is customary to refer to ℵ1-compactness as countable com-
pactness. Hence, for instance, B is countably compact, if any filter F having a
countable base and meshing with B has a cluster point (in Y ).

For the following theorem and other results about compactness of filter bases,
see [14] (where the term ‘compactoid’ instead of ‘compact’ was used).

Theorem 2.3 Suppose B  A. If A is ℵ-compact, then B is ℵ-compact at A.

The Gδ-topology of Y is the one for which the original Gδ-subsets of Y are declared
to be basic open sets. For instance, any member of the Borel σ-field generated by
closed subsets of Y is Gδ-closed.

Proposition 2.4 Let Y be regular and B be countably compact at A. Suppose
K ⊂ Y is Gδ-closed and A K. Then adhB ⊂ K.

Proof Suppose there exists y ∈ adhB \ K. As K is Gδ-closed, there exist open
sets {Gn : n ∈ N} such that y ∈

⋂
Gn and K ∩

⋂
Gn = ∅. As Y is regular, we can

find a decreasing sequence (Hn) of closed neighborhoods of y such that Hn ⊂ Gn for
n ∈ N. Let H be the filter generated by (Hn). Then, adhH =

⋂
Hn is disjoint with

K and its complement V := Y \ adhH is an open set containing K. Hence there
exists A ∈ A such that A ⊂ V , i.e., A is disjoint with adhH.

On the other hand, as y ∈ adhB and Hn’s have nonempty interiors, H#B. But
B is countably compact at A, so H has a cluster point in A for each A ∈ A. A
contradiction. �

Taking A = {K}, we have

Corollary 2.5 Let Y be regular and B be countably compact at K. If K is Gδ-
closed, then adhB ⊂ K.

3. Countable compactness of external filters. Let (xn) = (xn)∞n=1 be a
sequence of points of a space X. Recall that a point x0 ∈ X is a cluster point of the
sequence (xn) if, for every neighborhood U of x0 and for every m ∈ N, there exists
n > m such that xn ∈ U . On the other hand, x0 is an accumulation point of a set
A if for every U there exists x ∈ A, x 6= x0 such that x ∈ U .
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According to the previous section, a subset D of X is countably compact at
A ⊂ X, if every sequence of points of D has a cluster point in A; if A = X, we drop
X and call it relatively countably compact. Note that with this terminology, D is
countably compact if it is countably compact at itself.

A point x0 ∈ X is called q-point if it admits a q-sequence (Qn)∞n=1, that is, a
decreasing sequence of neighborhoods of x0 having the following property: if xn ∈
Qn, n = 1, 2 . . . , then the sequence (xn) has a cluster point in X.

A space X is said to be q-space [15] if each of its points is a q-point. A point
of countable character , i.e., one whose filter of neighborhoods is countably based,
is obviously a q-point. Another example is provided by a point which admits a
relatively countably compact neighborhood V . Somewhat more interesting examples
of q-spaces are provided by Čech complete spaces.

The results of this paper can be seen as consequences of the following folklore
lemma.

Lemma 3.1 Let (xn) ⊂ X be a sequence having x0 as its cluster point and let yn ∈
F (xn)\F (x0). Suppose F is upper semicontinuous at x0. Then the set {yn : n ∈ N}
has an accumulation point belonging to F (x0).

Proof Denote by C the closure of the set {yn : n ∈ N} and suppose C is disjoint
with F (x0). Then V = Y \ C is an open set containing F (x0) so, by the upper
semicontinuity of F at x0, for some U ∈ U(x0), F (U) ⊂ V . Thus for arbitrarily
large indices k ∈ N, xk ∈ U . Yet, for the corresponding yk’s ,

yk ∈ F (xk) ⊂ V ⊂ Y \ {y1, y2, . . . },

a contradiction. Hence, there is y ∈ C ∩ F (x0). In particular, y 6= yn for n ∈ N. �

Remark 3.2 The lemma is also used – and attributed to [1] – in [3]. One can check
that it actually is not stated in [1]. I call it folklore, because it must have been
around all the time. Choquet, in order to discover his theorem, must have known it
in some form. I knew it around 1985 when writing [13]. But only its ‘limit point’
version was used and, therefore, stated in that paper. It is given here in full, because
it is crucial and its proof is easy.

If individual points do not have accumulation points, the accumulation point y
exhibited in the proof above must also be a cluster point of the sequence (yn). As
we need the lemma in the latter form, from now on

(1) Y is a range space which is assumed to be (at least) T1

Further, in the domain we assume

(2) x0 is a q-point in a regular space X
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A q-sequence at x0 is denoted by (Qn : n ∈ N)) and Q is its q-filter i.e., the filter
generated by the chosen q-sequence (Qn : n ∈ N)). Q• =

⋂
Q =

⋂
Qn.

(3) F is usc at each x in Q•.

U = U(x0) stands for the filter of neighborhoods of x0 and E(U), E(Q) denote
the image filters of U and Q, respectively, by the external part E (of F at x0).

Standing assumptions (1), (2) and (3) will not be repeated.

Lemma 3.3 Let N ∈ U and V1 ⊃ V2 ⊃ . . . be a base of a filter V such that V#E(Q).
There exist (xn, yn) ∈ Qn×Vn, n ∈ N, such that yn ∈ F (xn)\F (x0) and the sequence
(yn) is countably compact at F (Q•) ∩ F (N).

Proof We begin by choosing a closed neighborhood L1 of x0 such that L1 ⊂ Q1∩N .
As V#E(Q), we choose

y1 ∈ V1 ∩ F (L1) \ F (x0)

and x1 ∈ L1 so that y1 ∈ F (x1).
Then we choose a closed neighborhood L2 of x0 with

L2 ⊂ L1 ∩Q2 ∩ {x ∈ X : F (x) ⊂ Y \ {y1}}.

As V#E(Q), we choose y2 ∈ V2 ∩ F (L2) \ F (x0) and x2 ∈ L2 such that y2 ∈
F (x2) \ F (x0) etc...

Suppose that, for some n ∈ N and i = 1, 2, . . . n, we have already selected Li, yi ∈
Vi ∩F (Li) \F (x0) and xi ∈ Li such that yi ∈ F (xi) \F (x0). Using the upper semi-
continuity of F at x0, the fact that yi’s do not belong to F (x0), and the regularity
of X, we choose a closed neighborhood Ln+1 of x0 contained in

Qn+1 ∩ Ln ∩ {x : F (x) ⊂ Y \ {y1, y2, . . . yn}}.

As V#E(Q), we further choose

yn+1 ∈ Vn+1 ∩ F (Ln+1) \ F (x0)

and xn+1 ∈ Ln+1 so that yn+1 ∈ F (xn+1).
Hence, we have inductively defined the required sequence ((xn, yn)). As (Qn) is

a q-sequence, (xn) must have a cluster point, say ξ. We note that ξ ∈
⋂
Ln ⊂ Q•.

By the choice of (Ln), for each n ∈ N,

ξ ∈ Ln+1 ⊂ {x : F (x) ∩ {y1, y2, . . . yn} = ∅}

and so
F (ξ) ∩ {y1, y2, . . . } = ∅.

Hence yn ∈ F (xn)\F (ξ) and, by our selection process, (yn) is a sequence of distinct
points. By Lemma 3.1, the sequence (yn) must have a cluster point in F (ξ), call it
η. It is clear that η belongs to (adhE(Q) and) F (Q•) ∩ F (N).

The set {yn : n ∈ N} obtained in the selection process is actually countably
compact at F (Q•). Indeed, let (yi) be an extracted sequence of distinct points.
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Although (yi) must not necessarily be a subsequence of the sequence (yn), by passing
to a further subsequence, we can assume it is. Setting (yi) = (yni

), we observe that
for the corresponding subsequence (xni

) of (xn) one has xni
∈ Qi. Therefore, as

(Qi) is a q-sequence, xni
will still have a cluster point, say ζ ∈ Q•. By the same

argument as above yni ∈ F (xni) \ F (ζ) has a cluster point in F (ζ). �

Remark 3.4 Comparing the statements of the lemma above and the one of Propo-
sition 3.2 in [3], they appear to be totally different from each other. Yet their proofs
are using essentially the same argument. This similarity is not quite accidental.
Both proofs are ‘cleaned up’ versions of the proof of yet another apparently quite
different statement: Lemma 9 of [11]. Especially the language of games used in [3]
seems to be a clever description of the procedure which makes all these proofs work,
see also final comments at the end of this paper.

Recall that a space Y is called feebly compact if any filter on Y which admits a
countable base consisting of open sets, has a cluster point. As a consequence of the
lemma, we deduce the following VCD-Theorem 1:

Theorem 3.5 E(Q) is countably compact at FracQ F (x0) ∩ F (Q•). In particular,
FracQ F (x0) is a feebly compact Q-kernel of F at x0. If F (x0) is Gδ-closed and
Y is regular, then FracQ F (x0) (and so FracF (x0) as well) is contained in F (x0).
FracQ F (x0) is the smallest Gδ-closed set at which E(Q) is countably compact.

Proof The first sentence follows from Lemma 3.2. In view of Lemma 2.1, it is
trivial that FracQ F (x0)∩F (Q•) is a Q-kernel and so, a larger set FracQ F (x0) is so
too. The fact that it is feebly compact, although nontrivial, is a general fact about
adherences of countably compact filter bases (see [14]). For the last part observe
that it follows from Lemma 3.2 that E(Q) is countably compact at F (U) and apply
Proposition 2.4. and Corollary 2.5. �

As the regularity of Y was needed for the first time, it may be a proper moment
to mention that in regular spaces the language of kernels and the one of compact
filters are equivalent: by a classical result of Vaughan, a filter base is compact if and
only if it aims at its adherence which is compact ([17], [14]).

4. Compactness of kernels. It will be convenient to write yn y y to denote
that the set {yn : n ∈ N} is relatively countably compact and y is its cluster point.
We identify a sequence (yn) with its elementary filter, that is, the filter generated
by the tails {yi : i ≥ n}, n = 1, 2, . . . and write (yn) ≥ F whenever the elementary
filter of (yn) is finer than the filter F .

Now consider the following cluster sets

K = K(x0) = {y ∈ Y : ∃(xn) ≥ Q & yn ∈ F (xn) \ F (x0), yn y y}

L = L(x0) = K ∩ F (Q•)
and

M = M(x0) = K ∩ F (x0)
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Lemma 4.1 The cluster set L is a Choquet Q-kernel of F at x0.

We now give a few precisions on our terminology and introduce a few conditions
on the range space Y . Let B be a family of subsets of Y .

A set B in Y is said to be sequentially closed if limits of sequences from B must
belong to B. Y is said to be sequential relative to B if sequentially closed sets in B
are closed.

Similarly, B is countably closed if cluster points of sequences from B must belong
to B. Y is semisequential relative to B if countably closed sets in B are closed.

A set B in Y has sequentially determined closure if for each y ∈ B there exists
a sequence (yn) ⊂ B such that yn → y. Following [7], Y is said to have the Fréchet
property relative to B if each B ∈ B has sequentially determined closure.

Let us say that Y satisfies the ℵ-condition (C) relative to B, if, for every relatively
countably compact set B ∈ B, its closure B is ℵ-compact. According to our termi-
nological conventions, ℵ should be dropped if it can be arbitrary. Thus Y satisfies
the condition (C) relative to all subsets if the closures of relatively countably compact
subsets of Y are compact. For simplicity’s sake, as no ambiguity can arise in this
paper, we will say that Y satisfies the condition (C) if it has the italicized property.

Similarly, Y satisfies the countable condition (C) relative to countable subsets, if
for each relatively countably compact set {yn : n ∈ N} ⊂ Y , its closure {yn : n ∈ N}
is countably compact. We refer to this condition as countable condition (C) or
condition (Cσ).

Proposition 4.2 The cluster set K is countably closed. If Y satisfies the condition
(Cσ), then K is countably closed countably compact.

Proof Let (ki) be a sequence of distinct points in K and let k be its cluster point.
For each i ∈ N, we find a sequence (xi

j : j ∈ N) finer than Q and a sequence
(yi

j : j ∈ N) such that yi
j ∈ F (xi

j) \ F (x0) with xi
j y ki. As (xi

j)
∞
j=1 ≥ Q, we can

find ji such that {xi
j}∞j=ji

⊂ Qi for i = 1, 2, . . . To simplify notation, we can assume
that (xi

j : j ∈ N) had been chosen that way from the very beginning. Let (xk) and
(yk) be the sequences obtained by reordering the double sequences (xi

j) and (yi
j),

respectively, into a single sequence, taking together the elements for which i+j has a
common value and ordering these groups in increasing order of i+j. Then (xk) ≥ Q
and yk ∈ F (xk) \ F (x0).

We need to show that the single sequence (yk) so defined must be relatively
countably compact. Let {(ηn : n ∈ N} be an infinite subset of the set {yk : k ∈
N}. By passing to a further subsequence, we may assume that (ηn) is actually a
subsequence of the original sequence (yk). By the very definition of reordering we
have used, the elementary filter generated by (ηn) is meshing with E(Q). It must
therefore have a cluster point because E(Q) is countably compact.

As it is clear that k is a cluster point of (yk), we have shown that k ∈ K. This
proves the first statement. Now observe that {ki : i ∈ N} ⊂ {yn : n ∈ N} and, if the
condition (Cσ) is satisfied, the existence of a cluster point k is guaranteed. Hence
the fact that k ∈ K shows the countable compactness of K. �
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It will be visible from the proof of the next theorem, VCD-Theorem 2, that it is
crucial to reach the (full) compactness of a kernel. For that, unfortunately, another
condition on the space Y is needed. Let us call Y equicompact if it satisfies the
condition (C) relative to the family of countably closed subsets. That is, we impose
that countably closed countably compact subsets are relatively compact in Y .

Theorem 4.3 Let Y be an equicompact Hausdorff space satisfying (Cσ). Then K =
FracQ F (x0) is compact. In particular, E(Q) and E(U) are compact and FracF (x0)
is the smallest compact kernel of F at x0.

Proof By Proposition 4.2 and the assumption on Y , K is now compact. It is clear
that K ⊂ adhE(Q). As Y is Hausdorff, the compact set K is the intersection of
its closed neighborhoods. Let V (K) = V be such a closed neighborhood. There
exists n so large that E(Qn) ⊂ V and, therefore adhE(Q) ⊂ V . It follows that
FracQ F (x0) ⊂ K and so we have the equality. By Theorem 2.3 (with ℵ dropped),
E(Q) is compact. Hence E(U) is also compact (necessarily – at its adherence) and
therefore FracF (x0) is not empty. Further, as a closed subset of a compact set,
FracF (x0) is compact.

Finally, note that the argument just used to show the inclusion of FracQ F (x0)
in K, repeated for an arbitrary compact kernel of F at x0, shows the minimality
property of FracF (x0). �

Remark 4.4 (1) Other combinations of conditions can be used to reach our goal.
For instance, if (Cσ) is satisfied and Y is semisequential relative to relatively count-
ably compact sets, then K is closed and countably compact. Spaces in which closed
countably compact subsets coincide with the compact ones are often called iso-
compact. Though the conjunction of the just mentioned semisequentiality property
and isocompactness is more than equicompactness, we gain the equality of K and
FracQ F (x0) in that case. If Y is regular, the latter equality holds without the
assumption of isocompactness of Y .

(2) The condition (C) appeared already in [13] (under the name of ‘countably
determined compactness’). Since it simplifies the statement of the theorem, we used
it in the abstract.

5. Choquet kernels. A condition on the value F (x0) assuring FracF (x0) to
be a Choquet kernel was given in 3.5. We now turn to conditions on Y .

We define the following cluster set

C = C(x0) = {y ∈ F (Q•) : ∃ (xn) ≥ Q & yn ∈ F (xn) \ F (x0), yn → y}.

Proposition 5.1 Let Y be a Hausdorff space having the Fréchet property relative
to its countable relatively countably compact sets. Then C = L = K and K is the
smallest Choquet Q-kernel of F at x0.
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Proof We first show K ⊂ C. Indeed, if y ∈ K, then by the Fréchet property there
exists a subsequence ynk

converging to y. But then the corresponding subsequence
(xnk

) is still finer than Q and, as y is the unique cluster point of ynk
, Lemma 3.1

implies that y ∈ F (Q•). This shows that y ∈ C. Hence K = C.
Let D be a Choquet Q-kernel of F at x0. We need to show that C ⊂ D. Consider

the map ED defined by ED(x) = E(x) for x 6= Q• and ED(x) = D otherwise. The
fact that D is a Q-kernel means that ED(Q)  D. If y ∈ C \ D, then there exist
(xn) ≥ Q and the corresponding yn ∈ E(xn) converging to y. Since yn ∈ E(xn), by
Lemma 3.1 again, the unique cluster point y of (yn) must be in D contradicting the
choice of y. �

Thus, we are prompted to say that Y satisfies the condition (Aσ) if it satisfies
(Cσ) and, moreover,

y ∈ {yn} =⇒ ∃(ynk
), ynk

→ y.

It seems fitting to use the name countably angelic for Hausdorff spaces satisfying
(Aσ). The following VCD-Theorem 3 can now be stated for such spaces:

Theorem 5.2 Let Y be countably angelic. Then the cluster set C(x0) is countably
closed, countably compact and sequentially compact. Moreover, it is the smallest
Choquet Q-kernel of F at x0.

Remark 5.3 Of course, a proper ‘isocompactness’ condition will assure compact-
ness. But assume again (Cσ) only, together with the semisequentiality property
considered in Remark 4.4 (1). Then, if Y is regular or Hausdorff isocompact,
FracF (x0) = K, but K = L is not reached. For more on the minimality of kernels
see [7].

6. Points of countable character. If the filter of all neighborhoods U(x0)
admits a countable base, this base can be taken as a q-sequence. In the proof
of Lemma 3.2 the cluster points ξ, ζ can be taken equal to x0 and therefore the
lemma and, consequently, all the results above remain valid under the assumption
that F is usc at the single point x0 and without any separation property on X. As
Q = U , statements that refer to FracQ F (x0) and Q-kernels become statements
about FracF (x0) and kernels.

There is one small detail concerning separation properties of X which needs to
be taken care of. Of course, if X is T1, then

⋂
U(x0) = x0 and so our definition of

Choquet kernel coincides with the usual one that requires the kernel to be a subset
of F (x0). But even if X is arbitrary, the needed equality holds.

Lemma 6.1 If F is usc at x0, then F (U•) = F (x0).

Proof Suppose not and let x ∈
⋂
U(x0). Let y ∈ F (x) \F (x0). Then the constant

sequence x, x, x, . . . has x0 as its cluster point. But then y, y, ... must have a cluster
point in F (x0), i.e., y ∈ F (x0); a contradiction. �
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Thus, L = M where, if x0 is of countable character, we can write

M = {y ∈ F (x0) : ∃xn → x0 & yn ∈ F (xn) \ F (x0), yn y y}.

To conclude, the unity between the case of a q-point and that of a point of count-
able character is fully achieved. Compare the introduction to [7], where the ’Michael
quest’ and the ‘Choquet quest’ are discussed.

As a final comment, let me point out that the denomination ‘Choquet kernel’
reflects the somewhat convoluted history of the subject of Văıns̆tĕın-Choquet-Dolecki
Theorems. Choquet was actually the first to assert (without proof) the existence
of a compact ‘kernel’ for a usc map F between metric spaces X,Y in [4]. A little
earlier, Văıns̆tĕın ([16], Theorem 1) had a special case of the theorem (with proof)
for a closed continuous function f : Y → X. It took thirty years before Dolecki
introduced the notion of active boundary into formal existence, provided a proof of
the theorem of Choquet and made the connection between the results of Văıns̆tĕın
and Choquet ([5], [6], [9], [8]). To keep the confusion alive and well, the authors
of [2] repeated the results obtained earlier in [13]. They take a different interesting
approach in [3] using topological games. This extends the class of spaces which can
serve as domain spaces. On the other hand, their condition on the range space Y is
stronger than our conditions here and no discussion of Choquet kernels is offered.
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