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Bochner representable operators on
Köthe-Bochner spaces

Abstract. Let E be a Banach function space and X be a real Banach space.

We study Bochner representable operators from a Köthe-Bochner space E(X) to a
Banach space Y . We consider the problem of compactness and weak compactness

of Bochner representable operators from E(X) (provided with the natural mixed

topology) to Y .
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1. Introduction and preliminaries. The integral representation of linear
operators on function spaces (in particular, Lebesgue spaces and Orlicz spaces) has
been the object of much study (see [Ph], [DP], [G1], [G2], [DS], [D], [U1], [U2],
[A1], [A2], [Na1], [Na2]). In particular, K. Andrews [A1, Theorems 2 and 5], [A2,
Theorem 3] and V.G. Navodnov [Na2, Corollary] obtained a Dunford-Pettis-Phillips
type theorem for compact operators (resp. weakly compact operators) from the
space L1(X) of Bochner integrable functions to a Banach space Y. Moreover, V.G.
Navodnov ([Na2], [Na1]) has considered Bochner representable operators from a
Köthe-Bochner space E(X) to a Banach space Y .

In Section 2 we study the problem of compactness and weak compactness of
Bochner representable operators from a Köthe-Bochner space E(X) (provided with
the natural mixed topology γE(X) ) to a Banach space Y . The space (E(X), γE(X))
is a generalized DF-space, so we can apply the Grothendieck’s DF techniques (see
[G1], [G2], [Ru]).

Throughout the paper (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are real Banach spaces
with the Banach duals X∗ and Y ∗. Let BX and BY denote the closed unit balls
in X and Y . Let L(X,Y ) stand for the space of all bounded linear operators



114 Bochner representable operators on Köthe-Bochner spaces

from X to Y provided with the uniform convergence norm ‖ · ‖X→Y . The strong
operator topology (briefly SOT) is the topology on L(X,Y ) defined by the family
of seminorms {px : x ∈ X}, where px(U) := ‖U(x)‖Y for U ∈ L(X,Y ) (see [DS,
p. 475–477]). Let N stand for the set of natural numbers.

Let (Ω,Σ, µ) be a complete finite measure space. Assume that (E, ‖ · ‖E)
is a Banach function space and let E′ stand for the Köthe dual of E. Then the
associated norm ‖ · ‖E′ on E′ can be defined for v ∈ E′ by

‖v‖E′ = sup
{∣∣∣
∫

Ω

u(ω) v(ω) dµ
∣∣∣ : u ∈ E, ‖u‖E ≤ 1

}
.

A Banach function space (E, ‖ · ‖E) is said to be perfect, if E = E′′ and
‖u‖E′′ = ‖u‖E for u ∈ E. It is well known that (E, ‖ · ‖E) is perfect if and only
if ‖ · ‖E satisfies both the σ-Fatou property and the σ-Levy property (see [KA,
Theorem 6.1.7]).

From now we will assume that L∞ ⊂ E ⊂ L1, where the inclusion maps
are continuous. Moreover, we will assume that ‖ · ‖E′ on E′ is order continuous.
Since (L1)′ = L∞, the space L1 is excluded.

By L0(X) we denote the set of µ-equivalence classes of all strongly Σ-
measurable functions f : Ω → X. Let T0(X) stand for the topology on L0(X)
of the F -norm ‖ · ‖L0(X) that generates convergence in measure on sets of finite
measure.

For f ∈ L0(X) let f̃(ω) = ‖f(ω)‖X for ω ∈ Ω. Then the space

E(X) =
{
f ∈ L0(X) : f̃ ∈ E

}

equipped with the norm ‖f‖E(X) := ‖f̃‖E is a Banach space and is usually
called a Köthe-Bochner space (see [CM], [L] for more details). We will denote by
TE(X) the topology of the norm ‖ ·‖E(X). Recall that the algebraic tensor product
E ⊗ X is the subspace of E(X) spanned by the functions of the form u ⊗ x,
(u⊗ x)(ω) = u(ω)x, where u ∈ E, x ∈ X and ω ∈ Ω. For r > 0 denote

BE(X)(r) =
{
f ∈ E(X) : ‖f‖E(X) ≤ r

}
.

Let τ be a linear topology on E(X). A linear operator T : E(X) → Y
is said to be (τ, ‖ · ‖Y )-compact (resp. (τ, ‖ · ‖Y )-weakly compact) if there exists a
neighbourhood U of 0 for τ such that T (U) is relatively norm compact (resp.
relatively weakly compact) in Y . By Bd(E(X), τ) we will denote the collection of
all τ -bounded subsets of E(X).

2. Bochner representable operators on Köthe-Bochner spaces. We
start by recalling terminology concerning Bochner representable operators
T : E(X)→ Y (see [A1], [A2], [Na1], [Na2] for more details).

A function K : Ω → L(X,Y ) is said to be SOT-measurable if for every
x ∈ X the function Kx : Ω 3 ω 7→ K(ω)(x) ∈ Y is strongly Σ-measurable. We
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say that two SOT-measurable functions K1 and K2 are SOT-equivalent (briefly,
K1 ≈ K2) if K1(ω)(x) = K2(ω)(x) for all x ∈ X and µ-almost all ω ∈ Ω (see
[Na1], [Na2]).

Recall that a bounded linear operator T : E(X)→ Y is said to be Bochner
representable if there exists a SOT-measurable function K : Ω → L(X,Y ) (called
the representing kernel for T ) such that for each f ∈ E(X) the function 〈f,K〉 :
Ω 3 ω 7→ 〈f(ω),K(ω)〉 ∈ Y is Bochner integrable and

T (f) =
∫

Ω

〈f(ω), K(ω)〉 dµ for all f ∈ E(X).

The following theorem will be of importance (see [Na1, Theorem 1]).

Theorem 2.1 For a SOT-measurable function K : Ω → L(X,Y ) the following
statements are eqiuvalent:

(i) K is the representing kernel for a Bochner representable operator T : E(X)→
Y .

(ii) There exists a SOT-measurable function K0 : Ω→ L(X,Y ) such that K0 ≈ K
and the µ-equivalence class of the function ‖K0(·)‖X→Y belongs to E′.

Recall that the mixed topology γ[TE(X), T0(X) �E(X)] (briefly γE(X)) on
E(X) is the finest Hausdorff locally convex topology on E(X) which agrees with
T0(X) on ‖ · ‖E(X)-bounded subsets of E(X) (see [C, Chap. III], [N2], [F, §3] for
more details). Then

T0(X) �E(X) ⊂ γE(X) ⊂ TE(X).

Since BE(X)(1) is closed in (E(X), T0(X) �E(X)) (see [KA, Lemma 4.3.4]), by
[W, Theorem 2.4.1] we get

(1) Bd (E(X), γE(X)) = Bd (E(X), ‖ · ‖E(X)).

This means that (E(X), γE(X)) is a generalized DF-space (see [Ru]). Hence
using the Grothendieck classical results (see [Ru, p. 429], [G1, Corollary 1 of The-
orem 11], [G2, Chap. IV, 4.3, Corollary 1 of Theorem 2]) we get:

Theorem 2.2 Let T : E(X) → Y be a (γE(X), ‖ · ‖Y )-continuous linear operator
which transforms γE(X)-bounded sets into relatively norm compact (resp. relatively
weakly compact) sets in Y . Then T is (γE(X), ‖ · ‖Y )-compact (resp. ((γE(X),
‖ · ‖Y )-weakly compact).

A linear operator T : E(X) → Y is called (γ, ‖ · ‖Y )-linear if ‖T (fn)‖Y → 0
whenever ‖fn‖L0(X) → 0 and supn ‖fn‖E(X) < ∞ (see [W]). It is known that a
linear operator T : E(X)→ Y is (γ, ‖·‖Y )-linear if and only if T is (γE(X), ‖·‖Y )-
continuous (see [W, Theoem 2.6.1(iii)]).
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Proposition 2.3 Assume that (E, ‖ · ‖E) is a perfect Banach function space such
that the associated norm ‖ · ‖E′ on E′ is order continuous. Then every Bochner
representable operator T : E(X)→ Y is (γE(X), ‖ · ‖Y )-continuous.

Proof Assume that T : E(X) → Y is a Bochner representable operator. Then,
by Theorem 2.1, there exists a SOT-measurable function K0 : Ω → L(X,Y ) such
that the µ-equivalence class v0 = [ ‖K0(·)‖X→Y ] belongs to E′ and

T (f) =
∫

Ω

〈f(ω), K0(ω)〉 dµ for all f ∈ E(X).

Hence for f ∈ E(X) we get

‖T (f)‖Y =
∥∥∥
∫

Ω

〈f(ω), K0(ω)〉 dµ
∥∥∥
Y

≤
∫

Ω

‖ 〈f(ω), K0(ω)〉‖Y dµ

≤
∫

Ω

‖ f(ω) ‖X · ‖K0(ω) ‖X→Y dµ .

Putting

ϕv0(u) =
∫

Ω

u(ω) v0(ω) dµ for u ∈ E,

we see that ϕv0 is a γ-linear functional on E (see [N1, Theorem 3.1]). It follows
that T is a (γ, ‖ · ‖Y )-linear operator, i.e., T is (γE(X), ‖ · ‖Y )-continuous.

Before stating our main result we require a preliminary definition (see [A1,
p. 258]). A SOT-measurable function K : Ω→ L(X,Y ) is said to have its essential
range in the uniformly norm compact operators (resp. uniformly weakly compact op-
erators) if there exists a relatively norm compact (resp. relatively weakly compact)
set C in Y such that 〈x,K(ω)〉 ∈ C for µ-almost all ω ∈ Ω and all x ∈ BX .

First we recall the well known Dunford-Pettis-Phillips type theorem for
compact operators (resp. weakly compact operators) from the space L1(X) to a
Banach space Y (see [Na2, Corollary]).

Theorem 2.4 For a bounded linear operator T : L1(X)→ Y the following state-
ments are equivalent:

(i) T is (‖ · ‖L1(X), ‖ · ‖Y )-compact (resp. (‖ · ‖L1(X), ‖ · ‖Y )-weakly compact ).

(ii) T is Bochner representable operator with the representing kernel K having
its essential range in the uniformly norm compact operators (resp. uniformly
weakly compact operators).

Now we are in position to extend and strengthen the implication (ii)=⇒(i)
of Theorem 2.4 for the case of linear operators from a Köthe-Bochner space E(X)
to a Banach space Y .
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Theorem 2.5 Assume that (E, ‖ · ‖E) is a perfect Banach function space such
that the associated norm ‖ · ‖E′ on E′ is order continuous. Let T : E(X) →
Y be a Bochner representable operator with the representing kernel K having its
essential range in the uniformly norm compact operators (resp. uniformly weakly
compact operators). Then T is (γE(X), ‖·‖Y )-compact (resp. (γE(X), ‖·‖Y )-weakly
compact ).

Proof In view of Proposition 2.3 T is (γE(X), ‖ · ‖Y )-continuous. Since
Bd (E(X), γE(X)) = Bd (E(X), ‖ · ‖E(X)) (see (1)), by Theorem 2.2 it is enough
to show that for every r > 0, the set T (BE(X)(r)) is relatively norm compact
(resp. relatively weakly compact) in Y . Indeed, let r > 0. Since the inclusion map
(E, ‖ · ‖E) ↪→ (L1, ‖ · ‖L1) is supposed to be continuous, there exists r0 > 0 such
that BE(X)(r0) ⊂ BL1(X)( 1

2 ).
Moreover, by our assumption there exists a relatively norm compact (resp.

relatively weakly compact) set C in Y such that 〈x,K(ω)〉 ∈ C for µ-almost all
ω ∈ Ω and all x ∈ BX . Now we shall show that T (f) ∈ convC for all f ∈
BE(X)(r0), where convC stands for the norm closed (=weakly closed) convex hull
of C in Y . Indeed, let f ∈ BE(X)(r0). Then by [DS, p. 117] there exists a sequence
(sn) of X-valued Σ-simple functions such that ‖sn(ω)‖X ≤ 2 ‖f(ω)‖X µ-a.e. on
Ω and sn → f in µ-measure. Then ‖sn − f‖L0(X) −→ 0 and supn ‖sn‖E(X) ≤
2 ‖f‖E(X) ≤ 2 r0. Hence ‖T (sn)− T (f)‖Y −→ 0, because T is (γ, ‖ · ‖Y )-linear.

Since sn =
∑kn
i=1 1An,i ⊗ xn,i and sn ∈ BE(X)(2 r0) for n ∈ N, we get

sn ∈ BL1(X)(1), i.e.,
∑kn
i=1 ‖xn,i‖Xµ(An,i) ≤ 1 for n ∈ N. Hence, using [DU,

Corollary 2.2.8, p. 48] we get

T (sn) =
kn∑

i=1

T (1An,i ⊗ xn,i)

=
kn∑

i=1

∫

An,i

〈xn,i, K(ω)〉 dµ

=
kn∑

i=1

‖xn,i‖X
∫

An,i

〈 xn,i
‖xn,i‖X

,K(ω)
〉
dµ

∈
( kn∑

i=1

‖xn,i‖X µ(An,i)
)

convC ⊂ convC.

Hence T (f) ∈ convC, that is, T (BE(X)(r0)) is relatively norm compact (resp.
relatively weakly compact) in Y , because convC is norm compact in Y by Mazur’s
theorem (resp. convC is weakly compact in Y by Krein-Šmulian’s theorem). Since
T (BE(X)(r)) ⊂ r

r0
convC , we obtain that T (BE(X)(r)) is relatively norm compact

(resp. relatively weakly compact) in Y , as desired.

Now we will consider Bochner representable operators on the space L∞(X).
By a Young function we mean here a continuous convex mapping Φ : [0,∞) →
[0,∞) that vanishes only at 0 and Φ(t)/t→ 0 as t→ 0 and Φ(t)/t→∞ as t→∞.
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The Orlicz-Bochner space LΦ(X) := {f ∈ L0(X) :
∫

Ω
Φ(λ‖f(ω)‖X)dµ < ∞

for some λ > 0 } is a Banach space under the norm ‖f‖LΦ(X) := inf{λ > 0 :∫
Ω

Φ(‖f(ω)‖X/λ) dµ ≤ 1} (see [RR] for more details).

We will need the following characterization of the mixed topology γL∞(X)

on L∞(X) (see [N2, Theorem 4.5]).

Theorem 2.6 Then mixed topology γL∞(X) on L∞(X) is generated by the family
of norms ‖ · ‖LΦ(X), where Φ runs over the family of all Young functions.

As a consequence of Theorems 2.5 and 2.6 we get:

Corollary 2.7 Let T : L∞(X) → Y be a Bochner representable operator and
assume that the representing kernel K for T has its range in the uniformly norm
compact operators (resp. uniformly weakly compact operators). Then there exists a
Young function Φ such that the set

{∫

Ω

〈f(ω), K(ω)〉 dµ : f ∈ L∞(X), ‖f‖LΦ(X) ≤ 1
}

is relatively norm compact (resp. relatively weakly compact ) in Y .
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