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Almost continuous mappings

§ 1. Introduction. Let /  be a mapping of a Hansdorff topological 
space E into another Hansdorff topological space F. /  is said to be almost 
continuous at xeE,  if for each neighborhood V o i f (x )eF , f~ 1(V) is a neigh­
borhood of x. f  is almost continuous on E if it is so at each xeE. Obviously 
a continuous mapping is almost continuous. But the converse is not true. 
For example, the real function defined by f(x)  =  1 or 0 according as x 
is a rational or irrational number, is a discontinuous function. But it 
is almost continuous, as is easy to verify.

Further, the subset {(x,f(x)):  xeE}  of the product space E x F  is 
said to be the graph o f /. If / i s  continuous, the graph o f /is  a closed subset 
of ExF,  as is well known. Equally well known is the fact that the converse 
is not true.

It is known [3] that if the graph of a linear mapping on a topological 
vector space E into another topological vector space F  is closed then 
it is not necessarily true that /  is almost continuous. Nor is it necessarily 
true that the graph of an almost continuous linear mapping is closed [3].

The object of this paper is to study the problem as to when almost 
continuity alone or together with the closed graph of a mapping on a to­
pological space into another topological space imphes its continuity.

It is shown here that if /  is an almost continuous, completely closed 
(§ 2) mapping of a topological space E onto a compact Hausdorff topo­
logical space F  such that the graph of /  is closed in E x F , then /  is con­
tinuous (Theorem 1). If, in particular, E  and F  are topological groups 
and /  a homomorphism, then the above theorem has been established with­
out the additional hypotheses that /  be completely closed and be an 
onto mapping (Theorem 3). Finally in § 4, it has been shown that the 
set of points at which a real valued function on a Baire metric space is 
almost continuous, is everywhere dense (Theorem 4).

In the sequel, a topological space E, endowed with a topology u, 
will be denoted by Eu. If there are two topologies и and v on a set E, 
then и z> v (or v c  u) means that и is finer than v (or v is coarser than u). 
Let A be a subset of Eu. Then A denotes the closure of A. If A  and В 
are two subsets of Eu, then

A ~  В =  {xeA:  Х4В}.
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§ 2. Topological spaces and almost continuity. L e t /b e  a mapping of 
a topological space Eu onto another topological space F v. First of all
we define another topology v on F  which is coarser than v as follows: 

Let {Vy} denote a base of v -neighborhoods of yeF.  For each Vv 
in { Vy}, define

b = f ( 7 F V v %
*

Since/is onto, there exists xeE  snch that/(ж) =  у and hence ye Vy for each

Vy in {Vy}. Further, if V1 and V2 are in { Vv} which are defined by Vx 
and V2 in {Vy}, then

L  ^  У2 =  f ( F 4 V ) )  r, f i r w , ) )  => f ( r ' ( V 1 -  v7)) = y „

where F3 is in {Vy} such that Vx r\ V2 => F3. Hence by Exercise В (a)
([5], p. 56), when stated in term of bases, there exists a topology v (say)

* *on F  such that the family {Vy} forms a base of ^-neighborhoods of у
* * *

for each y*F.  Since for each yeF  and each Vv in {Vy}, Vy => Vy, we have 
*
V cz V.

The following lemma asserts that under certain conditions F, en­
dowed with the topology v, is a Tx- space.

Lemma 1. Let f  be a mapping of a topological space Eu onto another
topological space Fv such that the graph of f  is closed in ExF.  Then F * 

*
(where v is defined above) is a Tx-space.

P roo f. It is sufficient to prove that each singleton {z} ,zeF,  is a
*
v- closed subset.

Let yeFr^{z} ,  and suppose that there exists no v- neighborhood 
of у which is contained in F  ~  {z}. This means that even for each member
# * 5)5 *
Vy of the fundamental system { Vy} of v- neighborhoods of y, zeVy. Let 
W  be an arbitrary v - neighborhood of y. Then there exists a member 
Vy of the fundamental system { Vv} of v - neighborhoods of у such that 
yeV y cz W. But then, by assumption,

^ h - f i r W v ) ) .

This shows that z = f ( x ) ,  where xe f~ 1(Vy). Therefore for an arbitrary 
# -neighborhood U of x in Eu, there exists xxe U such that f ix^eVy.  Since 
Vy c= W, we have

(®u/(®i))€0  r^(UxW),
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where G is the graph of /  and ( U x W ) is a neighborhood of (x, y)eExF.  
Since U xW  is an arbitrary neighborhood of (x, y), (x, y ) eG = G because G 
is closed by hypothesis. Hence у =  f(x) =  zcF  {0} which is impossible.
Therefore there exists a v- neighborhood P  of у such that y e P c z F  {*}•

*
Since у is arbitrary, it follows that F  ~  {z} is v- open and hence {2} is 
v- closed.

Definition. A mapping /  of a topological space onto another topo­
logical space is said to be completely closed if for each closed subset A of
E,f (A)  is v-closed, where v is defined on F  as above.

Rem ark. Since % c  v, every v- closed subset of F  is also v -closed. 
Hence a completely closed mapping is closed in the usual sense, i.e. it maps 
w-closed subsets of E  onto v- closed subsets of F.

Now we have the following:
Theorem 1. Let f  be an almost continuous, completely closed mapping 

of a topological space Eu onto a Hausdorff compact topological space Fv 
such that the graph of f  is closed in ExF.  Then f  is continuous.

P roo f. By Lemma 1, F* is a Tx- space because the graph of f  is 
closed in E x F  by hypothesis. First of all, by using complete closedness 
of /  we show that F* is a Hausdorff space.

Let у у Ф y%, у у, y^eF. Then there exists а ■у- open neighborhood P
* _______

of у у such that y 24P, because F* is a Tx- space. Let Vy — f ( f~ 1{Vx)) be
* * 

a member of the base of v-neighborhoods of yx such that yxeVy (z P  and
* ______ _

у 2 4Vy. Since /  is completely closed, f~1{V1) being u- closed in Eu implies 
* * * * *
Vx is v- closed. Hence F  ~  Vx is a у- open v- neighborhood of y2. Since
* * * *
F ir, (F Vx) =  0  (empty set), yxcVx and y2eF ~  Vx, it follows that
F* is a Hausdorff space.

. *Since v cz v (see paragraphs preceding Lemma 1) and Fv is compact, 
. ^it follows that v =  v (i.e. the topologies are equivalent) by a general 
theorem in topology ([5], p. 141, Theorem 8).

Now to show that / :  Eu-^ Fv is continuous, it is sufficient to show
*

that / :  Eu-> F * is continuous. For this let Vy be a member of the base 
*of v - neighborhoods of у where у =  f(x), xeE. Since

г ' ( Ъ  = r 1( f ( r , m ) ) = ' r I ( r v),

and since /  being almost continuous implies that /  1 (Vy) is a neighborhood
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of x, it follows that /  1 (Vy) is a neighborhood of x. This proves that 
/ :  Eu-> F* is continuous ([5], p. 86, Theorem 1 ).

§ 3. Topological groups and almost continuity. For topological groups 
([1], p. 1), Lemma 1 can be improved as shown in the following: 

Theorem 2. Let Eu be a topological group, Fv a Hausdorff topological 
group, andf a homomorphism, of Eu into Fv such that the graph o f f  is closed in 
ExF.  Then F* is a Hausdorff topological group.

P roo f. Let { V} denote a fundamental system of symmetric v- 
neighborhoods of the identity e' of Fv satisfying the following conditions:

(i) For each V in {F } there exists a Vx in {F } such that V\ <=. V.
(ii) For each V in {F } and for any aeF, there exists a F2 in {F } 

such that a V 2a~1 <= F or F2 <= a~1Va.
(iii) F =  {e'}, where the intersection is taken over all the family

(F).
It is known [1] that in each Hausdorff topological group such a system 

{F } of neighborhoods of e' exists. Conversely, given such a system in an 
abstract group, there exists a unique Hausdorff topology under which 
the abstract group is a topological group ([1], p. 4, Proposition 1). 
(Observe that (iii) is equivalent to the statement that the topological 
group is Hausdorff.)

Now first of all, we define another topology v on F  as follows:
For each F in {F }, define

F = / ( r 1(F)).

Since the direct and inverse images of symmetric sets under homomorphisms 
are symmetric, and since the closure of a symmetric set is also symmetric, 
it follows that each F is symmetric. Clearly each F contains e'. Now to 
show that condition (i) is satisfied by {F}, let Vx be a member of { F} 
such that V\ <= F. But then /  being a homomorphism and Fv being a topo­
logical group,

Furthermore, for each F in { F} there exists a Vx in {F } such that a~~1Va 
z> V1 or F => aVxa~l for any aeG. Thus again by using the same arguments 
as above, we have

v  = / ( Г ‘Т п ) = / ( r V L O )  ^ W % ) r 4 v , ) r ^ F )

= 7 ( P w )  / ( / " ‘ (Fj))
This establishes condition (ii).
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Now to show (iii), let ?/e П  V. Then y e f ( f  1(F)) for each F in {F}. 
Let IF be in {F } snch that TF2 c  F. Then by assumption yeW. Since
IF — / ( / _1(TF)), there exists xef~l(W) such that f (x )eyW  which is a neigh­
borhood of у because TF is a neighborhood of e’ in F. But in a topological 
group, the closure of any set is the intersection of products of that set with 
each member of the entire family of neighborhoods of its identity ([1], p.24). 
Thus/_1(TF) <= Uf~1(W) for each U in {U} which is the total system of 
it-neighborhoods of the identity e in Eu. Hence xeUf~1(W). This proves 
that there exists x1eU such that x f 1xef~1(W). Since/is a homomorphism,

( / M 'V M ' / t T 'W )  =  w -

Or f ( x l)ef{x)'W, since W  is symmetric. Therefore

f ( x 1)eyW* e  yV,

because f (x)eyW.  This shows that

(a?i,/(tfi))e£ ^ {UxyV),

where О is the graph of /. Since UxyV  is an arbitrary neighborhood of 
(e, y) in ExF,  (e,y)eG =  О because G is closed by hypothesis. Hence 
f(e) =  y. But a homomorphism always maps the identity into identity, 
f(e) =  e' — y. In other words, П  F =  {e'}. Hence F% is a Hausdorff topo­
logical group ([1], p. 4, Proposition 1).

* * 
Now, as before, let v be the topology on F  which has the family { F},

F =  where F runs over a base of  ̂- neighborhoods of e in F,
* /as a base of v- neighborhoods of e in F. Using the same arguments as those 

used for v, it can be shown that F, endowed with v, is a topological group. 
Since for each F,

V = 1 (Г'(У)) = / ( г Щ  =  V

which is a v -neighborhood of e' in F, it follows that v cz v. Since v is Haus-
]|(

dorff as proved above, v is also Hausdorff. This completes the proof.
R em ark. One observes that the following relations hold between

the three topologies v, v and v on F, viz v => v.
For topological groups, Theorem 1 can be proved under less re­

stricted conditions, as is the case in the following:
Theorem 3. Let Eu be a topological group and Fv a compact Haus- 

dorff topological group. Let f  be an almost continuous homomorphism of Eu 
into F v, the graph of which is closed in ExF .  Then f  is continuous.
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P roo f. By the above remark we have v => v гэ v on F. since Fv . 
is compact and F% Hausdorff, by a general theorem in topology we have

v =  v =  v. Thus for any neighborhood V of e' in F,

г ч Ь  = r ' ( / ( 7 k 'n ) )  = r ro F)
* ____ _

shows that f~ 1(V) is a neighborhood of e in Fu since is a neighbor­
hood of 6 in Fu because /  is almost continuous. Now the continuity of a 
homomorphism of a topological group into another topological group is 
equivalent to its continuity at the identity. Hence /  is continuous.

R em ark. The topology v was discussed by A. Robertson and 
W. Robertson [6] in connection with a closed graph theorem for topological 
vector spaces. By using almost similar arguments, some closed graph 
theorems for topological groups (see [4]) and some theorems for linear 
topological spaces (see [3]) have been proved by the author.

§ 4. Real line and almost continuity.
Theorem 4. Let Eu be a metric Baire space andf a real valued function 

on Fu. Then the set of points of almost continuity in Eu is dense everywhere 
in E.

P roo f. By Bradford and Goff man’s theorem [2], there exists a resi­
dual subset H of E  such that the restriction f\H is continuous in the re­
lative topology on H. Since Eu is a Baire space, H  must be dense -every­
where in E.-

Now we show that for each со eH, f  is almost continuous at x. Let 
V be an open neighborhood of the real number f(x). Then f~ 1(V) гл H 
is an open neighborhood of x in the relative topology on H. That means, 
there exists a w-open neighborhood U of x in E  such that

/ - 1(F) r\ H  =  U
Hence we have

г Ч У )  = / _1(F) глН =  й ^ Г н  ^ и ,

since H  is dense in E. This proves that /  is almost continuous at x eH.
Since the real line is a metric Baire space, the following corollary 

follows immediately from the above theorem.
Corollary 1 . Let f  be any real valued function on the real line B. 

Then the set of points at which f  is almost continuous, is everywhere dense 
in B.
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