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Almost continuous mappings

§ 1. Introduction. Let f be a mapping of a Hausdorff topological -
space F into another Hausdorff topological space F. f is said to be almost

continuous at z < E, if for each neighborhood V of f(z)eF, f~' (V) is a neigh-
borhood of z. f is almost continuous on E if it is so at each x e E. Obviously
a continuous mapping is almost continuous. But the converse is not true.
For example, the real function defined by f(z) = 1 or 0 according as «
is a rational or irrational number, is a discontinuous function. But it
is almost continuous, as is easy to verify.

Further, the subset {(w, f(x)): x<H} of the product space ExF is
said to be the graph of f. If f is continuous, the graph of f is a closed subset
of Ex F, as is well known. Equally well known is the fact that the converse
is not true.

It is known [3] that if the graph of a linear mapping on a topological
vector space K into another topological vector space F is closed then
it is not necessarily true that f is almost continuous. Nor is it necessarily
true that the graph of an almost continuous linear mapping is closed [3].

The object of this paper is to study the problem as to when almost
continuity alone or together with the closed graph of a mapping on a to- _
pological space into another topological space implies its continuity.

It is shown here that if f is an almost continuous, completely closed
(§ 2) mapping of a topological space F onto a compact Hausdorff topo-
logical space I such that the graph of f is closed in Ex#, then f is con-
tinuous (Theorem 1). If, in particular, E and F are topological groups
and f a homomorphism, then the above theorem has been established with-
out the additional hypotheses that f be completely closed and be an
onto mapping (Theorem 3). Finally in § 4, it has been shown that the
set of points at which a real valued function on a Baire metric space is
almost continuous, is everywhere dense (Theorem 4).

In the sequel, a topological space E, endowed with a topology u,
will be denoted by K,. If there are two topologies « and v on a set E,
then # > v (or v « ) means that u is finer than v (or v is coarser than u).
Let A be a subset of B, Then A denotes the closure of A. If 4 and B
are two subsets of H,, then

' A ~B = {xed: x¢B}.
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§ 2. Topological spaces and almost contiiluity. Let f be a mapping of
a topological space E, onto another topological space F,. First of all

we define another topology » on F which is coarser than v as follows:
Let {V,} denote a base of v-neighborhoods of y<F. For each V,
in {V,}, define

% —_
Vy = f(f_l(Vy))-
*
Since f is onto, there exists ¢ F such that f(x) = y and hence y ¢ V,, for each

* % * * *
V, in {V,}. Further, if V, and V, are in {V,} which are defined by V,
and V, in {V,}, then

?71 ) ;72 =f(f—l(V1)) ﬂf(f—l(v2)) Df(f—l(Vl m V2)) = ;73’

where V; is in {V,} such that V, ~ V,> V,. Hence by Exercise B(a)

([6], p. 56), when stated in term of bases, there exists a topology v (say) '
on F guch that the family {I*}y} forms a base of z-neighborhoods of y
’fkor each y < F. Since for each yeF and each ;fy in {1”}1,}, I*fy > V,, we have

vc . .
The following lemma asserts that under certain conditions ¥, en-
dowed with the topology 7}, is a T';-space.

Lemma 1. Let f be a mapping of a topological space E, onto another
topological space F, such that the graph of f is closed in ExF. Then Fyx
(where v is defined above) is a T -space.

Proof. It is sufficient to prove that each singleton {z},z¢F, is a
v-closed subset.

Let yeF ~ {2}, and suppose that there exists no :zk)-neighborhood
of y which is contained in 7 ~ {z}. This means that even for each member

* * *

V, of the fundamental system {V,} of ;-neighborhoods of y, 2¢V,. Let
W be an arbitrary ov-neighborhood of y. Then there exists a member
V, of the fundamental system {V,} of v-neighborhoods of % such that
yeV, c W. But then, by assumption,

eV, =1 (V).

This shows that 2 = f(x), where wef '(V,). Therefore for an arbitrary
u-neighborhood U of z in ¥, there exists », ¢ U such that f(x,)eV,. Since
V,< W, we have

(wvf(wl)) €@ ~ (UxW),
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where @ is the graph of f and (Ux W) is a neighborhood of (x,y)eExF.
Since Ux W is an arbitrary neighborhood of (z, ¥), (#, ¥)eG= G because G
is closed by hypothesis. Hence y = f(x) = 2¢F ~ {2} which is impossible.

Therefore there exists a Z-neighborhood P of y such that yeP < F ~ {z}.
Since y is arbitrary, it follows that F ~ {z} is :E-Open and hence {2} is
v-closed.

DEFINITION. A mapping f of a topological space onto another topo-
logical space is said to be completely closed if for each closed subset A of

E, f(4) is ;‘J-closed, where v is defined on F as above.

Remark. Since b c v, every v-closed subset of F is also v-closed.
Hence a completely closed mapping is closed in the usual sense, i.e. it maps
u-closed subsets of F onto v-closed subsets of F.

Now we have the following:

TBEOREM 1. Let f be an almost continuous, completely closed mapping
of a topological space K, onto a Hausdorff compact topological space F,
such that the graph of f is closed in Ex F. Then f is continuous.

Proof. By Lemma 1, Fx is a T,-space because the graph of f is

closed in ExF by hypothesis. First of all, by using complete closedness
of f we show that Fy is a Hausdorff space.

Let y, # Ys, 91, Ys€F. Then there exists a v- open neighborhood P
of y, such that y,¢P, because F: is a T, -space. Let V1 —f(f* V,)) be
a member of the base of - neighborhoods of ¥, such that y, e V1 = P and
y2¢V1 Since f is completely closed f (V,) being %-closed in E, implies
V1 is v-closed. Hence F ~ Vl is a v—open 'v-neighborhood of y,. Since

* * *
Vin(F ~7,) =@ (empty set), y,¢V,; and y,eF ~ V,, it follows that
F, is a Hausdorff space.

Since v < v (see paraglaphs preceding Lemma 1) and ¥, is compact,

it follows that v — o (i.e. the topologies are equivalent) by a general
theorem in topology ([5], p. 141, Theorem 8).
Now to show that f: K, — F, is continuous, it is sufficient to show

*
that f: K, — F is continuous. For this let V, be a member of the base
of 'Z-neighborhoods of y where y = f(z), xeE. Since

U7 = ) = 77,

and since f being almost continuous implies that f~*(V,) is a neighborhood
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*
of x, it follows that f~'(V,) is a neighborhood of z. This proves that
f: E,— Fy is continuous ([5], p. 86, Theorem 1).

§ 3. Topological groups and almost continuity. For topological groups
(1}, p.1), Lemma 1 can be improved as shown in the following:

THEOREM 2. Let E, be a topological group, F, a Hausdorff topological
group, and f a homomorphism of E,, into F, such that the graph of f is closed in
ExF. Then Fy is a Hausdorff topological group.

Proof. Let {V} denote a fundamental system of symmetric »-
neighborhoods of the identity ¢’ of F, satisfying the following conditions:

(i) For each V in {V} there exists a V, in {V} such that Vi< V.

(ii) For each V in {V} and for any aeF, there exists a V, in {V}
such that aV,a™' < V or V,<c a~'Va.

(iii) () V = {¢'}, where the intersection is taken over all the family
{v.

It is known [1] that in each Hausdorff topological group such a system
{V} of neighborhoods of ¢’ exists. Conversely, given such a system in an
abstract group, there exists a unique Hausdorff topology under which
the abstract group is a topological group ([1], p. 4, Proposition 1).
(Observe that (iii) is equivalent to the statement that the topological
group is Hausdorff.)

Now first of all, we define another topology © on F as follows:

For each V in {V}, define

V =f(f iV
Since the direct and inverse images of symmetric sets under homomorphisms
are symmetrie, and since the closure of a symmetric set is also symmetrie,
it follows that each V is symmetric. Clearly each V contains ¢’. Now to
show that condition (i) is satisfied by {17}, let ¥, be a member of {V}

such that Vi = V. But then f being a homomorphism and F, being a topo-
logical group,
V= (7 (V) = £V V) = £ V) (V) = Vi

Furthermore, for each V in {V} there exists a V, in {V} such that a='Va
> V,or V> aV,a ' for any ae@. Thus again by using the same arguments
as above, we have

V =F(" ) = f(f (aVa™) > (7 @) (Vf (o)
> f(f ) f(F V) f(f @)= aVia™t

This establishes condition (ii).
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Now to show (iii), let ye () V. Then yef(f~1(V)) for each V in {V}.
Let W be in {V} such that W2 c V. Then by assumption yW. Since

W = F(f~1(W)), there exists wef *(W) such that f(x) ey W which is a neigh-
borhood of y because W is a neighborhood of ¢’ in F. But in a topological
group, the closure of any set is the intersection of products of that set with
cach member of the entire family of neighborhoods of its identity ([1], p.24).
Thus f~Y(W) = Uf~"(W) for each U in {U} which is the total system of
u-neighborhoods of the identity e in E,. Hence xe Uf~'(W). This proves
that there exists o, ¢ U such that z;'zef~'(W). Since f is a homomorphism,

(f (@)~ f (@) f (f1(W)) = W.

Or f(x,)ef(x) W, since W is symmetric. Therefore

fl@)eyW2 < yV,
because f(z)eyW. This shows that
(af'uf(wl))EG ~ (UxyV),

where G is the graph of f. Since UxyV is an arbitrary neighborhood of
(e,y) in ExF, (e,y)eG = @ because G is closed by hypothesis. Hence
f(e) = y. But a homomorphism always maps the identity into identity,
f(e) = ¢’ =y. In other words, (M) V= {e¢’}. Hence F; is a Hausdorff topo-
logical group ([1], p. 4, Proposition 1).

*
Now, as before, let » be the topology on F which has the family {17},

V = f(f~*(V)), where V runs over a base of v-neighborhoods of ¢’ in ¥,
as a base of 5-neighb0rhoods of ¢’ in F. Using the same arguments as those

used for o, it can be shown that F, endowed with ;, is a topological group.
Since for each V,

7 =)= S0 = ¥

which is a :;-neighborhood of ¢’ in F, it follows that v < ?. Since 7 is Haus-

dorff as proved above, v is also Hausdorff. This completes the proof.

Remark. One observes that the following relations hold between
the three topologies v, v and # on F, viz: v o > 5.

For topological groups, Theorem 1 can be proved under less re-
stricted conditions, as is the case in the following:

THEOREM 3. Let E, be a topological group and F, a compact Haus-
dorff topological group. Let f be an almost continuous homomorphism of E,
into Fy, the graph of which is closed in ExF. Then f is continuous.
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: . . .
Proof. By the above remark we have v o v> v on F. since F,.

is compact and Fy Hausdorff, by a general theorem in topology we have

_ %
v = b = . Thus for any neighborhood V of ¢ in F,

Ay =) s RN

shows that f~'(V) is a neighborhood of e in ¥, since f~'(V) is a neighbor-
hood of ¢ in E, because f is almost continuous. Now the continuity of a
homomorphism of a topological group into another topological group is
equivalent to its continuity at the identity. Hence f is continuous.

Remark. The topology v was discussed by A. Robertson and
W. Robertson [6]in connection with a closed graph theorem for topological
vector spaces. By using almost similar arguments, some closed graph
theorems for topological groups (see [4]) and some theorems for linear
topological spaces (see [3)]) have been proved by the author.

§ 4. Real line and almost continuity.

THEOREM 4. Let E, be a metric Baire space and f a real valued function

on E,. Then the set of points of almost continuity in E,, is dense everywhere
in K.

Proof. By Bradford and Goffman’s theorem [2], there exists a resi-
dual subset H of F such that the restriction flH is continuous in the re-
lative topology on H. Since FE, is a Baire space, H must be dense every-
where in ..

Now we show that for each weH, f is almost continuous at z. Let
V be an open neighborhood of the real number f(x). Then f~*(V) ~ H
is an open neighborhood of x in the relative topology on H. That means,
there exists a u-open neighborhood U of z in F such that

f-I(V)mH = U~ H.
Hence we have

Mo f " V)~H=U~H> U,

since H is dense in E. This proves that f is almost continuous at xeH.
Since the real line is a metric Baire space, the following corollary
follows immediately from the above theorem.
COROLLARY 1. Let f be any real valued function on the real line R.

Then the set of points at which f is almost continuous, is everywhere dense
in R.
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