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On generalized Pell numbers and their graph
representations

Abstract. In this paper we give a generalization of the Pell numbers and the Pell-
Lucas numbers and next we apply this concept for their graph representations. We
shall show that the generalized Pell numbers and the Pell-Lucas numbers are equal
to the total number of k-independent sets in special graphs.
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1. Introduction. Consider simple, undirected graphs with the vertex set
V(G) and the edge set E(G). By dg(x;, x;) we denote the distance between vertices
z; and z; in G. Let P, and C,, denote an n-vertex path and an n-vertex cycle,
respectively. Let k be a fixed integer, k > 2. A subset S C V(G) is a k-independent
set of G if for each two distinct vertices z,y € S, dg(x,y) > k. In addition, a subset
containing only one vertex and the empty set also are k-independent sets of G. Note
that for k£ = 2 we obtain the definition of an independent set of the graph G in the
classical sense. Let NIj;(G) denote the number of all k-independent sets of the graph
G and for k = 2, NI3(G) = NI(G). The parameter NI(G) was study in a paper
of Prodinger and Tichy, see [4] and this paper gave an impetus to the counting of
independent sets in graphs. They called this parameter the Fibonacci number of a
graph in view of the facts: NI(P,) = F,,+1 and NI(C,) = L,,, where the Fibonacci
numbers F;, are defined recursively by Fy = Fy = land F,, = F,,_1+F,,_2, forn > 2
and the Lucas numbers L,, are Lo =2, 1 =1 and L,, = L,_1 + L,,_o, for n > 2.
Independently Merrifield and Simmons introduced the number of independent sets
(which they called o-index) to the chemical literature, see [3]. They showed the
correlation between o-index and some physicochemical properties of a molecular
graph. In the chemistry NI(G) is named as the Merrifield-Simmons index. The
Fibonacci numbers of graphs were investigate for example in [1], [2], [4]. In [9] more
generalized concept was introduced, namely the generalized Fibonacci numbers of
graph which gives the total number of k-independent sets of a graph G.



170 On generalized Pell numbers and their graph representations

The k-independent sets, for k > 2 were studied in many papers, see for example
in [5], [6], [9],[10].

The Pell numbers are defined by the recurrence relation Py =0, P, =1 and P, =
2P,_1+ P,_o, for n > 2. The Pell-Lucas numbers (or the companion Pell numbers)
are defined by the recurrence relation Qy = Q1 = 2 and Q,, = 2Q,_1 + @n_o, for
n > 2. The Pell-Lucas number can be also expressed by @, = 2P,_1 + 2P,.

In this paper we give a generalization of the Pell numbers and the Pell-Lucas
numbers. Firstly we apply this generalization to the counting of special families of
subsets of the set of n integers. Next we give the graph interpretation of the gen-
eralized Pell numbers and the Pell-Lucas numbers. Note that some generalizations
of the Pell numbers and Pell-Lucas numbers are known, see for example [8].

2. Main results. Let X = {1,2,...,n}, n > 3, be the set of n integers and let
X be a family of subsets of X such that X = X; UXs,, where X7 = {{i};i=1,...,n}
and Xo ={{j,j+1};7i=2,..,n—2}.

Let k > 2 be integer. Let Y C X such that
(). |Y| =t, for fixed t > 0 and
(ii). for each Y, Y’ € Y there exist i € Y and j € Y’ such that |i — j| > k.

By p(n, k,t) we denote the number of all subfamilies ) having exactly ¢ subsets
and further let P(n, k) = > p(n, k,t).

>0

THEOREM 2.1 Letn >3, k> 2,t > 0 be integers. Then
p(n,k,0) =1, p(n,k,1) =2n — 3.
Fort>2andn < (k—1)t—k+3, p(n,k,t) =0.
Fort>2and (k—1)t—k+3<n<k+2 we have

1 form=k+landk>2andt=2
p(n,k,t) =< 5 form=k+2andk>2andt=2

1 forn=k+2and k=2 andt=3.
Fort>2 andn > k + 3 we have
p(n,k,t) =pln—k+1Lkt—1)+pn—1kt)+pn—kkt—1).

Proor For t = 0,1 the initial conditions are obvious. Let t > 2. Let X D )y =
{1 {t -2k — (t =3) + k}, {{ik — (i —1),ik — (1 — 2)};i = 1,...,t — 2}}. Since
(t—2)k—(t—3)+k=(k— 1)t —k+ 3, hence to construct a family }Jy we need
n > (k—1)t—k+3. Otherwise if n < (k—1)t—k+3, then it is easy to observe that
there does not exist any family ) satisfying conditions (i) and (ii), so p(n, k,t) = 0.
For n = k41 and n = k+2 we can find that p(k+1,%,2) = 1 and p(k+2,k,2) = 5.
Because for t = 3 we have 3(k — 1) —k+3 =2k =k + 2 if and only if k = 2, so it
immediately follows that p(k +2,k,3) =1

Assume now that ¢ > 2 and n > k+ 3. Let Y C X be a subfamily satisfying
conditions (i) and (ii). We recall that ) has exactly ¢ subsets such that for each
YY" € Y there are a € Y and b € Y’ such that |a — b > k. Let pg,y(n, k,t)
(respectively: p_rny(n, k,t)) be the number of all t-element subfamilies )’ such that
{n} € Y (vespectively: {n} ¢ ¥). Then p(n,k,t) = prny(n, k,t) + p_(ny(n, k,t).

Two cases occur now:
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(1). {n} €.
Then the definition of the family ) implies that {n —i} ¢ Y, fori =1,...,k— 1 and
{n—j,n—j+1} € Y, for j =2,..,k—1. Let X¥* C X such that X* = X;FUX5, where
X=X \{{n—i};i=0,1,..., k—1}, X = Xo\{{n—j,n—j+1};j=2,....k—1}. In
the other words X = {{r};r=1,...,n—k} and X5 = {{s,s+1};s=2,...,n—k}.
Clearly Y = Y* U {n}, where Y* C X*, Y* contains exactly (¢ — 1) subsets and for
every Y, Y’ € Y* there are a € Y and b € Y’ such that |a — b| > k. Since in the
family X'* the integer n — k + 1 belongs only to the subset {n —k,n—k+1} € A5,
hence the number of considered subfamilies in X'* is the same as in the family
Xfu{n—k+ 1} U5\ {n —kn—k+ 1} This implies that pg,(n,k,t) =
p(n—k+ 1,k t—1).
(2). {n} ¢ .
We distinguish the following possibilities
(2.1). {n—-1} &€ .
Then ¥ C X\ {{n},{n —1}} = {{i};i = 1,...,n — 2} U Xy. Since in the family
{{i};i =1,...,n—2}UX; the integer n—1 belongs only to the subset {n—2,n—1} €
Xa, so we can find the number of subfamilies Y of (X \ {n}) U (X5 \{n—2,n—1}).
Then there are exactly p(n — 1, k,t) subfamilies ) in this case.
(2.2). {n—1} e .
Evidently {n—i} ¢ Y and {n—i,n—i+1} ¢ Y, fori = 2,..., k. Proving analogously
as in case (1) we obtain p(n — k, k,t — 1) subfamilies Y, such that {n — 1} € Y.
Consequently from the above possibilities we have that p_r,y(n,k,t) = p(n —
1,k t)+pn—kkt—1)

Finally from the above cases p(n,k,t) =p(n —k+ 1Lk, t — 1) + p(n — 1,k,t) +
p(n—k kt—1).

Thus the Theorem is proved. n

THEOREM 2.2 Let k > 2, n > 3 be integers. Then P(n,k) =2k —2 forn <k,
P(k+1,k) =2k +1,
[ 12 ifk=2
P(k”’k)_{ We+7T if k>3,
and forn>k+3
P(n,k)=P(n—k+1,k)+ P(n—1,k) + P(n — k, k).

PROOF From Theorem 2.1 we have that

if n <k, then P(n,k) = > p(n,k,t) =p(n,k,0) +p(n,k,1) =2n — 2.
>0

2
Ifn=Fk+1, then P(n,k) =S p(k+ 1,k t) =1+2(k+1) —3+1 =2k + L.
t=0

2
If n = k+2, then for k > 3 we have P(n, k) = Y p(k+2,k,t) = 14+2(k+2)—3+5 =
i=0

3
2k+ 7. For k=2, P(k+2,2)=P(4,2) = Y (4,2,t) = 12.
i=0
Let n > k+3. Then P(n,k) = > p(n, k,t) = p(n, k,0)+p(n, k, 1)+ > p(n, k,t).
>0

t>2
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Using Theorem 2.1 we obtain that

P(n,k) = 1+2n—3+2(p(n—k+1,k;,t—1)—|—p(n—1,k:,t)—|—p(n—k,k,t—1)) =

t>2
2 =24 pn—k+1Lkt)+Y pn—1kt)+> pn—kkt)
t>1 t>2 t>1
m—2-1+3 p(n—k+1,kt)—1-(2n-5)+> pn—1,kt)-1+> p(n—kkt) =
t>0 t>0 t>0
Y opn—k+1Lkt)+> pln—1kt)+ Y pn—kkt)
t>0 t>0 t>0
Pin—k+1,k)+Pn—1,k)+ P(n—k,k).
Thus the Theorem is proved. ™

The numbers P(n, k) we will called the generalized Pell numbers.
If k =2 and n > 3, then P(n,2) is the Pell number P, with the initial conditions
P3:5andP4:12.
It may be interesting to note that the generalized Pell numbers are defined by k-th
order linear recurrence relations. The characteristic equation is r* —r*~1 —r—1 = 0.

Clearly for k = 2 it has a solution of the form P, = W

The family & can be regarded as the vertex set of the graph G,, of order 2n —
3 in Figure 1, where vertices from V(G,) are labeled by integers belonging to
corresponding subsets from X.

2,3 34 n-2n-1
[ ] [ ] [ ]
/NN /N
2 3 4 2 n-l n
Fig.1. Graph G,

Thus in the graph terminology, the number P(n, k), for n > 3, k > 2 is equal to
the total number of subsets S C V(G,,) such that for each two vertices z;,z; € S,
da, (x;,x;) > k. In the other words for n > 3, k > 2, P(n, k) is the total number
of k-independent sets of the graph G,,, that means NI (G,) = P(n, k).

Let X ={1,2,...,n}, n > 3, and let F be a family of subsets of X such that F =

F1UF,, where Fy = {{i};i =1,...,n} and Fo = {{i,i+1};i=1,....,n—1}U{n, 1}.
Let 7 C F such that

(iii). |Z|] =t, for fixed ¢ > 0 and

(iv). for each Y, Y’ € T there exist i € Y and j € Y’ such that k < |i — j| <n — k.
By q(n, k,t) we denote the number of all subfamilies Z having exactly ¢ elements

and further let Q(n, k) = > q(n, k,1).
>0
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THEOREM 2.3 Let k> 2,t >0, n > 3 be integers. Then
q(n,k,0) =1, qg(n, k, 1) = 2n.
Fort>2 andn < t(k—1), q(n,k,t) =0.
Fort>2 and t(k—1) <n <2k —1 we have

k=1 forn=2k—2andk>3andt=2
qgin,k,t) =< 4k—2 forn=2k—1land k>2andt=2

1 forn=2k—1and k=2 and t = 3.

Fort > 2 and n > 2k we have
aln,k,t) =k-pn—2k+3,k,t—1)+(k—1) - p(n—2k+4,k,t— 1) +pn—k+2, k,1).

Proor If t = 0,1, then the results are obvious. Assume that ¢ > 2. Let F D
To = {{1,2}, {{ik — (¢ = 1),ik — (i — 2)};i = 1,...,t — 1}}. Since Zy C F, so we
deduce that n + 1 — ((t — )k — (¢t — 3)) > k — 2, hence to construct a family
Zo we need n > t(k — 1). Otherwise if n < t(k — 1) it is easy to observe that
q(n,k,t) = 0. Moreover for n = 2k — 2 and n = 2k — 1 we can find that if £ > 3
then ¢(2k — 2,k,2) = k — 1 and for k > 2 we have ¢(2k — 1,k,2) = 4k — 2 and
q(2k —1,2,3) = 1.

Let t > 2 and n > 2k. Let Z C F be a subfamily satisfying conditions (iii) and
(iv) . Clearly |Z| =t and for every Y,Y’ € T there are i € Y and j € Y’ such that
kE<li—j|<n—k.Let FOI* = {{n—s};s = 0,1, ... k= 1}U{{n—r,n—r+1}r =
1,....,k — 1}. We distinguish the following cases:

(1). 7" NI = 0.

ThenZ C F\I*={{m};m=1,..,n—k}U{{z,z+1};2=1,...,n—k}U{n,1}.
Since in the family F \ Z* the integer n belongs only to one subset {n,1} € F\ Z*
and the integer n — k+ 1 belongs only to one subset {n—k,n—k+1} so the number
of considered subfamilies in F \ Z* is the same as in the family F* = {{m};m =
n,1,....,n—k+1}U{{z,2+1};2=1,....,n—k—1}. Clearly |Z| = t and the definition
of F* guarantees |i — j| < n — k hence to find the number of subfamilies Z we take
into considerations only condition |i — j| > k. This implies that we have exactly
p(n — k + 2, k,t) subfamilies Z such that Z* NZ = §.

(2). Z*NT # 0.

We distinguish two possibilities:

(21). 7*NnZTc{{n—s};s=0,....,k—1}.

Without loos of the generalizations assume that Z* NZ = {n}. Then the definition
of the family 7 gives that {n —i} U {i} ¢ Z, for ¢ = 1,...,k — 1 and {1,n} U
n—gm—g—-1} &7, j=0,..,k—2and {l,l+1} € Z forl = 1,...k — 2.
Then Z = Z' U {n}, where |Z'| = t — 1, ' C {{r};r = k,...on — Kk} U {{s,s +
1};8s = k—1,..,n — k} and 7’ satisfies the condition (iv). Since in the family
{{ry;r=k,..on—k}U{{s,s+1};s = k—1,...,n—k} the integer k — 1 belongs only
to the one subset {k — 1,k} and the integer n — k + 1 belongs only to the subset
{n —k,n—k+ 1}, hence we can find the number of the subfamilies Z’ of the family
{ryir=k—-1,.,n—k+1}U{{s,s+1};s =k,..,n—k —1}. Evidently for every
subsets Y, Y’ € 7’ and for every i € Y and j € Y’ we have |i—j| < n—k. This implies
that there are exactly p(n — 2k + 3, k, ¢t — 1) subfamilies containing the subset {n}.
Since we can choose exactly k subsets belonging to the {{n — s};s =0,....,k — 1},
so we deduce that there are exactly k- p(n — 2k + 3, k,t — 1) subfamilies Z such that
I*NIc{{n—sks=0,.,k—1}.
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22).*nZc{{n—rn—r+1}r=1,.,k—1}
Without loos of the generalizations assume that Z* N Z = {n — 1,n}. Clearly
{n—i} ¢ I fori=0,.,k—1and {I} € Z, forl = 1,...,k — 2. Moreover
{n—j,n—j+1} €Z forj=2,...k—1}and {n,1}U{l,i+1} ¢ Z,forl=1,....,k—3
and k > 3. Proving analogously as in subcase (2.1) we obtain that there are exactly
(k—1)-p(n—2k+4,k,t—1) subfamilies 7 such that Z*NZ C {{n—r,n—r+1};r =
1, k—1}.
Finally from the above cases we obtain that
qn,k,t) =k-p(n—2k+3,k,t—1)+(k—1)-p(n—2k+4,k,t —1)+p(n—k+2,k,1t).
Thus the Theorem is proved. ™

THEOREM 2.4 Let k > 2, n > 3 be integers. Then
Q(n,k)=2n+1 forn<2k—-3
Q(2k — 2,k) = 3k — 4,

14 if k=2
Q(Qk—l,k)—{ $k—3 if k>3 and for n > 2k
Qn,k)=k-Pn—2k+3,k)+(k—1)-Pln—2k+4,k)+ Pln—k+2,k).
PROOF The initial conditions follow by Theorem 2.3. Assume that n > 2k. Then
by the definition of Q(n, k) and by Theorem 2.3 we have that

Qn, k) = q(n,k,t) = q(n, k,0) + q(n, k, 1) + > _q(n, k,t) =

t>0 t>2

1420+ (k-p(n—2k+3,k,t—1)+(k—1)-p(n—2k+4,k,t—1)+p(n—k+2,k,t) =

t>2

1+2n+k Y p(n—2k+3,k,t)+(k—1) > pn—2k+4,k, 1)+ pn—k+2,k 1) =
t>1 t>1 t>2

1+2n—k+kY pln—2k+3kt)—(k—1)+(k—1)Y p(n—2k+4,kt)-
t>0 t>0

—1-2n—k+2)+3+ Y pn—k+2kt)=
t>0
kE-Pn—2k+3,k)+(k—1)-Pln—2k+4,k)+ P(n—k+2,k),
which ends the proof. n

The numbers Q(n, k) we will call the generalized Pell-Lucas numbers.
If k£ = 2, then for n = 3, Q(3,2) = Q3 and for n > 4, Q(n,2) is the Pell-Lucas
number Q,, = 2P,,_1 + 2P,.

The family F can be regarded as the vertex set of the graph R,, of order 2n in
Figure 2.
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e n-1,n o n,l o 1,2 23
n 1 2
n-1 o 3

Fig. 2. Graph R,

Consequently in the graph terminology the generalized Pell-Lucas number Q(n, k),
for n > 3 and k > 2 is equal to the total number of subset S C V(R,,) such that for
each two vertices x;,z; € S, dr, (z;, ;) > k. In the other words the number of all
k-independent sets of the graph R, is equal to the generalized Pell-Lucas number,
that means NI (R,) = Q(n, k).
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