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On generalized Pell numbers and their graph
representations

Abstract. In this paper we give a generalization of the Pell numbers and the Pell-

Lucas numbers and next we apply this concept for their graph representations. We

shall show that the generalized Pell numbers and the Pell-Lucas numbers are equal
to the total number of k-independent sets in special graphs.
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1. Introduction. Consider simple, undirected graphs with the vertex set
V (G) and the edge set E(G). By dG(xi, xj) we denote the distance between vertices
xi and xj in G. Let Pn and Cn denote an n-vertex path and an n-vertex cycle,
respectively. Let k be a fixed integer, k ≥ 2. A subset S ⊆ V (G) is a k-independent
set of G if for each two distinct vertices x, y ∈ S, dG(x, y) ≥ k. In addition, a subset
containing only one vertex and the empty set also are k-independent sets of G. Note
that for k = 2 we obtain the definition of an independent set of the graph G in the
classical sense. Let NIk(G) denote the number of all k-independent sets of the graph
G and for k = 2, NI2(G) = NI(G). The parameter NI(G) was study in a paper
of Prodinger and Tichy, see [4] and this paper gave an impetus to the counting of
independent sets in graphs. They called this parameter the Fibonacci number of a
graph in view of the facts: NI(Pn) = Fn+1 and NI(Cn) = Ln, where the Fibonacci
numbers Fn are defined recursively by F0 = F1 = 1 and Fn = Fn−1+Fn−2, for n ≥ 2
and the Lucas numbers Ln are L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2, for n ≥ 2.
Independently Merrifield and Simmons introduced the number of independent sets
(which they called σ-index) to the chemical literature, see [3]. They showed the
correlation between σ-index and some physicochemical properties of a molecular
graph. In the chemistry NI(G) is named as the Merrifield-Simmons index. The
Fibonacci numbers of graphs were investigate for example in [1], [2], [4]. In [9] more
generalized concept was introduced, namely the generalized Fibonacci numbers of
graph which gives the total number of k-independent sets of a graph G.
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The k-independent sets, for k ≥ 2 were studied in many papers, see for example
in [5], [6], [9],[10].

The Pell numbers are defined by the recurrence relation P0 = 0, P1 = 1 and Pn =
2Pn−1 +Pn−2, for n ≥ 2. The Pell-Lucas numbers (or the companion Pell numbers)
are defined by the recurrence relation Q0 = Q1 = 2 and Qn = 2Qn−1 + Qn−2, for
n ≥ 2. The Pell-Lucas number can be also expressed by Qn = 2Pn−1 + 2Pn.

In this paper we give a generalization of the Pell numbers and the Pell-Lucas
numbers. Firstly we apply this generalization to the counting of special families of
subsets of the set of n integers. Next we give the graph interpretation of the gen-
eralized Pell numbers and the Pell-Lucas numbers. Note that some generalizations
of the Pell numbers and Pell-Lucas numbers are known, see for example [8].

2. Main results. Let X = {1, 2, ..., n}, n ≥ 3, be the set of n integers and let
X be a family of subsets of X such that X = X1∪X2, where X1 = {{i}; i = 1, ..., n}
and X2 = {{j, j + 1}; j = 2, ..., n− 2}.

Let k ≥ 2 be integer. Let Y ⊂ X such that
(i). |Y| = t, for fixed t ≥ 0 and
(ii). for each Y, Y ′ ∈ Y there exist i ∈ Y and j ∈ Y ′ such that |i− j| ≥ k.

By p(n, k, t) we denote the number of all subfamilies Y having exactly t subsets
and further let P (n, k) =

∑
t≥0

p(n, k, t).

Theorem 2.1 Let n ≥ 3, k ≥ 2, t ≥ 0 be integers. Then
p(n, k, 0) = 1, p(n, k, 1) = 2n− 3.
For t ≥ 2 and n < (k − 1)t− k + 3, p(n, k, t) = 0.
For t ≥ 2 and (k − 1)t− k + 3 ≤ n ≤ k + 2 we have

p(n, k, t) =





1 for n = k + 1 and k ≥ 2 and t = 2
5 for n = k + 2 and k ≥ 2 and t = 2
1 for n = k + 2 and k = 2 and t = 3.

For t ≥ 2 and n ≥ k + 3 we have
p(n, k, t) = p(n− k + 1, k, t− 1) + p(n− 1, k, t) + p(n− k, k, t− 1).

Proof For t = 0, 1 the initial conditions are obvious. Let t ≥ 2. Let X ⊃ Y0 =
{{1}, {(t − 2)k − (t − 3) + k}, {{ik − (i − 1), ik − (i − 2)}; i = 1, ..., t − 2}}. Since
(t − 2)k − (t − 3) + k = (k − 1)t − k + 3, hence to construct a family Y0 we need
n ≥ (k−1)t−k+3. Otherwise if n < (k−1)t−k+3, then it is easy to observe that
there does not exist any family Y satisfying conditions (i) and (ii), so p(n, k, t) = 0.
For n = k+1 and n = k+2 we can find that p(k+1, k, 2) = 1 and p(k+2, k, 2) = 5.
Because for t = 3 we have 3(k − 1)− k + 3 = 2k = k + 2 if and only if k = 2, so it
immediately follows that p(k + 2, k, 3) = 1

Assume now that t ≥ 2 and n ≥ k + 3. Let Y ⊂ X be a subfamily satisfying
conditions (i) and (ii). We recall that Y has exactly t subsets such that for each
Y, Y ′ ∈ Y there are a ∈ Y and b ∈ Y ′ such that |a − b| ≥ k. Let p{n}(n, k, t)
(respectively: p−{n}(n, k, t)) be the number of all t-element subfamilies Y such that
{n} ∈ Y (respectively: {n} 6∈ Y). Then p(n, k, t) = p{n}(n, k, t) + p−{n}(n, k, t).
Two cases occur now:
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(1). {n} ∈ Y.
Then the definition of the family Y implies that {n− i} 6∈ Y, for i = 1, ..., k− 1 and
{n−j, n−j+1} 6∈ Y, for j = 2, ..., k−1. Let X ∗ ⊂ X such that X ∗ = X ∗1 ∪X ∗2 , where
X ∗1 = X1\{{n−i}; i = 0, 1, ..., k−1}, X ∗2 = X2\{{n−j, n−j+1}; j = 2, ..., k−1}. In
the other words X ∗1 = {{r}; r = 1, ...., n− k} and X ∗2 = {{s, s+ 1}; s = 2, ..., n− k}.
Clearly Y = Y∗ ∪ {n}, where Y∗ ⊂ X ∗, Y∗ contains exactly (t− 1) subsets and for
every Y, Y ′ ∈ Y∗ there are a ∈ Y and b ∈ Y ′ such that |a − b| ≥ k. Since in the
family X ∗ the integer n− k+ 1 belongs only to the subset {n− k, n− k+ 1} ∈ X ∗2 ,
hence the number of considered subfamilies in X ∗ is the same as in the family
X ∗1 ∪ {n − k + 1} ∪ X ∗2 \ {n − k, n − k + 1}. This implies that p{n}(n, k, t) =
p(n− k + 1, k, t− 1).
(2). {n} 6∈ Y.
We distinguish the following possibilities
(2.1). {n− 1} 6∈ Y.
Then Y ⊆ X \ {{n}, {n − 1}} = {{i}; i = 1, ..., n − 2} ∪ X2. Since in the family
{{i}; i = 1, ..., n−2}∪X2 the integer n−1 belongs only to the subset {n−2, n−1} ∈
X2, so we can find the number of subfamilies Y of (X ∗1 \{n})∪ (X ∗2 \{n−2, n−1}).
Then there are exactly p(n− 1, k, t) subfamilies Y in this case.
(2.2). {n− 1} ∈ Y.
Evidently {n−i} 6∈ Y and {n−i, n−i+1} 6∈ Y, for i = 2, ..., k. Proving analogously
as in case (1) we obtain p(n− k, k, t− 1) subfamilies Y, such that {n− 1} ∈ Y.
Consequently from the above possibilities we have that p−{n}(n, k, t) = p(n −
1, k, t) + p(n− k, k, t− 1)

Finally from the above cases p(n, k, t) = p(n− k + 1, k, t− 1) + p(n− 1, k, t) +
p(n− k, k, t− 1).

Thus the Theorem is proved. �

Theorem 2.2 Let k ≥ 2, n ≥ 3 be integers. Then P (n, k) = 2k − 2 for n ≤ k,
P (k + 1, k) = 2k + 1,

P (k + 2, k) =
{

12 if k = 2
2k + 7 if k ≥ 3,

and for n ≥ k + 3
P (n, k) = P (n− k + 1, k) + P (n− 1, k) + P (n− k, k).

Proof From Theorem 2.1 we have that
if n ≤ k, then P (n, k) =

∑
t≥0

p(n, k, t) = p(n, k, 0) + p(n, k, 1) = 2n− 2.

If n = k + 1, then P (n, k) =
2∑
t=0

p(k + 1, k, t) = 1 + 2(k + 1)− 3 + 1 = 2k + 1.

If n = k+2, then for k ≥ 3 we have P (n, k) =
2∑
t=0

p(k+2, k, t) = 1+2(k+2)−3+5 =

2k + 7. For k = 2, P (k + 2, 2) = P (4, 2) =
3∑
t=0

(4, 2, t) = 12.

Let n ≥ k+3. Then P (n, k) =
∑
t≥0

p(n, k, t) = p(n, k, 0)+p(n, k, 1)+
∑
t≥2

p(n, k, t).
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Using Theorem 2.1 we obtain that

P (n, k) = 1 + 2n− 3 +
∑

t≥2

(p(n− k+ 1, k, t− 1) + p(n− 1, k, t) + p(n− k, k, t− 1)) =

2n− 2 +
∑

t≥1

p(n− k + 1, k, t) +
∑

t≥2

p(n− 1, k, t) +
∑

t≥1

p(n− k, k, t) =

2n−2−1+
∑

t≥0

p(n−k+1, k, t)−1−(2n−5)+
∑

t≥0

p(n−1, k, t)−1+
∑

t≥0

p(n−k, k, t) =

∑

t≥0

p(n− k + 1, k, t) +
∑

t≥0

p(n− 1, k, t) +
∑

t≥0

p(n− k, k, t) =

P (n− k + 1, k) + P (n− 1, k) + P (n− k, k).

Thus the Theorem is proved. �

The numbers P (n, k) we will called the generalized Pell numbers.
If k = 2 and n ≥ 3, then P (n, 2) is the Pell number Pn with the initial conditions
P3 = 5 and P4 = 12.
It may be interesting to note that the generalized Pell numbers are defined by k-th
order linear recurrence relations. The characteristic equation is rk−rk−1−r−1 = 0.
Clearly for k = 2 it has a solution of the form Pn = (1+

√
2)n−(1−

√
2)n

2
√

2
.

The family X can be regarded as the vertex set of the graph Gn of order 2n−
3 in Figure 1, where vertices from V (Gn) are labeled by integers belonging to
corresponding subsets from X .

1 2 3 4

2,3 3,4 n-2,n-1

n-2 n-1 n
. . .

Fig.1. Graph Gn

Thus in the graph terminology, the number P (n, k), for n ≥ 3, k ≥ 2 is equal to
the total number of subsets S ⊆ V (Gn) such that for each two vertices xi, xj ∈ S,
dGn(xi, xj) ≥ k. In the other words for n ≥ 3, k ≥ 2, P (n, k) is the total number
of k-independent sets of the graph Gn, that means NIk(Gn) = P (n, k).

Let X = {1, 2, ..., n}, n ≥ 3, and let F be a family of subsets of X such that F =
F1∪F2, where F1 = {{i}; i = 1, ..., n} and F2 = {{i, i+1}; i = 1, ..., n−1}∪{n, 1}.

Let I ⊂ F such that
(iii). |I| = t, for fixed t ≥ 0 and
(iv). for each Y, Y ′ ∈ I there exist i ∈ Y and j ∈ Y ′ such that k ≤ |i− j| ≤ n− k.

By q(n, k, t) we denote the number of all subfamilies I having exactly t elements
and further let Q(n, k) =

∑
t≥0

q(n, k, t).
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Theorem 2.3 Let k ≥ 2, t ≥ 0, n ≥ 3 be integers. Then
q(n, k, 0) = 1, q(n, k, 1) = 2n.
For t ≥ 2 and n < t(k − 1), q(n, k, t) = 0.
For t ≥ 2 and t(k − 1) ≤ n ≤ 2k − 1 we have

q(n, k, t) =





k − 1 for n = 2k − 2 and k ≥ 3 and t = 2
4k − 2 for n = 2k − 1 and k ≥ 2 and t = 2

1 for n = 2k − 1 and k = 2 and t = 3.
For t ≥ 2 and n ≥ 2k we have
q(n, k, t) = k ·p(n−2k+3, k, t−1)+(k−1) ·p(n−2k+4, k, t−1)+p(n−k+2, k, t).

Proof If t = 0, 1, then the results are obvious. Assume that t ≥ 2. Let F ⊃
I0 = {{1, 2}, {{ik − (i − 1), ik − (i − 2)}; i = 1, ..., t − 1}}. Since I0 ⊂ F , so we
deduce that n + 1 − ((t − 1)k − (t − 3)) ≥ k − 2, hence to construct a family
I0 we need n ≥ t(k − 1). Otherwise if n < t(k − 1) it is easy to observe that
q(n, k, t) = 0. Moreover for n = 2k − 2 and n = 2k − 1 we can find that if k ≥ 3
then q(2k − 2, k, 2) = k − 1 and for k ≥ 2 we have q(2k − 1, k, 2) = 4k − 2 and
q(2k − 1, 2, 3) = 1.
Let t ≥ 2 and n ≥ 2k. Let I ⊂ F be a subfamily satisfying conditions (iii) and
(iv) . Clearly |I| = t and for every Y, Y ′ ∈ I there are i ∈ Y and j ∈ Y ′ such that
k ≤ |i−j| ≤ n−k. Let F ⊃ I∗ = {{n−s}; s = 0, 1, ..., k−1}∪{{n−r, n−r+1}; r =
1, ..., k − 1}. We distinguish the following cases:
(1). I∗ ∩ I = ∅.
Then I ⊂ F \ I∗ = {{m};m = 1, ..., n− k} ∪ {{z, z + 1}; z = 1, ..., n− k} ∪ {n, 1}.
Since in the family F \ I∗ the integer n belongs only to one subset {n, 1} ∈ F \ I∗
and the integer n−k+1 belongs only to one subset {n−k, n−k+1} so the number
of considered subfamilies in F \ I∗ is the same as in the family F∗ = {{m};m =
n, 1, ..., n−k+1}∪{{z, z+1}; z = 1, ..., n−k−1}. Clearly |I| = t and the definition
of F∗ guarantees |i− j| ≤ n− k hence to find the number of subfamilies I we take
into considerations only condition |i − j| ≥ k. This implies that we have exactly
p(n− k + 2, k, t) subfamilies I such that I∗ ∩ I = ∅.
(2). I∗ ∩ I 6= ∅.
We distinguish two possibilities:
(2.1). I∗ ∩ I ⊂ {{n− s}; s = 0, ..., k − 1}.
Without loos of the generalizations assume that I∗ ∩ I = {n}. Then the definition
of the family I gives that {n − i} ∪ {i} 6∈ I, for i = 1, ..., k − 1 and {1, n} ∪
{n − j, n − j − 1} 6∈ I, j = 0, ..., k − 2 and {l, l + 1} 6∈ I for l = 1, ..., k − 2.
Then I = I ′ ∪ {n}, where |I ′| = t − 1, I ′ ⊂ {{r}; r = k, ..., n − k} ∪ {{s, s +
1}; s = k − 1, ..., n − k} and I ′ satisfies the condition (iv). Since in the family
{{r}; r = k, ..., n−k}∪{{s, s+1}; s = k−1, ..., n−k} the integer k−1 belongs only
to the one subset {k − 1, k} and the integer n − k + 1 belongs only to the subset
{n− k, n− k+ 1}, hence we can find the number of the subfamilies I ′ of the family
{{r}; r = k− 1, ..., n− k+ 1} ∪ {{s, s+ 1}; s = k, ..., n− k− 1}. Evidently for every
subsets Y, Y ′ ∈ I ′ and for every i ∈ Y and j ∈ Y ′ we have |i−j| ≤ n−k. This implies
that there are exactly p(n− 2k + 3, k, t− 1) subfamilies containing the subset {n}.
Since we can choose exactly k subsets belonging to the {{n − s}; s = 0, ..., k − 1},
so we deduce that there are exactly k · p(n− 2k+ 3, k, t− 1) subfamilies I such that
I∗ ∩ I ⊂ {{n− s}; s = 0, ..., k − 1}.



174 On generalized Pell numbers and their graph representations

(2.2). I∗ ∩ I ⊂ {{n− r, n− r + 1}; r = 1, ..., k − 1}.
Without loos of the generalizations assume that I∗ ∩ I = {n − 1, n}. Clearly
{n − i} 6∈ I, for i = 0, ..., k − 1 and {l} 6∈ I, for l = 1, ..., k − 2. Moreover
{n−j, n−j+1} 6∈ I, for j = 2, ..., k−1} and {n, 1}∪{l, l+1} 6∈ I, for l = 1, ..., k−3
and k ≥ 3. Proving analogously as in subcase (2.1) we obtain that there are exactly
(k−1) ·p(n−2k+4, k, t−1) subfamilies I such that I∗∩I ⊂ {{n−r, n−r+1}; r =
1, ..., k − 1}.

Finally from the above cases we obtain that
q(n, k, t) = k ·p(n−2k+3, k, t−1)+(k−1) ·p(n−2k+4, k, t−1)+p(n−k+2, k, t).

Thus the Theorem is proved. �

Theorem 2.4 Let k ≥ 2, n ≥ 3 be integers. Then
Q(n, k) = 2n+ 1 for n ≤ 2k − 3
Q(2k − 2, k) = 3k − 4,

Q(2k − 1, k) =
{

14 if k = 2
8k − 3 if k ≥ 3, and for n ≥ 2k

Q(n, k) = k · P (n− 2k + 3, k) + (k − 1) · P (n− 2k + 4, k) + P (n− k + 2, k).

Proof The initial conditions follow by Theorem 2.3. Assume that n ≥ 2k. Then
by the definition of Q(n, k) and by Theorem 2.3 we have that

Q(n, k) =
∑

t≥0

q(n, k, t) = q(n, k, 0) + q(n, k, 1) +
∑

t≥2

q(n, k, t) =

1+2n+
∑

t≥2

(k ·p(n−2k+3, k, t−1)+(k−1)·p(n−2k+4, k, t−1)+p(n−k+2, k, t) =

1+2n+k
∑

t≥1

p(n−2k+3, k, t)+(k−1)
∑

t≥1

p(n−2k+4, k, t)+
∑

t≥2

p(n−k+2, k, t) =

1 + 2n− k + k
∑

t≥0

p(n− 2k + 3, k, t)− (k − 1) + (k − 1)
∑

t≥0

p(n− 2k + 4, k, t)−

−1− 2(n− k + 2) + 3 +
∑

t≥0

p(n− k + 2, k, t) =

k · P (n− 2k + 3, k) + (k − 1) · P (n− 2k + 4, k) + P (n− k + 2, k),

which ends the proof. �

The numbers Q(n, k) we will call the generalized Pell-Lucas numbers.
If k = 2, then for n = 3, Q(3, 2) = Q3 and for n ≥ 4, Q(n, 2) is the Pell-Lucas
number Qn = 2Pn−1 + 2Pn.

The family F can be regarded as the vertex set of the graph Rn of order 2n in
Figure 2.
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n

n-1

2

3

2

n-1,n n,1 1,2 2,3

1

. . .

Fig. 2. Graph Rn

Consequently in the graph terminology the generalized Pell-Lucas numberQ(n, k),
for n ≥ 3 and k ≥ 2 is equal to the total number of subset S ⊂ V (Rn) such that for
each two vertices xi, xj ∈ S, dRn(xi, xj) ≥ k. In the other words the number of all
k-independent sets of the graph Rn is equal to the generalized Pell-Lucas number,
that means NIk(Rn) = Q(n, k).
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