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A comparison of two notions of porosity

Abstract. In the paper we compare two notions of porosity: the R-ball porosity

(R > 0) defined by Preiss and Zaj́ıček, and the porosity which was introduced by

Olevskii (here it will be called the O-porosity). We find this comparison interesting
since in the literature there are two similar results concerning these two notions. We

restrict our discussion to normed linear spaces since the R-ball porosity was originally

defined in such spaces.
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1. Introduction. Olevskii [2] proved that every convex nowhere dense subset
of a Banach space is O-porous. On the other hand, Zaj́ıček [6] in his survey paper
on porosity recalled the definition of R-ball porosity (R > 0) and observed (without
giving a proof) that a convex nowhere dense subset of a Banach space is R-ball
porous for every R > 0 (cf. [6, p. 518]). Zaj́ıček also considered the definition of
the ball smallness (a set M is ball small if M =

⋃
n∈N Mn and each Mn is Rn-ball

porous for some Rn > 0).
In the paper we prove that every R-ball porous subset of any normed linear

space is O-porous; moreover, with the help of the Baire Category Theorem, we
show that in every nontrivial Banach space there exists an O-porous set which is
not ball small (hence not R-ball porous for any R > 0).

We also show that, in general, the notion of O-porosity is more restrictive than
the most ”natural” notions of porosity ((c-)lower or (c-)upper porosity; see [6]).

Also, we would like to point out that Olevskii, as an application of his result, gave
a few natural examples of sets which are countable unions of convex nowhere dense
subsets of Banach spaces (one of them deals with the Banach-Steinhaus Theorem),
so Zaj́ıček’s observation implies that these sets are ball small. This seems to be
interesting since Zaj́ıček [6, p. 516] stated that there was no result in the literature
which asserted that an ”interesting” set of singular points is ball small.
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This paper is organized as follows. First, in the next section, we give exact
definitions of some types of porosity and discuss basic relationships between them.
Then, in Section 3, we prove the main result of this note.

2. Some notions of porosity. We start with presenting definitions of (σ-)O-
porosity, R-ball porosity, the ball smallness, lower and c-lower porosity (c > 0).

Let (X, ‖ · ‖) be a normed linear space and M ⊂ X. Given x ∈ X and r > 0,
we denote by B(x, r) the open ball with center x and radius r.

Definition 2.1 ([2]) M is called O-porous if

∀α∈(0,1) ∃R0>0 ∀x∈M ∀R∈(0,R0) ∃y∈X (‖x− y‖ = R and B(y, αR) ∩M = ∅) .

Remark 2.2 In fact, Definition 2.1 was suggested to Olevskii by K. Saxe
(see [2, Remark 1]).

Definition 2.3 ([6]) Let R > 0. We say that M is R-ball porous if

∀x∈M ∀α∈(0,1) ∃y∈X (‖x− y‖ = R and B(y, αR) ∩M = ∅) .

Remark 2.4 The definition of R-ball porosity presented in [6] ([6, p. 516]) is
slightly different from the above one. Namely, M is R-ball porous if

∀x∈M ∀ε∈(0,R) ∃y∈X (‖x− y‖ = R and B(y,R− ε) ∩M = ∅) .

However, it is easy to see that they are equivalent.

Definition 2.5 ([6]) Let c > 0. M is called c-lower porous if for any x ∈ M, we
have that

2 lim inf
R→0+

γ(x,R,M)
R

≥ c,

where γ(x,R,M) := sup{r ≥ 0 : ∃y∈X B(y, r) ⊂ B(x,R)\M}.

Definition 2.6 ([6]) We say that M is lower porous if for any x ∈ M , we have
that

lim inf
R→0+

γ(x,R,M)
R

> 0.

If we substitute the upper limit for the lower limit in the above definitions, we
get definitions of c-upper porosity and upper porosity.

Remark 2.7 Clearly, the following implications hold:
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1 c-lower porosity =⇒ lower porosity =⇒ upper porosity;

2 c-lower porosity =⇒ c-upper porosity =⇒ upper porosity.

Definition 2.8 ([6]) M is called ball small if there exist a sequence (Mn)n∈N of
sets and a sequence (Rn)n∈N of positive reals such that M =

⋃
n∈NMn and each

Mn is Rn-ball porous.

Definition 2.9 ([2]) M is called σ-O-porous if M is a countable union of O-porous
sets.

It is obvious that the above definitions can be formulated in any metric space.
However, this paper deals only with normed linear spaces and from now on we
assume that the letter X denotes a normed linear space (some results presented
below may be false for metric spaces).

We omit an obvious proof of the following

Proposition 2.10 If x ∈ X and M ⊂ X is c-lower porous [O-porous, σ-O-porous,
R-ball porous, ball small], so is its translation M + x.

Proposition 2.11 Let M ⊂ X and c > 0. The following conditions are equivalent:

(i) M is c-lower porous;

(ii) ∀x∈M ∀β∈(0, 12 c)
∃R0>0 ∀R∈(0,R0) ∃y∈X B(y,βR) ⊂ B(x,R)\M.

Proof (i) =⇒ (ii)
Take any x ∈ M , β ∈ (0, c2 ) and δ ∈ (β, c2 ). By (i), there exists R0 > 0 such

that

(1) inf
R∈(0,R0)

γ(x,R,M)
R

≥ δ.

Now let R ∈ (0, R0). By (1), γ(x,R,M) ≥ δR. Hence and by the fact that δR > βR,
we have that there exists y ∈ X such that B(y, βR) ⊂ B(x,R)\M .

(ii) =⇒ (i)
Fix any x ∈M and β ∈ (0, c2 ). Take R0 as in (ii). It suffices to show that

inf
R∈(0,R0)

γ(x,R,M)
R

≥ β.

Take any R ∈ (0, R0). By (ii), there exists z ∈ X such that B(z, βR) ⊂ B(x,R)\M .
Hence βR ∈ {r ≥ 0 : ∃y∈X B(y, r) ⊂ B(x,R)\M}, so γ(x,R,M) ≥ βR and, in
particular, γ(x,R,M)

R ≥ β. �
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Proposition 2.12 If ∅ 6= M ⊂ X is c-lower porous, then c ≤ 1.

Proof Since X is a normed space, the following clearly holds:

∀d> 1
2
∀R>0 ∀x∈X ∀z∈X (x /∈ B(z, dR) =⇒ B(z, dR) " B(x,R)) .

Hence we infer 2γ(x,R,M) ≤ R for any x ∈M and R > 0. �

Proposition 2.13 Every O-porous set M ⊂ X is 1-lower porous.

Proof Let M be O-porous. By Proposition 2.11, it suffices to prove

∀x∈M ∀β∈(0, 12 ) ∃R0>0 ∀R∈(0,R0) ∃y∈X B(y, βR) ⊂ B(x,R)\M.

Fix x ∈ M and β ∈ (0, 1
2 ). Take R0 > 0 as in the definition of O-porosity, chosen

for α := 2β. Take any R < 2R0. Since 1
2R < R0, there exists y ∈ X such that

‖ y− x ‖= 1
2R and B(y, α 1

2R)∩M = ∅. Since B(y, α 1
2R) = B(y, βR), it is enough

to show that

(2) B(y, βR) ⊂ B(x,R).

For any z ∈ B(y, βR), we have

‖ x− z ‖ ≤ ‖ x− y ‖ + ‖ y − z ‖ ≤ 1
2
R+ βR < R,

so (2) holds. �

Now we give an example of 1-lower porous subset of R which is not O-porous.
This example and Proposition 2.13 show that, in general, the notion of O-porosity
is more restrictive than the notion of 1-lower porosity.

Example 2.14 Consider the set M :=
⋃
n∈N

{
n+ k

n : k = 0, ..., n− 1
}
. It is easy

to see that M is 1-lower porous and is not O-porous.

By Proposition 2.13, every σ-O-porous set is σ-1-lower porous (a countable union
of 1-lower porous sets). However, we do not know if there exists a set which is σ-1-
lower porous and is not σ-O-porous. We leave it as an open question.

3. Main results. We first show that any R-ball porous subset of a normed
linear space is O-porous. We need the following result which is also given (without
a proof) in [1].

Proposition 3.1 Let X be a normed linear space. If M ⊂ X is R-ball porous,
then M is r-ball porous for all r ∈ (0, R].
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Proof Fix r ∈ (0, R], x ∈ M and α ∈ (0, 1). Define β := 1 − r
R (1 − α). By

hypothesis, there exists y ∈ X such that ‖x− y‖ = R and B(y, βR) ∩M = ∅. Let
y1 ∈ [x, y] be such that ‖ y1 − x ‖= r. It suffices to prove that

(3) B(y1, αr) ⊂ B(y, βR).

For any z ∈ B(y1, αr), we have

‖ y − z ‖≤‖ y − y1 ‖ + ‖ y1 − z ‖< R− r + αr = βR

which yields (3). �

Corollary 3.2 Any R-ball porous subset of a normed linear space is O-porous.

Now we will show that in any nontrivial Banach space there exists an O-porous
set which is not ball small. In particular, the class of σ-O-porous sets in Banach
spaces is essentially wider (with respect to the inclusion) than the class of ball
small sets. Hence we infer Olevskii’s result does not imply that a countable union
of nowhere dense convex subsets of any Banach space is ball small.

We start with some auxiliary results.

Proposition 3.3 Let R > 0 and M ⊂ R.

1 If M is R-ball porous, then for any x ∈ R, the set [x−R, x+R]∩M contains
at most 2 elements.

2 If for any x ∈ R, the set [x−R, x+R]∩M contains at most 2 elements, then
M is 1

2R-ball porous.

Proof Ad 1. Assume that for some x ∈ R, the set [x − R, x + R] ∩M contains
more than two elements. Let a, b, c ∈ R be such that a < b < c and
{a, b, c} ⊂ [x−R, x+R]∩M. Therefore c− b < 2R and b−a < 2R. Take α ∈ (0, 1)
such that

α > max
{ | c− b−R |

R
,
| b− a−R |

R

}
.

It is easy to see that a ∈ B(b − R,αR) and c ∈ B(b + R,αR). Hence M is not
R-ball porous.

Ad 2. Fix any x ∈M and α ∈ (0, 1). Since [x−R, x+R]∩M contains at most
two elements, we see that (x, x + R] ∩M = ∅ or [x − R, x) ∩M = ∅. Therefore
B(x − 1

2R,α
1
2R) ∩ M = ∅ or B(x + 1

2R,α
1
2R) ∩ M = ∅. Hence M is 1

2R-ball
porous. �

Corollary 3.4 Any R-ball porous subset of R is countable.

Hence, as an immediate consequence, we get the following characterization of
ball small subsets of R. Note that the folowing result was also given (without a
proof) in [3].
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Corollary 3.5 Let M ⊂ R. M is ball small iff M is countable.

Now we will give an example of an O-porous subset of R which is not ball small.
In the following {0, 1}<N is the set of all finite sequences of ones and zeros, | s |
means the length of s, i.e., | s |=| (s(0), ..., s(n − 1)) |= n, and diamA denotes the
diameter of A.

Example 3.6 Fix a sequence γ = (γn)n∈N∪{0} such that γn > 1
2 and γn ↗ 1.

Consider the symmetric perfect set C(γ) (cf. [5, p. 318]). The set C(γ) is defined
similarly to the Cantor ternary set: by induction, we define the sequence of sets
{Cs}s∈{0,1}<N satisfying the following conditions :

(c1) C∅ := [0, 1];

(c2) if s ∈ {0, 1}<N and Hs is the concentric open subinterval of Cs of length γ|s|l|s|,
where l|s| =diamCs, then Csˆ0 is the left and Csˆ1 is the right subinterval of
Cs\Hs.

Finally, set C(γ) :=
⋂
n∈N

⋃
|s|=n Cs. Since C(γ) is uncountable, it is not ball

small in view of Corollary 3.5. We will show that C(γ) is O-porous. It is easy to
see that for any n ∈ N, ln = 1−γn−1

2 ln−1. Fix α ∈ (0, 1) and let n0 ∈ N be such that

(4) γn0 >
α+ 1

2
.

Set R0 := 1
2 ln0+1 and let R ∈ (0, R0). Since ln ↘ 0, there is n ∈ N such that

(5)
1
2
ln+1 < R ≤ 1

2
ln.

Since R < R0, we have that n ≥ n0 + 1. Now take any x ∈ C(γ). In particular,
x ∈ Cs for some s with | s |= n. Consider four cases:

Case 1: x ∈ Csˆ0ˆ1. Set y := x+ R. We will prove that B(y, αR) ∩ C(γ) = ∅. By
(4) and ( 5), we have

dist(Csˆ0ˆ1, Csˆ1ˆ0) = γnln >
α+ 1

2
ln ≥ (α+ 1)R,

so it suffices to show that for any z ∈ Csˆ0ˆ1, | z − y | ≥ αR.
Since diamCsˆ0ˆ1 = ln+2 < R, for any z ∈ Csˆ0ˆ1, by (4) and (5), we have

| z − y |≥ R− diamCsˆ0ˆ1 = R− ln+2

= R− 1− γn+1

2
ln+1 > R− (1− γn+1)R = γn+1R > αR.

Case 2: x ∈ Csˆ1ˆ0. Set y := x−R. Using a similar argument as in Case 1, we may
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infer B(y, αR) ∩ C(γ) = ∅.

Case 3: x ∈ Csˆ0ˆ0. Set y := x−R. By (4) and (5), we have

2R ≤ ln =
1− γn−1

2
ln−1 < γn−1ln−1 = min{dist(Cq, Cp) : p 6= q and | p |=| q |= n},

and we can show that B(y, αR) ∩ C(γ) = ∅ in a similar way as in Case 1.

Case 4: x ∈ Csˆ1ˆ1. Set y := x+R. Repeating an argument from Case 3, we infer
B(y, αR) ∩ C(γ) = ∅.

As a conclusion we see that C(γ) is O-porous.

Lemma 3.7 Any nontrivial real Banach space (Y, ‖ · ‖0) is isometrically isomorphic
to some space (R×X, ‖ · ‖), where X is a closed linear subspace of Y and the norm
‖ · ‖ satisfies the following conditions:

(a) ‖ · ‖ is equivalent to the norm max ‖ · ‖max, where

‖(t, x)‖max := max{| t |, ‖x‖0} for (t, x) ∈ R×X;

(b) ∀t∈R ‖(t, 0)‖ =| t | and ∀x∈X ‖(0, x)‖ = ‖x‖0.

Proof Take any x0 ∈ Y with ‖x0‖0 = 1 and consider one dimensional subspace
Y1 := {tx0 : t ∈ R} ⊂ Y . Since dimY1 <∞, there exists a closed subspace Y2 ⊂ Y
such that Y = Y1 ⊕ Y2 (see, e.g., [4]). Set X = Y2. Note that for every y ∈ Y
there are t ∈ R and x ∈ X such that y = tx0 + x. For (t, x) ∈ R × X define
‖(t, x)‖ := ‖tx0 + x‖0. Observe that ‖ · ‖ is a norm on R × X, equivalent to the
norm ‖ · ‖max. Then the function (t, x) 7→ tx0 + x is an isometrical isomorphism
between (R×X, ‖ · ‖) and (Y, ‖ · ‖0). �

Remark 3.8 Let (X, ‖ · ‖) be a complex space. Then we can consider it as a real
space (it is obvious how to formalize this statement). It is clear that for any M ⊂ X,
the following statements are equivalent:

1. M is O-porous [ball small] in (X, ‖ · ‖);

2. M is O-porous [ball small] in (X, ‖ · ‖) considered as a real space.

From now on the symbol (R×X, ‖ ·‖) denotes a real normed linear space R×X,
where X is a real normed linear space and the norm ‖ ·‖ satisfies conditions (a) and
(b) from Lemma 3.7.
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Remark 3.9 By the above Remark and Lemma 3.7, in order to prove that any
nontrivial Banach space admits an O-porous set which is not ball small, it suffices
to prove it for every space (R×X, ‖ · ‖), where X is a real Banach space.

Lemma 3.10 Let (X, ‖ · ‖0) be a real normed linear space. For any R > 0 and
any ε > 0, there exists δ > 0 such that for any p ∈ X and any t1, t0, t2 ∈ R, if
t1 < t0 < t2, | t1 − t0 |< δ and | t2 − t0 |< δ, then the set N := {t1, t0, t2} ×B(p, ε)
is not R-ball porous in (R×X, ‖ · ‖).

Proof There exists γ ∈ (0, 1] such that for any (s, x) ∈ R×X,

(6) γmax{| s |, ‖x‖0} ≤ ‖(s, x)‖.

Fix R > 0 and ε > 0. Let

(7) ε := min
{
R

4
,
ε

4

}
.

We are ready to define δ

(8) δ := εmin
{εγ
R
, 1
}
.

In particular,

δ ≤ ε ≤ R

4
< R.

Take any p ∈ X and any t1, t0, t2 ∈ R such that t1 < t0 < t2, | t1 − t0 |< δ and
| t2 − t0 |< δ. By Proposition 2.10, we may assume that (t0, p) = (0, 0). It suffices
to show that there is α ∈ (0, 1) such that for any (s, y) ∈ R×X,

‖(s, y)‖ = R =⇒ B((s, y), αR) ∩N 6= ∅.

Let α ∈ (0, 1) be such that

(9) α > max
{
R− ε
R

,
R− γ | t1 |

R
,
R− γ | t2 |

R

}
.

Fix any (s, y) such that ‖(s, y)‖ = R. Now we will consider three cases.

Case 1: y = 0. Since | s |= R > δ, we see that s > t2 > 0 or s < t1 < 0. Assume
that s > t2 > 0. Then (t2, 0) ∈ N and, by (9), we have

‖(s, 0)− (t2, 0)‖ = s− t2 = R− t2 ≤ R− γt2 < αR.

If s < t1 < 0, we proceed similarly.

Case 2: | s |< ε and y 6= 0. Since

R = ‖(s, y)‖ = ‖(s, 0) + (0, y)‖ ≤ ‖(s, 0)‖+ ‖(0, y)‖ < ε+ ‖(0, y)‖
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and
‖(0, y)‖ = ‖(s, y)− (s, 0)‖ ≤ ‖(s, y)‖+ ‖(s, 0)‖ < R+ ε,

we get, by (7), that

(10) 0 < 3ε ≤ R− ε < ‖(0, y)‖ < R+ ε.

Now take z ∈ [0, y] such that ‖z‖0 = 3ε. By (7), (9) and (10), we have (0, z) ∈ N
and also

‖(s, y)− (0, z)‖ = ‖(s, 0) + (0, y)− (0, z)‖ ≤ ‖(s, 0)‖+ ‖(0, y)− (0, z)‖

= ‖(s, 0)‖+ ‖(0, y)‖ − ‖(0, z)‖ < ε+ (R+ ε)− ‖z‖0 = R+ 2ε− 3ε < αR.

Case 3: | s |≥ ε and y 6= 0. We may assume, without loss of generality, that s ≥ ε.
Set

λ :=
t2
s
.

By (8), δ/ε = min
{
εγ
R , 1

}
and by (6), max{| s |, ‖y‖0} ≤ 1

γR. Hence

γt2
R
≤ λ < δ

s
≤ min

{εγ
R
, 1
}
≤ min

{
ε

‖y‖0
, 1
}
.

In particular, ‖λy‖0 < ε and λ ∈ (0, 1), so (λs, λy)(= (t2, λy)) is an element of N,
and, using (9) also, we infer

‖(s, y)− (λs, λy)‖ =| 1− λ | R = (1− λ)R ≤
(

1− γt2
R

)
R < αR.

With the case s ≤ −ε we proceed analogously.
Thus we have shown that in each case B((s, y), αR) ∩N 6= ∅. �

Lemma 3.11 Let X be a real normed linear space and M ⊂ R be O-porous. Then
M ×X is O-porous in the space (R×X, ‖ · ‖).

Proof For any r > 0, we put

(11) Ar := sup {| t |: (t, x) ∈ R×X, ‖(t, x)‖ = r} .

Clearly, in the above definition it is enough to consider t ≥ 0 or t ≤ 0. Since ‖ · ‖ is
equivalent to the norm max, we infer 0 < Ar <∞ for any r > 0. It is also easy to
prove that for any r > 0, we have:

(12) rA1 = Ar;

By (12), we see that for any (t, x) ∈ R×X,

(13) | t |≤ A1‖(t, x)‖.
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Now we are ready to prove the Lemma. Fix any α ∈ (0, 1) and β ∈ (α, 1). Since M
is O-porous, there exists R0 > 0 such that

(14) ∀t∈M ∀R∈(0,R0) ∃a∈R (| a− t |= R and B(a, βR) ∩M = ∅) .

Define R1 := R0/A1, and take any R ∈ (0, R1) and (t, x) ∈M×X. Since RA1 < R0,
by (14), there exists a ∈ R such that | a− t |= RA1 and

(15) B(a, βRA1) ∩M = ∅.

Assume that a = t+RA1 (we proceed analogously with the case a = t−RA1) and
put ε := (β − α)RA1. We will show that there exists (s, y) ∈ R×X such that

(16) ‖(t, x)− (s, y)‖ = R and | a− s |< ε.

By (12) and the statement after (11), there exists (q, z) ∈ R ×X such that q ≥ 0,
‖(q, z)‖ = R and RA1 − ε < q ≤ RA1. Now define s := t+ q and y := x+ z. Since
(s, y) − (t, x) = (q, z) and | a − s |=| RA1 − q |, we get (16). It suffices to observe
that

B((s, y), αR) ∩ (M ×X) = ∅.

For any (p, u) ∈ B((s, y), αR), by (13) and (16), we have

| p− a |≤| p− s | + | s− a |< αRA1 + ε = βRA1,

so, by (15), p /∈M . Hence (p, u) /∈M ×X. �

Proposition 3.12 Let X be a normed linear space and R > 0. If M ⊂ X is R-ball
porous, so is its closure M .

Proof Let M ⊂ X be R-ball porous. Fix α ∈ (0, 1) and x ∈ M. Take any
β ∈ (α, 1) and choose x1 ∈ M such that ‖ x− x1 ‖< (β − α)R. By hypothesis, we
infer there exists y1 ∈ X such that ‖ y1 − x1 ‖= R and B(y1, βR) ∩M = ∅. Put
y := y1 + (x − x1). Then we have ‖ y − x ‖= R and for any z ∈ B(y, αR), we see
that

‖ y1 − z ‖≤‖ y1 − y ‖ + ‖ y − z ‖< (β − α)R+ αR = βR,

so z ∈ B(y1, βR). Hence B(y, αR) ⊂ X\M. Finally, we have

B(y, αR) = IntB(y, αR) ⊂ Int(X\M) = X\M

which shows that M is R-ball porous. �

Now we are ready to give a more general construction. A very important tool
in the proof of the following theorem is the Baire Category Theorem (note that the
idea of using the Baire Category Theorem to show that some sets are not σ-porous
in some senses, is commonly known – see, e. g. [6, p. 513]).
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Theorem 3.13 In any nontrivial Banach space there exists an O-porous set which
is not ball small.

Proof We will use Remark 3.8. Let X be any real Banach space, and let C(γ) ⊂ R
be the set defined in Example 3.6. By Lemma 3.11, C(γ)×X is O-porous in
(R×X, ‖ · ‖). We will show that C(γ)×X is not ball small. Assume that
C(γ)×X =

⋃
n∈N Mn. In view of Proposition 3.12, it is enough to show that there

exists n0 ∈ N such that Mn0 is not R-ball porous for any R > 0. Since C(γ) ×X
is a closed subset of a Banach space R×X, it is complete. By the Baire Category
Theorem, there exists n0 ∈ N such that Mn0 is not nowhere dense in C(γ) × X.
Hence there exist a set K 6= ∅ open in C(γ), p ∈ X and ε > 0 such that

(17) K ×B(p, ε) ⊂Mn0

C(γ)×X
= Mn0 .

Now we show that for any R > 0, the set Mn0 is not R-ball porous. Fix R > 0. It
is well known that the family {Cs ∩ C(γ) : s ∈ {0, 1}<N} forms a topological base
of C(γ). Hence there exists s ∈ {0, 1}<N such that Cs ∩C(γ) ⊂ K and diamCs < δ,
where δ > 0 is chosen for R and ε as in Lemma 3.10. Since Cs∩C(γ) is infinite, the
set (Cs ∩ C(γ))×B(p, ε) contains some set of the form {t1, t0, t2} ×B(p, ε) which,
according to Lemma 3.10, is not R-ball porous. Hence and by (17), we infer Mn0

is not R-ball porous. �
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[5] L. Zaj́ıček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987/1988),

314–350.
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