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Equivalent forms of m-paracompactness

0. Introduction. In this paper we give new generalizations of the 
notions of a space to be fully normal or even. These generalizations we 
call fully m-normal and m-even where m is an infinite cardinal. It is then 
established that these are equivalent to ш-paracompactness under suitable 
circumstances. The above mentioned definitions are the FhT1(m) and 
E^m) of paragraph 4. It should be noted that these are different from 
similar concepts defined in [3]. The main theorem (7.7) gives 16 con­
ditions each of which is equivalent to m-paracompactness and normality. 
Some of these are known (see [5]); however, since they fit naturally into 
our chain of implications (see Fig. 1) we have included them. Paragraph 8 
gives an additional condition.

In the course of our investigation we introduce a simple formalism 
(3.4-3.7) which makes the connections between star coverings and neigh­
borhoods of the diagonal transparent. It is through this formalism which 
many of our equivalences are established. Although it is not shown here 
the same technique gives an almost immediate proof of the equivalence 
between the covering definition of uniformity found in [6] and the neigh­
borhood of the diagonal definition of uniformity found in [1].

For the convenience of the reader we have made the paper essentially 
self-contained.

1. Preliminaries. Throughout the paper any collection of subsets 
of a set will be assumed to be indexed even when an explicit indexing 
is not in evidence. If A  is any set, \A\ will denote its cardinality. If
=  { A J a e J H }  one has \s/\ <  |F | .  For any set A, A F is defined to be the 
set of all the finite subsets of A. When A  is infinite it is known that \A\ 
=  \AF\. It is clear that an indexing may always be arranged so that 
|F| = \s/\. If sś =  {Аа\аеГ} is a collection of subsets of X  and В  ę  X  
define c(B, Г, s0) — {a\Aa гл В Ф 0). When В  =  {ж} where х еХ  we 
write c(oc,r,jtf) for c(B, Г, stf). If no confusion results с(В ,Г )  will be 
written for c(B 1F,s^). Define St (Л, sć) — U  ЕЕ I аес(Б, Г, <я?)} and 
write St (ж, sś) for St({a?},^).



266 S. L. G u ld en

Let s#, 08 be collections of subsets of X; then define S(s0) 
=  {St (ж, s /)\xeX }, S*(j0 , 08) =  {St (A, & )\Ae sf} and 8*(л/) =  S*{s0, 
s/). s0 is said to refine 08 iff each member of s0 is contained in some member 
of 08. In this case we write s /  << 08. If S(s0) << 08 we write s0 << *08 and 
say that s0 star refines 08. If S'f {s0) <  08 we write stf <  **08 and say that 
sź strongly star refines 08. If A  s  X  and s0 is a collection of subsets of X, 
then s0 is said to cover A  iff A  £  {J s0.

A collection s0 of subsets of a topological space is said to be open 
(closed) if each member of s0 is open (closed). If л / — {Аа\аеГ} we 
define — {Ay| аеГ}. If s0 is a collection of subsets of a topological 
space it is said to be closure preserving iff for any subcollection 08 s
\J 3 T  =  ( U ^ r -

We use the terms regularity and normality in the usual manner 
except t^at no assumption concerning T 0, T x or T % is made. Normality 
will often be abbreviated T4.

The symbol a when used will stand for the word “and”. The term 
neighborhood will always refer to an open set.

2. Coverings and stars. The following easy lemma will be left to the 
reader.

2.1 L em m a . Let s0, 08, *0, 08 be collections of subsets of X  and let 
E, F  с  X . Suppose $0 <  08 and *0 <  3) then tine following hold:

i) St (22, s0) £  St (12, 08),
ii) S{s0) <S{08),

iii) I f  E  £  F, then S t(E, s0) ę  St(F, s/),
iv) S*(V, j*) <  S*{3, 08).
Let X  be a topological space and s0 =  {Aa\ аеГ} be a collection 

of subsets of X. Let tn be an infinite cardinal then s0 is said to be m-local!y 
finite (m-discrete) iff there is an open covering of X  such that \%\ <  m 
and \с(11,Г)\ <  K0 ( \c (U ,r ) |< l )  for each TJe<%. We define local finite­
ness and discreteness in the same manner dropping the restriction that 
\Щ <  tn. It is easily seen that an m-locally finite collection (locally finite 
collection) is closure preserving. A collection s0 — {Aa| аеГ} of subsets 
of X is called point finite iff for each x e X  we have \c(oc, Г )| <  K0.

2.2 T h e o r e m . Let s0 — {Aa| аеГ} be a locally finite (discrete) collection 
of subsets of a space X. Then s0 is m-locally finite (tn-discrete) iff |.T| <  tn.

Proof. Suppose s0 is tn-locally finite (this includes the tn-discrete 
case). By hypothesis there is an open covering ^  of X  such that c(U, Г) 
is finite for for each Va°U and|^|<tn. Since°Uis a covering of X,\J{c{ Л,Г)\ 
JJ € Щ =  Г. If Г  is finite, then certainly \Г\ <  tn. If Г is infinite, then 
1Л <  <  N0m =  tn.
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: Now suppose that л/ is locally finite (discrete) and jẐj <  m. 
By hypothesis there is an open covering =  {tJA| AeA} such that 
\c(TJxi ^)l <  (|c(Ux, j T ) [  <  1) for each AeA. Let a(A) = c(Ux, Г) for
each АеЛ and let Z  =  (cr(A) | AeA} then £  ę  I lF and thus \Z\ <  m. For 
each aeZ  let Va — {J{U X \ a {A) — u} then У  =  {Fa| oeZ} is an open 
covering of X . By the construction we see that if aeZ,  then c(Va, Г) 
= c (U x ,r ) when a — a{A). Thus stf is m-locally finite (m-discrete).

Let jZ =  {AJ аеГ}, 38 — {Bx\ AeA} be collections of subsets of X  
such that 3d <  «я/. For each AeA choose а(А)еГ such that Bx ę  Аа(Я). 
Let аеГ  and define B'a — (J {Bx\ a (A) =  a}. It is clear that B'aę  A a. 
Let 38' — {BaI a e l1} then 3d' is called a 3d associated precise refinement 
of s4. The following lemma then holds.

2.3 Lem m a . With s t f , 38, 38’ as in the previous paragraph
i)

ii) I f  3d satisfies any one of the following properties so does 3d’:
a) open
b) point finite,
c) discrete,
d) locally finite,
e) closure preserving,
f) closed and closure preserving.

2.4 Lem m a . Let =  {Ay| уеГ}, 38 =  {B8\ deA}, <€ =  {Cx\ AeA} be 
collections of subsets of X  such that

i) £ U & ,
ii) \с(Вд, Г)| <  Xa for each deA,
iii) \c(Cx, A)I <  Xp for each AeA.

Then \c(Cx, Г)\ < XaXp for each AeA.
Proof. Since {Jtf <=,\J38, for each AeA we have <7Л ę  U  {^1 

дес(Сх, A)}. Thus уес(Сi ,  Г) implies that уес{Вд, Г) for some dec(Cx, A). 
Hence е(Сх,Г ) <= иМ Д »,Г)1 deC(c *> Л)>• Thus |о(Од, jT)| <  Яа|о(Оя, А)\

3. Relations. A relation on a set X  is a subset В  C l x X  A parti­
cular relation is the diagonal B{X) =  {(#,o?)| xeX}. We define B r l, 
the inverse of B, in the usual manner and call В symmetric iff В  =  B~l. 
If В, S are relations on X  we define

BoŚ = {{x, у) I pfz [{x, z)eВ  A (Z, y) e $]}.

If A  s  X  define

В [A] =  [y\pfx[XeA. A {y,x)eB\}. %
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If A — {x} we write B[x] instead of JS[{a?}]. If X  is a topological space 
a relation U on X  is called a neighborhood of the diagonal iff B (X )  £  W 
and U is open in the product space X  x X. The following lemmas are 
well known.

3.1 Lemma. Let B, 8 be relations on X  then
. i) B o 8 =  U  \xcX},
ii) For any A , B ^ X ,  R [£ ]  r s B A 0 i f f A ^  R r^B ]  Ф 0.
3.2 Lemma. I f  X  is a topological space and U, V are neighborhoods 

of the diagonal, then
i) for any A  с  x, U\A~] is open,

ii) TJ~l and UoV are neighborhoods of the diagonal.
3.3 D e f in it io n . If sś is a collection of subsets of X  we define a sym­

metric relation
K{s/) =  \ J { A x A \A c s /} .

If В  is any relation on X  we define a collection of subsets Л>(В) of X  by

&{R) =  {B[x]\ XeX}.

3.4 Theorem . Let , @1 be collections of subsets of X  and let B, 8 be 
relations on X  then

i) K(srf)\af\ =  St (ж, s4) and K (s/)[B] = St (B, s£) for В  s  X,
ii) Se[K{sś)) =  8 {s/),

iii) s f  <  *3# iff 3?(k(j*)) < 39,
iv) K(&(R)) =  B oB ~ \
v) 8 (&(B)) =  ^ {B o B )~ \

vi) if  B<= 8 , then J§?(В ) <  &{S),
vii) S(S{j*)) =  & [К [&(K{j4)))) = 8*(8{j* ) , j4),

viii) i f  s# <  AS, then K (j/)  £  k(3$).
Proof, i) у eK(s/)[x] <->■ (y , x)eK(stf) «-> (y, x)eA x A  for some A € SĆ 

+->y,xeA for some A  e s? <-> у eSt(a?, л/),

K(J*)[B']=  U  {к{^)[х)\Х еВ }=  U  (St (a?, ^)\XeB} =  S t(£ , J*) .

ii) Follows immediately from i) and the definition of S(jtf).
iii) Follows immediately from ii) and the definition of <  *.
iv) K(&(R)) =  ^ { B lx lx B ix 'W x e X }  =  B o B - 1 by 3.1.
v) By ii) 8 (&{R)) = &[K(&{R))) =  ^{B o B ~ l) by iv).
vi) If В  ę  8 then B [x ] ę  S[x~\ for each xeX .

vii) £(S(.«0) =  S(& (K{sł))) =  X  \Ź  (se(K{sf)))Y By iv) the latter
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is 3?(k(j*)oK {*/)). Let xeX , K {j*)oK {j*)\x] = K{sś) [К 
= K(s/)[St(se, s/)] =  St (St (a?, st), st) by i). Thus & (K (j4)oK {j4))

yiii) For each there is a Be 88 such that A  ę  В  and hence
A x  A  ę  B x B .

The following corollary is well known; however, we include it as 
an application of 3.4 as well as for its use later on.

3.5 Corollary . Bet , 88, <8 be collections of subsets of X . I f  <* 88 
and 88 << *<€, then <** <8.

Proof. By 3.4 iii) S8 [K{s8)) <  88 and 88{K{88)) <  <8. Thus by 3.4 
viii) and vi) Ю ))) <  & (k {88)). Hence by 3.4 vii) S*(S{j*), j4)
<  <8. Since s8 <  S{s8), by 2.1 iv) S*{<s8, s8) <  <8. Thus S*(s8) <  8  and 
hence by definition s8 <**<€.

3.6 Co eo llary . I f  s8, 88 are collections of subsets of X  and stf <* 88, 
then K(s8)oK{s8) s  К {88).

Proof. K {j*)oK {s8) = K[&(K{j*))) = K(S{j*)) by Theorem 3.4
iv) and ii). But S(s8) <  88 hence K{S{s8)) s  K {88). Thus K{s8)oK (sf) 
<= К  {88).

3.7 Corollary . I f  U, V , W are relations on X  where U, V are sym­
metric and Uo U s  V, F o F ę  W, then 88{U) <̂ ** J8 (W).

Proof. Since UoU =  K(S8{V)) and VoV = K(S8{V)) we have 
K(&{V)) ę  V and K(&{V)) Я W. But

&\^[&[К(&{Т})Щ  < & (K (J?(V))) < & (W ).

Thus S*(S(&{U)),&{U)) < 88{W). Hence S*(&(U)) < & {W ) and thus

SP{U) <**88(W).

4. The basic definitions. Let X  be a topological space and m an infinite 
cardinal. We now define a collection of properties. In all the definitions 
of this section is any open covering of X  with \°и\ <  m.

B(m): There is an open covering f  of J  such that \Y\ <  nt and 
"8 <  <81.

In the next three definitions we take j  =  1, 2, 3, Qx to stand for 
the word “open”, Q2 to stand for the word “arbitrary” and Qs to stand 
for the word “closed”. The notation N + is introduced to stand for the 
set of positive integers.

P,-(m): There is a covering Y  <  % of X  such that У  is Q? and Y  
is locally finite.
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<xLP,-(m): There is a covering У  of J  such that У  is Q?- and 
У  — U  { У п\пеЖ+} where each У п is locally finite.

aDPj(m): There is a covering f  of I  such that У  is Q,-, 
У  — U  { У п\и еХ +} where each У п is discrete, and У  <  °U.

FhT1(m): There is an open covering У  of X  with \У\ <  m and У  
<* °U.

M 2(m): There is an open covering У  of X  with \У\ < m  and У  
<**<?/.

FJSr3(m): There is a sequence (У п\ n e X +) of open coverings of X  
such that У г <* ^  and У п+х < *  У n for all u eN +.

FN4(m): There is a sequence (Уп\ n eN +) of open coverings of X  
such that У х and У п+х <** for all n e X +.

A neighborhood XI of the diagonal of X  is called an m-neighborhood 
of the diagonal iff there is an open covering У  of X  such that |#"| <  m 
and U = K  (У).

With X , m, °U as above we define
Ex(m): There is an m-neighborhood U of the diagonal such that

se{fj) < m.
E2(m): There is a sequence ( Un\ n eN +) of symmetric neighborhoods 

of the diagonal such that J?( Ux) <  and TJn+lo Un+x £  Un for each n eN +.
(Жх(т): If л / = {Aa\ аеГ} is an m-discrete collection of subsets 

of X  there is an m-discrete open collection У  — {FJ аеГ} such that 
A a ę  Va for each аеГ.

(Ж2(т): If srf — {Aa\ аеГ} is an m-locally finite collection of subsets 
of X  there is an m-locally finite collection У  =  {Fa| аеГ} of open sets 
such that A a £  Va for each аеГ.

If a space satisfies Pi(m) we call it m-paracompaet. (Kote that no 
separation assumptions are made.) When FhT1(m) is satisfied the space 
is called fully m-normal. (The term “m-fully normal” has already been 
used in [3] for a somewhat different concept.) When Ex(m) is satisfied 
the space is called m-even.

The covering У  which appears in o\LP?(m) (resp. oEP,-(m)) is usually 
called a-locally finite (resp. a-discrete)

We may make all of the above definitions absolute by dropping the 
“m” from their statements. In this case we designate them by B, P1? ... 
.. . ,F N j , ... etc. Px is usually known as paracompactness, (again no 
separation assumptions made) FNX is called full normality.

A space which satisfies В (m) is called m-regular. It should be observed 
that В is not precisely equivalent to regularity. We investigate this in 
somewhat more detail in the next paragraph.
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When a space satisfies СЖ1(ш) we call it m-collectionwise normal. 
А (Жх space is usually called collectionwise normal.

5. R(m). The following is classical:
5.1 L em m a . For any space X , i f  X  is regular then X  satisfies R.
5.2 L emma  (x). I f  X  is a T x space and satisfies R(m) for some m, then 

X is regular.
Proof: Let x e X  and let U be a neighborhood of x. Then <% = {U, X  

~  {a?}} is an open covering of X  such that \°U | <  m. Thus there is an open 
covering У  of X  such that У~ < ,ĆU. There is a Ve У  such that xeV  
hence V~ s  V. ,

5.3 Corollary . I f  X  is a T x space, then X  satisfies If iff  X  is regular.
5.4 Theorem. Let X  be an R(m) space and let Y  be a subspace of X  

such that Т — U  {Ga\ аеГ} where |JT| <  m and Ca is closed in X  for each a. 
Then Y  is an R(tn) space.

Proof. Let j/  =  {AxI АеЛ} be a relative open covering of Y  such 
that \Л\ <  ш. For each A we can find an open set Ux of X  such that A* 
= Y  r\ Ux. Let °U =  {?7Д| АеЛ}. For each a, =  #  w {X ~  Ca} is an 
open covering of X  with \%a\ <  m. Hence we can find an open covering 
У a =  {VxIА еЛа} of X  such that |Ла| <  m and У~ <  %a. We may assume 
Ла о  Ap = 0  for а ф р. Let А'а =  {А| Гале У а, 7 ^  Са Ф 0} and IFa 
=  {7д| АеЛ„}. Clearly Ga <= \J I F a and IF~ <  <%. If IF =  (J {IFa\ аеГ}, 
then Y  £ (J IF, IF <  т and \ИГ\ <  ш2 =  ш. Let 8  =  (7* ^ Y\ Уак 
*!Fa, аеГ] then clearly Y  — \J  8  and Cl у (8 ) <  sf. (Here C1F means 
the closure relative to Y.)

5.5 Corollary . Any F a subset of an R(m) space is R(m).
5.6 L em m a . I f  X  is R(m) and Px(m), then X  is T4.
Proof. Let C be a closed subset of X  and U an open subset such that 

G s  U. Let — { U, X  ~  G} then is an open covering of X  such that 
\%\ <  m. Since X  is R(m) there is an open covering У  of X  such that 
\У\ <  m and У~ <  °U. Since X  is P^m) there is a locally finite open 
covering IF of X  such that IF У . Let I f  =  {W | W  e IF, W~ гл G Ф 0}. 
Clearly G ę  (̂ J I f .  If T7 еУ there is a V e У  such that W ^  V and hence 
G ъ  V~ Ф 0 . But У~ <  % thus 7~ c  jj. Hence (J ę  U. But I f  
is closure preserving, thus \J I f~  =  (U ^ Y - Since { J l f  is open we are 
done.

We recall the following well-known theorem [2].
5.7 Th e o r e m . Let =  { Ua | аеГ} be a point finite open covering 

of a T4 space X. Then there is an open covering У  =  {7а| аеГ} such that 
V~ c  (Ja for each аеГ.

(b This lemma was brought to the author’s attention by W. M. Fleischman.
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From this the following corollary follows immediately.
5.8 Corollary . I f  X  is Px(m) and T4, then X  is B(m).
Hence we may state the following theorem.
5.9 T h e o r e m . I f  X  is P^m), then X  is T 4 iff X  is B(m).
5.10 L em m a . Let X  be a topological space and let % — {Ua\ аеГ}

be an open covering of X . I f  there exist open coverings i r1, "T2 of X  such 
that there is an open covering iV  =  {TFa| аеГ} such
that W~ £  Ua for each a ef.

Proof. Suppose 'f'y =  {Vi\ ЛеЛ}. For each ЛеЛ choose а(Л)еГ 
such that St(TA, ^ 2) £  а̂(Л)- If аеГ  define Wa — (J {Vх\а(Л) =  а}. 
Clearly Wa £ Ua for each a and IL = {Wa\aer}  is an open covering 
of X. If X€ W l  there is a V  in such that x e V \  Hence V  r\ Wa Ф 0 .
Thus Г  s  St(TP«, *%). But St(TF«, Г 2) =  (J(St(F*, Г %)\ а(Л) = a} 
s  Ua. Hence x e Ua and thus W l s  XJa.

5.11 Coro llary . I f  X  is Ж 4(ш), then X  is B(rn) and T4.

6. Some simple relationships. The following theorem is trivial.
6.1 T h e o r e m . For any space X  the following implications hold:
i) Pi(m) -> P 2(m), aLP1(m) -^aLP2(nt), aDPxCm) dDP2(tn),

ii) P3(m) -^ P 2(nt), aLP3(tn) ^  aLP2(m), <xDP3(m) -> <yDP2(m),
iii) P^m) ->■ оЬРДш), j =  1 ,2 ,3 ,
iv) ctDPj- (m) oLP?- (m), j =  1 ,2 ,3 .
6.2 T h e o r e m . In  any space X  the following hold:
i) FH^m) ^ № 2(ш),

ii) M 3(m )^ F N 4(m),
iii) FH3(tn) E2(tn),
iv) FlSTjCm) <-> Ex(m),
v) FBx(m) ^ F N 3(tn),

vi) Ex(m) ^ F 2(m).
Proof, i) F]tf2(m) -> FH1(m) is trivial. To see FN'1(m) -> FN2(m) 

let be an open covering of X  with \6U\ <  nt. By hypothesis there is an 
open convering OF of X  such that W  and \IV\ <m. Again by hypoth­
esis there is an open covering of X  such that F' <* W  and \V\ <  m. 
By 3.5 ir  <**W.

ii) F ¥ 4(m) ->FK3(m) is trivial. To see Flsr3(m) -> FH4(m) let <Ш 
be an open covering of X  with \W\ <  m. By hypothesis there is a sequence 
(W'n] n e N +) of open coverings of X  such that IL1 <* °ll and iT n+1 <  * IFn 
for all Let =  iF2n for n e X +. Then "Гх <* IV'y <* and hence
by 3.5 Y-y <** °ll. Further тГп+1 <* ^ 2n+i <* ^ » ancl hence 
<<** 'F'n f°r all n e X +.
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iii) FH3(m) -> E 2(m): If °U is an open covering of X  with \Ш\ <  m 
we can find a sequence { f n\ n e N +) such that i r1 <* % and 't'n+i <* У n 
for all n eN +. Let Un .= K {i^n). By 3.4 iii)jSf(U'1) <  °li. By 3.6 Un+i° Un+i 
ę  for all n e N +.

E2(m) -^FhT3(nt): Let °U be an open covering of X  such that \°U\ 
< m. Let (Un\ n e N +) be the sequence of symmetric neighborhoods of 
the diagonal provided by E2(m). Let f ' n = £?{V2и+1) for n eN +. By 3.7, 
^n+i <** for all n eN +. Again by 3.7 I f(U 3) <** Sf{ Uf) . Since 
ffiTJ-f) <  t  we see that f l <** Thus E2(m) ^FIST4(m). By ii) FH4(nt) 
->FhT3(m) and hence the result.

iv) FN1(m) -^E 1(m): Let °U be an open covering of X  with \°U\ <  m 
and let "f be the open covering provided by FH1(m). Let U = K ( f )  
then U is an m — neighborhood of the diagonal. By 3.4 iii) f£{TJ)

E4(m) ->FH1(m): Let il  be an open covering of X  with \°U\ <m  
and let U be the m — neighborhood of the diagonal provided by E^m). 
Then U = 1 1 (f)  where f  is some open covering of X  with \ f \  <  m. 
By 3.4 iii) &'( f )  and hence f  < * °ll.

v) FH^m) -> FFT3(nt). This follows immediately by iteration.
vi) Ex(m) -> E2(m). Follows from the above implications.
6.3 Theorem . For any topological space X , i f  X  is R(m), then the 

following hold:
i) P2(m) -> P 3(m),

ii) aLP2(m)-><rLP3(m),
iii) dDP2(nt) -> aDP3(m).
Proof. The arguments establishing all three implications are similar. 

As an example we give the argument for ii). Let °ll be an open covering 
of X  such that \°U\ <  m. By the B(m) property there is an open covering 
f  of X  such that \ f \  <  ш and f ~  •< ÓU. If X  is <xLP2(m) there is a covering 
i f  of X  such that i f  <  f  and we may write i f  =  U  {'i f n\ 7ie X +} where 
i f n is locally finite for each n e X +. <  f ~  and hence i f~  <  °U. Since 
i f f x is locally finite for each n e X + it follows that i f~  is the desired tr-locally 
finite closed covering required for aLP3(m).

6.4 Theorem . In  any topological space X  the following hold.
i) P2(m) л СЖ2(т) -> Pi(m),

ii) crLP2(m) л <Ж2(т) -> crLP1(m),
iii) dDP2(m) л СЖ1(т) -^aDP1(m).
Proof. The proofs of all three are similar and we present only one.

Roczniki PTM — Prace Matematyczne XI.2 18



274 S.  L.  G u l d e n

iii) Let °ti =  {Ua\ аеГ} be an open covering of X  with. \Г\ <  m. 
If X  is aDP2(nt) there is a covering I f  of X  such that I f  << % and I f  
=  \J {W n\ n eN +} where each i f n is discrete. Since I f n <  by 2.3 we 
may replace ! f n by an associated precise refinement if 'n — {Wna\ аеГ} 
which is discrete. Recall that Wna e  Z7afor each aePand (J i f n — (J i f 'n. 
Now I f f  is nt-discrete by 2.2. The CNx(m) property implies that there 
is for each n eN + an open collection Sfn — {$№a| аеГ } which is discrete 
and such that Wna £  Sna for each аеГ. Let Vna — Sna TJa for each 
аеГ; if f n == {Vna\ аеГ}, then r fn is discrete, open, r fn <  °U and U  
ę  U  Thus if r f  — { J { f n\ n e X +j, f  is the desired a-discrete open 
refinement of which covers X.

6.5 Lemma. Lei s f  =  {Aa\ аеГ} be a collection of subsets of X  and 
suppose °ll =  {Ux\ АеЛ} is an open covering of X . I f  Ux, U2 are symmetric 
neighborhoods of the diagonal such that U2oU 2 £  Ux and Hf {Uf) <  and 
i f  i f  — {Wa\ аеГ} where Wa =  'P2[-Ia]) then for each x e X  there is а A{x)eA 
such that

И Р 21>], Г, ЦГ)\ <  \с(иЦх), Г , я/)\.

Proof. Since £P{UX) <  for each x<=X there is a А{х)еЛ such that 
Ux[x\ я  Um  and thus U2oU 2[x] s  UX{xy  Hence

|c(J72o U2[x], Г, s/)\ <  \c{U4x), Г , s/)\.
By 3.1 ii),

U2o U2[x] r\ A a Ф 0  iff U2[x] r> U2[Aa] ф 0
and thus

Ic(U2[x], Г, i f ) \  =  |c(P2o U2[®], Г, sf)\ <  \c( U4x), r , s f )|.
6.6 Theorem . I f  X  is E2(m), then X  is both СЖ1(ш) and CN2(m).
Proof. Let л /  =  {J.a| аеГ} be a collection of subsets which is

ш-discrete (resp. m-locally finite). By 2.2, \Г\ <  m. Prom the definition 
of ш-discreteness (resp. m-local finiteness) there is an open covering 
<W =  {Ux\ АеЛ} such that \c(Ux, Г, л/)\ <  1 (resp. c(Ux, Г,л /)  is finite), 
for each АеЛ and moreover, \A\ <  m. Since X  is E2(m), we can find sym­
metric neighborhoods XJx, U2 of the diagonal such that U2o U2 s  Ux 
and S£{Ux) <  Hence by 6.5 for each x e X  there is a А{х)еЛ such that 
Iе( U2[x], Г, i f) \  <  \c(UX{x), Г, ssf)\ (here I f  is defined as in 6.5). Thus 
\c{TJ2[x], Г, i f )  I <  1 (resp. c(U2[x], Г, I f )  is finite) for each xeX . Since 
|P| <  m, by 2.2 I f  is m-discrete (resp. m-locally finite). Since A a s  Wa 
and Wa is open for each а е Г , Х  is CN^nt) (resp. CN2(nt)).

6.7 Theorem . I f  X  is oLP^m), then X  is P2(m). (Compare [1]).
Proof. Let ^  be an open covering of X  such that \<Ш\ <  m. By hypo­

thesis there is an open covering i f  of X  such that I f  and I f  
— U  {tTJ n eN +} where i f n is locally finite for each n eN +. Now, for each
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let Yn = U { U 7̂ l  If =  {Ж„а| exe/h}, define
for each аеГп, Vna = Wna ~  Y n_l if n >  1 and Vla =  W la. Let Ж 
= {Vna\ n eN +, аеГ} where Г  =  (J {Гп\ n eN +). It is clear that Ж <  <%. 
Now let xeX , since IV is a covering of X  there is an n such that x e Y n. 
For each j , 1 <  j <  n, there is a neighborhood Kj of x such that 
c № ,r , ,  IVj) is finite. Let K(x) =  К г r\ ... K n гл Yn, then K (x ) is 
a neighborhood of x. Since Y n гл Vpa =  0  for p > n we see that

\с(К (х),Г , Ж)\ <  \е(К1,Г 1,Ж'1)\+ ...+  \с(Кп,Г п,Ж'п)\.
Thus Ж is locally finite.

We end this section with an easy lemma which we leave to the reader
6.8 L em m a . I f  X  is P3(m), then X  is T4.

7. The main theorems.
7.1 Th e o r e m . I f  X  is P3(m), then X  is P^m).
Proof. Let — {Ua\ аеГ} be an open covering of X  with \Г\ <  m. 

By the P3(m) property, 6.8 and 2.3 there is a locally finite closed covering 
Ж =  {Ka\ аеГ} of X  snch that K a ę  Ua for each аеГ. Thus there is an 
open covering IV — {Wл| AeA} of X  snch that c(WA,T , XT) is finite for 
each AeA. Let 27 — {с(1Рл, Г , Ж )| АеЛ} then Z  £ r F and thus \Z\ <  \rF\
< m. For each ere27 let W'a =  U  (WaI c(Wa, Г, Ж) =  er} then IV’ 
=  {W'a\ ere 27} is an open covering of X . Further we see that c(W ', Г, Ж) 
— a for each ere27. Since |27| <  m, by the P3(nt) property and 2.3 there 
is a locally finite closed covering — {Ga\ ore27} snch that Ga £  W'a 
for each ere27. For each ae/' let К ' =  X  ~  U  {Ga\ ere27 ~  e(Ka, 27, &)}. 
Since ^ is closure preserving and covers X , K'a is open and K a ę  K'a for 
each аеГ. Now observe that for each ere27 and аеГ, Ca гл Ка = 0  iff 
Ce ^ K 'a =  0. For, if Ga ^ K a = 0 ,o e Z  ~  c{Ka, 27, <€) and hence Ca ^ K'a 
=  0. Thus if Ж‘ =  {K 'aI аеГ}, for each ere27, c(Ga, Г, Ж') = c(Ga, Г, Ж) 
£ c(W'a, Г, Ж) =  er. Hence е(С0,Г ,Ж ’) is finite for each ere27. Now 
for each аеГ let Va — K ’a n  Ua and V  — {Va\ аеГ}. Then Ж is an open 
covering of X  and Ж <  For each ere27 we see that c(Ga, Г, Ж) 
£ c(Ga, Г, Ж’) and thus c(Ga, Г, Ж) is finite. Thus we have |c(Ga, Г, Ж)|
<  K0 for each ere27. Since is locally finite there is an open covering 
Sf =  {Sd\ деЛ} such that \c(Só, Z , &)\ <  for each deA. By 2.4 
!c($,5, Г, Ж) I <  K0 for each <5ed; hence Ж is locally finite.

7.2 Th e o r e m . In  any topological space X  the following are equivalent:
i) Px(m) л B(m),

ii) P2(m) a B(m),
iii) P3(m),
iv) erLPx(m) л B(m).
Proof, i) -^ii) by 6.1. ii) —> iii) by 6.3. iii) -> i) by 7.1, 6.8 and 5.9. 

i) -»iv) by 6.1. iv) ->ii) by 6.7.
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7.3 T h e o r e m . Let °U =  {UJ аеГ} be an open covering of a space 
X  with |Г| <  m and suppose Ж = {EJ аеГ} to be a point finite, closure 
preserving, closed covering such tJiat K a я. Ua for each аеГ. Then there is 
an open covering Ж ~  {VJ'AeA} such that \A\ U- nt and Ж <<

Proof. Let xeX , since Ж  is point finite c{x, Г , Ж) is finite for each 
xeX . Let A =  {c{x, Г, Ж ) \xeX}. Since A e Tf , \A\ <  m. For each 
AeA let

Vx = CHUJ aeA} r ,(X  ~ U { K J  a 4X}).
Observe that if A = c(x, Г , Ж), xe V x. Since Ж  is closure preserving, 
Vx is open and thus Ж =  {V J At A} is an open covering of X. Let y eX  
and suppose y eV x-, then c(y, Г , Ж) ę  A. For, if K a VA Ф 0, then aeA. 
Thus if (}ес{у,Г, Ж)  and y eV x it follows that j3eA and hence Vx £ Up. 
Thus St(y, Ж) =  (J{^il £ Up for each (Зес{у, Г, Ж). This shows
that Ж <*<?/.

7.4 Corollary . Let °U be an open covering of X  with \<Ш \ <  nt and let 
Ж be a locally finite closed covering of X  such that Ж <  °U. Then there is 
an open covering Ж of X  such that Ж <* °U and \Ж\ < m.

Proof. Let =  {UJ аеГ}  with \Г\ <  m. By 2.2, applied to Ж, 
there is a locally finite closed covering Ж = {CJ аеГ} such that Ca ^ Ua 
for each аеГ. Our conclusion now follows from 7.2.

7.5 Corollary . I f  X  is P3(tn), then X  is Fht3(m).
The proof of the following theorem is given essentially in [1] so we 

shall only outline it here.
7.0 Th e o r e m . I f  X  is E2(m), then X  is <xDP2(m).
Proof. Let °ll be an open covering of X  such that \°ll \ <  nt. By the 

E2(m) property there is a sequence (Un\ n eN +) of symmetric neighbor­
hoods of the diagonal such that ^{U J) and Un+1 o Un+1 ę  Un ior 
each n e N +. Define neighborhoods of the diagonal Wn, n eN +, as follows: 
TFi =  U2, Wn+1 =  Un+2о Wn for n J* 1. Xt is easily seen that ^ 
and hence £P(Wn) <  °U for each w e l+. ISTow let <  be a well ordering 
of the points of X. For each n eN + and x eX  let ТР*(ж) = W^O]
~ U  {Wn+iW\ У < sc). If 1Жп = {Wt{x)l XeX}  and 1Ж =  U  {WJ n e N +} 
it is clear that 1Ж <  °U. To see that 1Ж is a covering of X  and that 1Жп 
is discrete for each n eN + use the argument in [1; 33 chap. v].

7.7 Th e o r e m . I f  X  is a topological space, then the following are equi­
valent on X :

(1) P^m) л B(m), (2) P 2(m) л B(m), (3) P3(m), (4) aLP^m) a  B(m),
(5) FK^tn), (6) FH-a(m), (7) FK3(m), (8) FK4(m), (9) E^m), (10) Ea(m), 
(11) crLP2(m) л СЖ2(ш) л B(m), (12) (tLP3 (ш) л Chi2(m) л В (m),
(13) ffbPjfm) л B(m), (14) ffDP2(m) л CUT̂ m) л B(m), (15) crDP2(m) л
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л (Ж2(т) л B(m), (16) aDP3(m) a  GN^m) a B(m), (17) ®DP8(m) a

л  < Ж 2( т )  a B ( m ) .
The proof is easily seen from the diagram of implications given in 

Fig. 1.

8. Miscellaneous results. In this paragraph we add results and remarks 
amplifying some of the earlier parts of the paper.

The general nature of the B(m) property is not clear to the author. 
However, in case m =  K0, we have the following theorem.

8.1 T h e o r e m . I f  X  is a T 4 space, then the following are equivalent:
i) R(^0),

ii) Рг(Ко)-
Proof ii) -> i) follows immediately from 5.9.
i) ->ii) Let °U — {Un\ n*N +} be an open covering-of X. By the 

В  (Ко) property we can find an open covering — {FJ n eN +) such that
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тС << °U. For each n e N + choose т(п)еЖ+ such that e  XJm{n) and 
let Wn = Um{nу  Then i f  =  {Wn\ neN +} is an open covering of X  snch 
that Vń £  Wn for each n eN +. By Theorem 3 of [4] there is a locally 
finite open covering SP of X  such that Sf <  i f .  Since i f  <  it follows 
that SP and hence X  is РгСКо)- (Note that the Tx hypothesis in Theo­
rem 3 of [4] is superfluous.)

Observe, that it follows immediately from the definitions, that all 
the properties defined in paragraph 4, except B(m), FNx(m) and E1(m) 
are hereditary in the following sense: if n is an infinite cardinal such that 
n <  m and the property holds for m then it holds for n. In fact, however, 
it follows from 7.7 that FN1(m) and Ег(ш) are hereditary in the above 
sense. This implies for example that a space is fully normal iff it is FH1(m) 
for all m. The point here is that in a fully normal space the star refining 
covering can always be taken so that its cardinality is not greater than 
the covering which it refines. It is clear that B(m) is hereditary if X  is 
Pi(m). We do not know if B(m) is hereditary in general.

We make one final observation. One may also define a property 
P4(m) for spaces as follows:

p4(m): For any open covering <% of X  with < tit there is a closed, 
point finite, closure preserving covering f  of X  such that f  <  °tt.

8.2 Theorem. In  a space X , P4(m) is equivalent to P3(m).
Proof. It is clear that P3(tn) implies P4(m). Now suppose that P4(m) 

holds. Let =  { J7a| аеГ} be an open covering of X  with \Г\ <  in. By 
hypothesis there is a closed, point finite, closure preserving covering ' f  
of X  with f  <  ii. By 2.3 there is a closed, point finite, closure preserving 
covering c f  =  {Ka\ a e f)  such that K a ę  Ua for each аеГ. By 7.3 there 
is an open covering i f  of X  with \if\ <  in and i f  <*<%. Thus P4(m) 
implies FN^m). By 7.7 FN1(m) is equivalent to P3(m). Thus P4(nt) is 
equivalent to P3(m).
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