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Equivalent forms of m-paracompactness

0. Introduction. In this paper we give new generalizations of the
notions of a space to be fully normal or even. These generalizations we
call fully m-normal and m-even where m is an infinite cardinal. It is then
established that these are equivalent to m-paracompactness under suitable
circumstances. The above mentioned definitions are the FN,(m) and
E;(m) of paragraph 4. It should be noted that these are different from
similar coneepts defined in [3]. The main theorem (7.7) gives 16 con-
ditions each of which is equivalent to m-paracompactness and normality.
Some of these are known (see [b]); however, since they fit naturally into
our chain of implications (see Fig. 1) we have included them. Paragraph 8
gives an additional condition.

In the course of our investigation we introduce a simple formalism
(3.4-3.7) which makes the connections between star eoverings and neigh-
borhoods of the diagonal transparent. It is through this formalism which
many of our equivalences are established. Although it is not shown here
the same technique gives an almost immediate proof of the equivalence
between the covering definition of uniformity found in [6] and the neigh-
borhood of the diagonal definition of uniformity found in [1].

For the convenience of the reader we have made the paper essentially
self-contained.

1. Preliminaries. Throughout the paper any collection of subsets
of a set will be assumed to be indexed even when an explicit indexing
is not in evidence. If A is any set, |4| will denote its cardinality. If =/
= {d,]ael'} one has |&/| < |I'l. For any set 4, A% is defined to be the
set of all the finite subsets of A. When A is infinite it is known that |A]
= |A¥|. Tt is clear that an indexing may always be arranged so that
i = |&). If o = {A,lael’} is a collection of subsets of X and B < X
define ¢(B,I', &) = {a|Aa ~ B #* @}, When B = {#} where z¢X we
write ¢{x, ", &) for ¢(B, I, «). If no confusion results ¢(B, I") will be
written for ¢(B, I', «/). Define St(B, &) = [ {4.laece(B, I, &)} and
write St(x, o) for St({z}, «).
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Let 7, % be collections of subsets of X; then define S(&)
= {St(z, ) |zeX}, S* (L, H) = {St(4, B)|Ade A} and 8" () = 8" (A,
). o is said to refine & iff each member of o7 is contained in sorne member
of 4. In this case we write &7 < %. If S(«) < & we write o« < *# and
say that o7 star refines 4. If 8*() < # we write o < **# and say that
7 strongly star refines . If A= X and &/ is a collection of subsets of X,
then .o/ is said to cover 4 iff A = (J «.

A collection & of subsets of a topological space is said to be open
(closed) if each member of &/ is open (closed). If &« = {4, lael’} we
define &/~ = {A;| ael'}. If &/ is a collection of subsets of a topological
space it is said to be closure preserving iff for any subcollection # = «,
Uz =(Ua) .

We use the terms regularity and normality in the usual manner
except that no assaumption concerning Ty, 1’y or T, is made. Normality
will often be abbreviated 7,.

The symbol A when used will stand for the word “and”. The term
neighborhood will always refer to an open set.

2. Coverings and stars. The following easy lemma will be left to the
reader.

2.1 LEMMA. Let &, B,%, 2D be collections of subsets of X and let
B, F c X. Suppose of < B and € < 2 then the following hold:

i) St(E, o) < St(B, %),

i) 8(«#) < 8(%),

iil) If B < F, then St(H, o) < St(F, o),

iv) 8*(%, #) < 8" (9, B).

Let X be a topological space and & = {4,| a<l'} be a collection
of subsets of X. Let m be an infinite cardinal then .7 is said to be m-locally
finite (m-discrete) iff there is an open covering # of X such that %] <m
and le(U, I < & (le(U, I <1) for each Ue#. We define local finite-
ness and discreteness in the same manner dropping the restriction that
| < m. It is eagily seen that an m-locally finite collection (locally finite
collection) is closure preserving. A collection <7 = {4, acl} of subsets
of X is called point finite iff for each xe X we have [¢(x, I')] << 8,.

2.2 THEOREM. Let &f = {A,] ael'} be a locally finite (discrete) collection
of subsets of a space X. Then o is m-locally finite (m-discrete) iff |I'| < m.

Proof. —: Suppose 7 is m-locally finite (this includes the m-discrete
case). By hypothesis there is an open covering # of X such that e¢(U, I")
is finite for for each U «% and |%| < wm. Since % is a covering of X,| j{c(U, )|
Ue#} =1T. 1f I' is finite, then certainly |I'l < m. If I'is infinite, then
I} < Rpl%] < Rgm = m.



Hquivalent forms of m-paracompaciness 267

<« : Now suppose that & is locally finite (discrete) and (I'j<<m
By hypothesis there is an open covering % = {U;| 1eA} such that
le(Uz, I < Ry (le(TU;, 1] < 1) for each Aed. Tet o(d) = ¢(U,, I} for
each Aled and let X = {o(4)] Ae/l} then X < I'" and thus |X| < m. For
each oeX let V, = {J{U,| (i) = ¢} then ¥ = {V,| 0} is an open
covering of X. By the eonstruction we see that if oe2, then ¢(V,, I
= ¢(U,, I') when o = o(4). Thus 7 is m-locally finite (m-discrete).

Let o7 = {A,] ael}, & = {B,| AeA} be collections of subsets of X
such that # < «/. For each leA choose a(d)el’ such that B, = Ayy.
Let ael” and define B, = | {B;| a(1) = a}. It is clear that B,< A,.
Let #' = {B,| ael} then %' is called a & associated precise refinement
of /. The following lemma then holds.

2.3 LEMMA. With o, B, £ as in the previous paragraph

1) U # = U %',

il) If # satisfies any one of the following properiies so does #':

a) open '
b) point finite,

¢) discrete,

d) locally finite,

e) closure preserving,

f) closed and closure preserving.

2.4 LEMMA. Let of = {A,| yel'}, # = {B;| decA}, € = {C;] AeA} be
_ collections of subsets of X such that

)y U% = U 3%,

i) {e(B,, I')| << N, for each deA,

iii) |e(Cy, 4)] << 8g for each LeA.
Then |e(Cy, I')] < R,8g for each AeAl.

Proof. Since (J% < (U #, for each Aed we have C; = | J{Byl
6ec (Ca, 4)3. Thus yec(C,, I') implies that yee(B;, I') for some dec(Cy, 4).
Hence ¢(C;, I') = U {e(Bs, I')] dec(Cy, A)}. Thus [e(Cy, I')| < Ryle(Cy, )]
< NalNjg.

3. Relations. A relation on a set X is a subbet R CXxX. Apaati-
cular relation is the diagonal D X) = {(z,x)] veX}. We define R !
the inverse of R in the usual manner and call R symmetric iff R = R_
If R, S are relations on X we define

RoS = {(=,9)| Hallz, )R A (2, )BT},
If A ¢ X define’

BlA] = {yfolwecd A (y,2)<Rl}.
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If A = {w} we write R[m] instead of R[{m}] If X is a topologlcal space
a relation U on X is called a neighborhood of the diagonal iff D(X) =
and U is open in the produet space X X X. The following lemmas are
well known.

3.1 LumwmA. Let R S be relations on X then

1) RoS = U {R[z]x 8" '[@]|we X},

i) For any A, B < X, R[A]mB#@ 'LffAmR '[B] # 4.

3.2 LeMMA. If X 48 a topological space and U V are netghborhoods
of the diagonal, then .

i) for any A < X, iT[A] is open,

ii) U~ and UoV are neighborhoods of the diagonal.

3.3 DErFINITION. Tf o is a collection of subsets of X we define a sym-
metric relation

K(o) = J{AXA|Ade).
1t R is any relation on X we define a collection of subsets & (R) of X by
ZL(R) = {R[x]] zeX}.

3.4 THEOREM. Lel o/, B be collections of subsets of X and let ]é, S be
relations on X then
i) K ()[x] = St{w, &) and K()[B] = St(B, ) for B < X,
i) Z(K (o)) = 8(s),
i) o < *B iff J(K o)) <
1V) (Q(R)) RoR™.
S(2( ) = RoR)“
v1) if Re 8, then Z(R) < < 2(8),
vil) 8(8(«)) = 2K (L(K( ))) S*(8 (), ),
viii) if o < B, then K () < K(%).
Proof. i) yeK ()] (y ,x) e K (Z) <> (y, 3)ed x A for some A e o7
— 1y, xed for some A4 e o yeSt(x, o),

K()[B)= U {K(a) @]z B} = U {St(z, &)z B} = St (B, «).
ii) Follows immediately from i) and the definition of S(«).
iii) Fol‘]ows immediately from ii) and the definition of <™.
*( R)) = U {R[e)x R[]|l@eX} = RoR™ by 3.1.
) S(2(R)) = g(K(z(R))) Z(RoR™Y) by iv).
vi R < 8 then R [#] = é[w] for each xeX.
vii) A ( () = S(2(K () = & (K (2(K())). By iv) the latter

V)

-
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is Z(K(S)oK (). Let weX, K(oAoK(H)[o]= K()|[K ()]
= K(ot )[St(a; )] = 8t(St(z, #), #) by i). Thus (K(,;zf)oK( )
— S*(S (), ).

viii) For each Ae./ there is a Be¢# such that 4 < B and hence
A XA < BXB.

The following corollary is well known; however, we include it as
an application of 3.4 as well as for its use later on.

3.5 COROLLARY. Let o, #, € be collections of subsets of X. If of <* R
and B < *€, then o <™ €.

Proof. By 3.4 iil) #(K(#)) < # and #(K (%)) < ¢. Thus by 3.4
viil) and vi) £ (K (£(K ()))) < £(K(#)). Hence by 3.4 vii) 8*((«), o)
< €. Since & < 8(), by 2.1 iv) 8*(«/, o) < €. Thus 8% (/) < € and
hence by definition o7 <** €.

3.6 COROLLARY. If &/, B are collections of subsets of X and o <* B,

then K ()oK () < K ().

Proof. K(d)o]i(.ﬂ) A(Z )) K(S(Jzi)) by Theorem 3.4
iv) and ii). But 8(#) < & hence K(S ) < K(@). Thus K(/)oK ()
< K(ga)

7 COROLLARY. If U V W are relations on X where U V are sym-
metric and UoUc V,VoVe W, then 2(U) <™ 2(W).

Proof. Since UoU—K{ ) and VoV:K( (f/)) we have
K(£(U)) =V and K(£(V)) € W. But

~

z(K(z(,K(z(lf))j)) < Z(K(z(V)) < &(W).
Thus 8*(S(£(0), £(U)) < £(W). Hence §*(£(U)) < 2(W) and thus
L(U) <™ 2 (W).

4. The basic definitions. Let X be a topological space and m an infinite
cardinal. We now define a collection of properties. In all the definitions
of this section % is any open covering of X with |#| < m.

R(m): There is an open covering ¥ of X such that |¥’| <<m and
VT < U,

In the next three definitions we take j = 1,2,3,¢, to stand for
the word “open”, @, to stand for the word “arbitrary” and @, to stand
for the word “closed’’. The notation N1 is introduced to stand for the’
set of positive integers.

P;(m): There is a covering ¥ < % of X such that ¥ is Q; and ¥
is loca]ly finite.
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oLP;(m): There is a covering ¥ < % of X such that ¥ is Q; and
¥V = J{#n|neN*t} where each ¥7, is locally finite.

cDP;(m): There is a covering 7~ of X such that ¥ is Q;,
¥V = J{¥n|neN*t} where each ¥, is discrete, and ¥ < %.

FN,(m): There is an open covering ¥ of X with |7 <wm and ¥
<*.

FN,(m): There is an open covering 7" of X with |7 <m and ¥
<** 0]/

FN,(m): There is a sequence (¥7,] n<N™) of open coverings of X
such that ¥y <*% and ¥, , <® 7, for all neN™,

FN,(m): There is a sequence (¥, neN*t) of open coverings of X
such that ¥, <™ % and ¥, <™ ¥, for all neN*.

A mneighborhood U of the diagonal of X is called an m-neighborhood
of the dmgonal iff there is an open covering ¥ of X such that |#7] <m
and U = K(W )

With X, m,% as above we define

E,(m): There is an m-neighborhood U of the diagonal sueh that
2 I}) <.

E,(m): There is a sequence (U,,) neNt) of symmetrlc neighborhoods
of the diagonal such that £ ( Ul) <% and U, 410 U,,Jr1 < U, foreach neN™.

CN,(m): If & = {4, ael’} is an m-discrete collection of subsets
of X there is an m-discrete open collection ¥" = {V,| ael'} such that
A, c V, for each ael

CN,y(m): If o7 = {A,| ael'} is an m-locally finite collection of subsets
of X there is an wm-locally finite collection ¥" = {V, | ael'} of open sets
such that 4, = V, for each ael.

If a space satisfies P,(m) we call it m-paracompact. (Note that no
separation assumptions are made.) When FN,(m) is satisfied the space
is called fully m-normal. (The term “m-fully normal” has already been
used in [3] for a somewhat different concept.) When E,(m) is satisfied
the space is called m-even.

The covering ¥~ which appears in oLP;(m) (resp. oDP;(m)) is usually
called o-locally finite (resp. o-discrete)

We may make all of the above definitions absolute by dropping the
“m” from their statements. In this case we designate them by R, Py, ..

., FN,, ... ete. P, is usually known as paracompactness, (again no
geparation assumptions made) FN, is called full normality.

A space which satisfies R (m) is called m-regular. It should be observed
that R is not precisely equivalent to regularity. We investigate this in
gsomewhat more detail in the next paragraph.



Equwivalent forms of m-paracompactness 271

When a space satisfies CN,(m) we call it m-collectionwise normal.
A CN, space is usually called collectionwise normal.

5. R(m). The following is classical:

5.1 LEMMA. For any space X, if X is regular then X satisfies R.

5.2 LEMMA (1). If X is a T, space and satisfies R(m) for some m, then
X 18 regular.

Proof: Let ze X and let U be a neighborhood of z. Then # = {U, X
~ {#}} is an open covering of X such that |%| < m. Thus there is an open
covering ¥~ of X such that ¥~ < %. There is a Ve ¥ such that eV
hence V~ < U.

5.3 COROLLARY. If X is a T, space, then X satisfies R iff X is regular.

5.4 THEOREM. Let X be an R(m) space and let ¥ be a subspace of X
such that ¥ = | J {Co| ael'} where |I'| < m and C, is closed in X for each a.
Then Y is an R(m) space.

Proof. Let o = {A;] AeA} be a relative open covering of ¥ such
that |A| << m. For each 1 we can find an open set U, of X such that 4,
=Y~ U;. Let % = {U;| AeA}. For each a, %y=% v {X ~(,} is an
open covering of X with |[#,] < m. Hence we can find an open covering
Yo = {V3lIA eA,} of X such that |4, < mand ¥, < %,. We may assume
Ay~ Ay =0 for a #=p. Let Ay ={A| Vie ¥y Vin O, ~ O} and #,
= {V§] 2eAy}. Clearly C, = U #, and #; <. It W = J{# | ael},
then YcU#,# <% and #|<m®=m Let &= {Vi~ Y|V}
€W ., ael’} then clearly ¥ = (JZ and Cly(%) < &. (Here Cly means
the closure relative to Y.)

5.5 COROLLARY. Any F, subset of an R(m) space is R(m).

5.6 LEMMA. If X is R(m) and P,(m), then X is T,.

Proof. Let C be a closed subset of X and U an open subset such that
CcU. Let # ={U, X ~ C} then % is an open covering of X such that
| < m. Since X is R(m) there is an open covering ¥" of X such that
[¥] <m and ¥~ <%. Since X is P,(m) there is a locally finite open
covering #" of X such that #" < ¥". Let & = {W| Wew", W~ ~ C # O}
Clearly ¢ = (U&. If We¥ there is a Ve ¥ such that W = V and hence
CAnV™ #0@. But ¥~ <% thus V- < U. Hence {J¥ < U. But &
is closure preserving, thus | J.¥~ = (J&)~. Since & is open we are
done.

We recall the following well-known theorem [2].

5.7 THEOREM. Let % = {U,| ael'} be a point finite open covering
of a T, space X. Then there is an open covering ¥ = {V,| ael’} such that
Ve < U, for each acl.

(') This lemma was brought to the author’s attention by W. M. Fleischman.
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From this the following corollary follows immediately.

5.8 CorROLLARY. If X is P,(m) and T,, then X is R(m),

Hence we may state the following theorem.

5.9 THEOREM. If X is P,(m), then X is T, iff X is R(m).

5.10 LEMMA. Let X be a topological space and let % = {U. ael}
be an open covering of X. If there exist open coverings ¥y, ¥, of X such
that S*(¥"y, ¥"5) < U, there is an open covering # = {W,| ael'} such
that W, < U, for each ael

Proof. Suppose ¥, = {V;] 1eA}. For each Aied choose a(i)el’
such that St(V;, ¥,) € Uy If ael’ define W, = {J{V;ila(i) = a}.
Clearly W, = U, for each a and # = {W,|ael} is an open covering
of X. If ¢« W there is a V' in %7, such that 2¢V’. Hence V' ~ W, # @.
Thus V' < St(W,, ¥%). But St(W,, ¥, = U {St(V,, ¥ )| a(ld) = a}
< U,. Hence ze¢ U, and thus W7 < U,.

5.11 CoROLLARY. If X ¢ FN,(m), then X is R(m) and T,.

6. Some simple relationships; The following theorem is trivial.

6.1 THEOREM. For any space X the following implications hold:
i) P,(m) - P,(m), cLP,{(m) - sLP,(m), sDP,(m) — cDP,(m),

ii) Py(m) — P,(m), cLP,(m) — cLP, (), cDP;(m) - ¢cDP,(m),

iif) P;(m) - oLP;(m), j = 1,2, 3,

iv) 6DP;(m) — oLP;(m), j =1,2, 3.

6.2 THEOREM. In any space X the following hold:

i) FN,;(m) & FN,(m),

ii) FN;(m) & FNy(m),

iii) FNg(m) < E,(m),

iv) FN;(m) & B,(m),

v) FN;(m) — FN;3(m),

vi) E;(m) - E,(m).

Proof. i) FN,(m) - FN,(m) is trivial. To see FN,(m)—» FN,(m)
let % be an open covering of X with {#| < m. By hypothesis there is an
open convering # of X such that # <*# and |#| <m. Again by hypoth-
esis there is an open covering ¥ of X such that ¥ <*# and |¥7| < m.
By 3.5 v <" %.

ii) FN,(m) — FN,(m) is trivial. To see FNz(m) — FN,(m) let %
be an open covering of X with |%| < m. By hypothesis there is a sequence
(#'n] neNT) of open coverings of X such that ¥, <* % and # < * # 0
for all neN*t. Let ¥, = #,, for ne N*. Then ¥, <™ %, <* % and hence
by 3.5 ¥, <™. Further ¥, ., <*# . <* ¥, and hence ¥, ,
<** ¥, for all neN™.
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iii) FN;(m) - E,(m): If # is an open covering of X with || <m
we can find a sequence (¥",] neN™') such that ¥, <*% and v, <* ¥,
for all ne N*. Let U, .= K (77,). By 3.4 iil) 2 (U,) < %. By 3.6 Upp10 Up,,
c U, for all neN".

E,(m) - FN, (m): Let % be an open covering of X such that {#|
< m. Let (ZAL,,] neNT) be the sequence of symmetric neighborhoods of
the diagonal provided by E,(m). Let Vn:,?('i@mH) for neN*. By 3.7,
Ve <™ ¥ for all neN*t. Again by 3.7 2(U,) <** 2(U,). Since
L(U,) <% we see that ¥, <™ %. Thus E,(m) — FN, (m). By ii) FN,(m)
— N, (m) and hence the result.

iv) FN,{(m) — E,(m): Let % be an open covering of X with |#| <m
and let #” be the open covering provided by FN, (m). Let U =K (")
then U is an m — neighborhood of the diagonal. By 3.4 iii) Q(T}) < Y.

E,(m) - FN,(m): Let # be an open covering of X with || <m
and let U be the m — neighborhood of the diagonal provided by E,(m).
Then U = K(¥") where ¥  is some open covering of X with |77 < m.
By 3.4 iii) S(¥") <% and hence v <*%.

v) FN,(m) — FN,(m). This follows immediately by iteration.

vi) E;(m) > E,(m). Follows from the above implications.

6.3 THEOREM. For any topological space X, if X 4s R(m), then the
following hold:

i) Py(m) — Py(m),

ii) 6LiP,(m) — cLP,(m),

iii) 6DP,(m) — sDP;(m).

Proof. The argnments establishing all three implications are similar.
As an example we give the argument for ii). Let # be an open covering
of X such that |#] < m. By the R (m) property there is an open covering
7" of X such that |7’ < mand ¥~ < %. If X is cL.P,(m) there is a covering
# of X such that ¥~ < 7" and we may write #" = (J {#7,| ne N} where
W, is locally finite for each ne N7. #~ < ¥~ and hence #~ < %. Since
# 5 18 locally finite for each ne N7 it follows that # 7~ is the desired o-locally
finite closed covering required for sLP,(m).

6.4 THEOREM. In any topological space X the following hold.

1) Py(m) A ON,(m) — P, (m),

ii) oLP,(m) A CN,(m) — cLP,(m),

iii) sDP,y(m) A CN,(m} — cDP,(m).

Proof. The proofs of all three are similar and we present only one.
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iii) Let # = {U,| aeI’} be an open covering of X with |[] <m
If X is ocDP,(m) there is a covering #” of X such that #" <% and #~
= J{# nl neNT} where each #, is discrete. Since #°, < %, by 2.3 we
may replace # , by an associated precise refinement ¥, = {Wy,| ael}
which is discrete. Recall that W,, < U, for each ael'and | J #", = U # »-
Now #7, is m-discrete by 2.2. The CN,(m) property implies that there
is for each neN' an open collection &, = {Sn,| aeI'} which is discrete
and such that W,, = 8,, for each ael. Let V,, = Sp, ~ U, for each
ael'y if ¥ = {Vya| ael}, then ¥, is discrete, open, ¥, <% and {J %,
c (J #n Thus if v = U {7 neNT}, ¥ is the desired o-discrete open
refinement of # which covers X.

6.5 LEMMA. Lei o = {4,| ael'} be a collection of subsets of X and
suppose U = {U;| Aed} is an open covermg of X. If Ul, U2 are symmetric
neighborhoods of the diagonal such that U2 o U2 < U1 and & (Ul) < U and
if W = {W,| ael'} where W, = Ts[ 4,1, then for each meX there is a A(x)eA
such that

ie(Us[21, I, #)| < 16(Usy, I, ).

Proof. Since .Sf(Ul) < < U, for each ze X there is a A(x)eA such that

U1 [#] € Uye and thus Uzo Uz[a:] Ujxy- Hence
(U0 Usl@], T, #)| < 16(Usgays I'y ).
By 3.1 ii),
UsoUslw] ~ Ay #£ @ itf U,lw] ~ U,[4,] # 0
and thus
lo(Ualad, 1 %) = 16(Ug0 Ualwl, I'y )| < lo(Usgay, Iy )]

6.6 THEOREM. If X is E,(m), then X is both CN;(m) and CN,(m).

Proof. Let & = {4,] a<l’} be a collection of subsets which is
m-discrete (resp. m-locally finite). By 2.2, |I'| < m. From the definition
of m-discreteness (resp. m-local finiteness) there is an open covering

= {U,] Aed} such that |c(U,, I', )| <1 (resp. ¢(U,, I', ) is finite),

for each led and moreover, |4] < m. Since X is E,(m), we can fmd sym-
metric nelghborhoods Ul, U2 of the diagonal such that Uzo U2 = U1
and .,?(Ul) < %. Hence by 6.5 for each x<X there is a A(x)ed such that
]c(ﬁz[m],]“, W) < le(Ungy, I'y )| (here # is defined as in 6.5). Thus
]c(f]z[w], 'y %) <1 (resp. c(f]z[a}], I', %) is finite) for each weX. Since
I < m, by 2.2 # is m-discrete (resp. m-locally finite). Since 4, = W,
and W, is open for each ael’, X is CN,(m) (resp. CN,(m)).

6.7 TaEOREM. If X is oLP,(m), then X is Py(m). (Compare [1]).
Proof. Let # be an open covering of X such that || < m. By hypo-
thesis there is an open covering ¥ of X such that # <% and #
= |J {#u] neN*} where %, is locally finite for each ne N™. Now, for each
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neN™ let Y, =U{U#; 1<j<n}. If #,={W,| aely}, define
for each ael)), Vye= Wy~ Y, ; if n>1 and V,, = W,,. Let ¥
= {Vpal neNT, ael'} where I' = {J {I',] neNT}. It is clear that ¥ < %.
Now let #e X, since #” is a covering of X there is an n such that z¢Y,,.
For each j, 1 < j < n, there is a neighborhood K; of x such that
e(K;, Iy, #;) is finite. Let K(x) = K; ~ ... ~ Ky ~n Y,, then K(x) i8
a neighborhood of x. Since Y, ~ V,, = O for p > n we see that

|e(K (@), T', ¥)| < |o(Hy, Tyy W) o 4 le(Hy Tuy #a)l-

Thus 7" is locally finite.
We end this section with an easy lemma which we leave to the reader

6.8 LemmaA. If X 48 Py(m), then X is T,.

7. The main theorems.

7.1 THEOREM. If X is P3(m), then X is P,(m).

Proof. Let # = {U,} a<l’} be an open covering of X with |I'] < n.
By the P,(m) property, 6.8 and 2.3 there is a locally finite closed covering
A = {K,| ael'} of X such that K, = U, for each ael'. Thus there is an
open covering # = {W;| Aed} of X such that e(W,, I", A7) is finite for
each Aed. Let X = {¢(W,, I, #)| Ae} then ¥ < I'" and thus |Z| < |['F)
<m. For each ¢eX let W, = J{W;l ¢(W;, I', X) = ¢} then %~
= {W,]| ¢eX} is an open covering of X. Further we see that ¢(W,, I", )
= ¢ for each ceZX. Since |X| < m, by the P;(m) property and 2.3 there
is a locally finite closed covering € = {C,| seX} such that C, c W,
for each oeX. For each ael'let K, = X ~ |J {0, deX ~¢(K,, X, €)}.
Since € is closure preserving and covers X, K, is open and K, < K, for
each ael. Now observe that for each ce¢2 and ael,C, ~ K, = 0 iff
Co~K,=0.For,if C, n K, =0, 6eX ~c(K,, Z, %) and hence O, ~ K,
= . Thus if #" = {K,| ael}, for each o¢X, ¢(Cy, I', #™) = ¢(Cqy, Iy X)
ce(W,, I'y ) = 0. Hence ¢(C,, I, #"') is finite for each oceX. Now
for each ael'let V, = K, n U, and ¥ = {V,| ael'}. Then ¥  is an open
covering of X and ¥ < %. For each o¢X we see that ¢(C,, I', ¥)
< ¢(C,, I'y A7) and thus ¢(C,, I', ¥") is finite. Thus we have |¢(C,, I', ¥}|
< 8, for each oeZ. Since ¥ is locally finite there is an open covering
& = {8s] ded} such that |e(S;, 2, €)| <N, for each ded. By 2.4
le(8s, I'y 77)| << N, for each deA; hence ¥ is locally finite.

7.2 THEOREM. In any topological space X the following are equivalent:

i) Py(m) A R(m),

ii) Py(m) A R(m),

iii) P, (m),

iv) oLP,(m) A R(m).

Proof. i) —ii) by 6.1.1ii) —iii) by 6.3. ill} - i) by 7.1, 6.8 and 5.9.
1) > iv) by 6.1. iv) — i) by 6.7.
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7.3 TuEOREM. Let % = {U,| ael'} be an open covering of a space
X with |[I'} <m and suppose A = {K,| ael'} to be a point finite, closure
preserving, closed covering such that K, < U, for each acI. Then there is
an open covering ¥ = {V,| AeA} such that (Al <m and ¥ <*%.

Proof. Let xeX, since A is point finite ¢(x, I', %) is finite for each
weX. Let A= {c(x, I, #)|weX}. Since A < I7, |4 <m. For each
Aed let

— MU ael} A (X ~ UK agd)).

Observe that if A = e(x, I, A),xeV,. Since X is closure preserving,
V; is open and thus ¥ = {V,| AeA} is an open covering of X. Let yeX
and suppose yeV,; then ¢(y, ', #) < A. For, if K, ~ V, # O, then aeci.
Thus if Bec(y, I', #") and yeV, it follows that fei and hence V; = Us.
Thus St(y, ¥") = U {Vil vV} < Uz for each fec(y, I', A"). This shows
that v <*%.

7.4 COROLLARY. Let % be an open covering of X with |%| < m and let
A be a locally finite closed covering of X such that A < U. Then there is
an open covering ¥ of X such that v <* % and |¥| < m.

Proof. Let # = {U,| ael'} with [I'l <m. By 2.2, applied to X,
there is a locally finite closed covering ¢ = {C,| a<l'} such that C, < U,
for each ae¢l. Our conclusion now follows from 7.2.

7.5 COROLLARY. If X is Py(m), then X 2s FN, (m).

The proof of the following theorem is given essentially in [1] so we
shall -only outline it here.

7.6 TaEOREM. If X is B,(m), then X is sDP,(m).

Proof. Let  be an open covering of X such that [%| < m. By the
E,(m) property there is a sequence (U | neN*) of symmetrle nelghbor-
hoods of the diagonal such that K(Ul) < Y and (/nHo Un+1 < U for
each neN*. Define nelghborhoods of the diagonal Wn, neN*, as follows:
W1 = Uz, Wn+1 = Un+2o W for » > 1. Tt is easily seen that W = U1
and hence & (W ) < % for each neN'. Now let < be a well ordering
of the points of X. For each neN' and zeX let Wi(z) = Wa[z]
~IWaalylly< ay YH, = {W,(@)| 2eX}and # = (J{# ] neN'}
it is clear that #° < %. To see that #" is a covering of X and that ¥,
is discrete for each m<N* use the argument in [1; 33 chap. v].

7.7 THEOREM. If X is a topological space, then the following are equi-
valent on X:

ot ) (M) A R(m), (2) Py(m) A R(m), (3) Py(m), (4) oLP;(m) A R(m),
(5) FN;(m), (6) FN,(m), (7) FN3(m), (8) FN,(m), (9) E,(m), (10) 2(m)7
(11)  oLP,(m) A CN,(m) A R(m),  (12)  oLP4(m) A CN,(m) A R (m),
(13) oDP,(m) A R(m), (14) oDPy(m) A CN,(m) A R(m), (15) sDP,(m) A
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Fig. 1

ACN,(m) A R(m), (16) oDPy(m) A CN,(m) A R(m), (17) oDPy(m) A
A ONy(m) A R(m).

The proof is easily seen from the diagram of implications given in
Fig. 1.

8. Miscellaneous results. In this paragraph we add results and remarks
amplifying some of the earlier parts of the paper.

The general nature of the R (m) property is not clear to the author.
However, in case m = §¥,, we have the following theorem.

8.1 THEOREM. If X is a T,space, then the following are equivalent:

) R(xo), ‘

i) Py(R).

Proof ii) —>1i) follows immediately from 35.9.

i) —ii) Let # = {U,| n«N*} be an open covering- of X. By the
R(R,) property we can find an open covering ¥~ = {V,| ne Nt} such that
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¥ € U. For each neNT choose m(n)eN™ such that Vi = Ung) and
let W, = Upemy. Then & = {W,)| neN'} is an open covering of X such
that V, < W, for each neN*. By Theorem 3 of [4] there is a locally
finite open covering & of X such that & < #". Since #* < %, it follows
that & < % and hence X is P,(8,). (Note that the T, hypothesis in Theo-
rem 3 of [4] is superfluous.)

Observe, that it follows immediately from the definitions, that all
the properties defined in paragraph 4, except R(m), FN;(m) and E,(m)
are hereditary in the following sense: if n is an infinite cardinal such that
n << m and the property holds for m then it holds for n. In fact, however,
it follows from 7.7 that FN,(m) and E;(m) are hereditary in the above
sense. This implies for example that a space is fully normal iff it is FN, (m)
for all m. The point here is that in a fully normal space the star refining
covering can always be taken so that its cardinality is not greater than
the covering which it refines. It is clear that R(m) is hereditary if X is
P,(m). We do not know if R(m) is hereditary in general.

We make one final observation. One may also define a property
P,(m) for spaces as follows:

P,(m): For any open covering  of X with (#| < m there is a closed,
point finite, closure preserving covering ¥ of X such that v < %.

8.2 THEOREM. In a space X, P,(m) is equivalent to Pg(m).

Proof. It is clear that P,(m) implies P (m). Now suppose that P,(m)
holds. Let « = {U,] ael'} be an open covering of X with |I'] <m. By
hypothesis there is a closed, point finite, closure preserving covering 7~
of X with ¥~ < %. By 2.3 there is a closed, point finite, closure preserving
covering " = {K,| ael’} such that K, = U, for each ael". By 7.3 there
is an open covering ¥ of X with [#'] <m and # <" %. Thus P,(m)
implies FN,(m). By 7.7 FN,(m) is equivalent to Py(m). Thus P,(m) is
equivalent to P,(m).
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