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On uniformly convexifiable and B-convex
Musielak—Orlicz spaces

Abstract.- In this paper it is proved that every Musielak—Orlicz space is uniformly
convexifiable and B-convex iff it is reflexive. This is a generalization of results of V. Akimovi¢
[1] and of M. Denker and R. Kombrink [3].

0. Introduction. (T, 2, u) is a measure space with a non-negative,
o-finite and complete measure u, Xy = {AeX: u(4) =0}, R, =[0, o), R%
= [0, o0o]. An Orlicz function ¢ with parameter (from T) is a function
defined on Tx R, with values in R%, convex on R,, continuous at zero,
with @(t, 0) =0 and @(t, u) > o0 as u —» o for p-almost every (u-a.e) teT
and p-measurable on T for every u > 0. Henceforth, we write shortly “Orlicz
function” instead of “Orlicz function with parameter”. In the case of a purely
atomic measure space (7T, 2, u), where T = N = the set of all positive in-
tegers, we write @,(u) instead of &(n,u). We assume without loss of
generality that u({n}))=1for n=1, 2, ...

The Musielak-Orlicz space L4 " generated by an Orlicz function @
and by a measure p is the set of all real (complex)-valued and pu-measur-
able functions x defined on T (with usual identification x =y iff x(t) = y(¢)
for p-ae. teT) such that | &(t, |x(¢))du < oo for some A >0 depending

T

on x. L is a Banach space under the Luxemburg norm ||x|ls =
inf{u > 0: [ ®(t, |x(@)l/u)dp < 1} (see eg. [16]).
T

A normed linear space (X, || -]|) is said to be uniformly convex if for every
& > 0 there exists d(¢) > 0 such that

l(x+y)/2ll <1-6(e) whenever ||x—yll >¢ and ||x|| = ||lyll = 1.

M In the case of the purely atomic measure such that u({n}) = 1 for all ne N we write I,
instead of 4.
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A normed linear space (X, ||-]|) is called k, e-convex (k = 2) if for each
choice of x,, ..., x, from the unit ball of X

JxiEx,+ ... kx| < k(l—¢)
for some choice of the + and — signs (see [4]).
A normed linear space X is said to be B-convex (X satisfies property (B)

in Beck’s terminology, [2]) if X is k, e-<convex for some k > 2, ¢ > 0.
For every Orlicz function @ we define its complementary function ¢* by

&*(t, u) =sup [uv—P(t,v)] forevery teT, u=0.

v>0
@* is also an Orlicz function.

Denoting by ¢(t, +) the right derivative of an Orlicz function &(t, -} and
defining the generalized inverse function ¢* of ¢ by

o*(t,s)=sup [u>0: o(t,u)<s]; teT, s=0,

we have ®*(t, u) = | @*(t, s)ds for teT, u >0 (see [14]).
0

Let u be an atomless measure and ! > 1. Recall that an Orlicz function
& satisfies the A;-condition if there exist a constant K > 0, a non-negative
function h with | h(t)du < oo and a set ToeZ, such that
T

b(t, ) < KP(t,u)+h(t) for every teT\ Ty, u=0.
Let u be a purely atomic measure. We say that an Orlicz function
& = (P,) satisfies the ,-condition if there exist positive numbers K, a and a
sequence (c,) with ¢, >0 and ) ¢, < oo such that for every ne N and u > 0

nz1

the condition &,(u) < a implies
@, (lu) < K, (u)+c,.

It is not difficult to show that @ =(@,) satisfies the J,condition iff
there are constants K, 6 > 0, and non-negative sequences (c,), (d,) such that
(pn(dn) =9, Z PD,(c,) < o0 and

n=1

&, () < Ko,(u) if uelc,, d,] for every neN.

We say that an Orlicz function @ satisfies the uniform A4,-condition if
there exist a set ToeX, and a constant K > 0 such that

d(t, uy < Ko(t,u) forevery teT\T,, u=0.

In the case of a purely atomic measure p, we write “uniform §,-
condition” instead of “uniform A4;,condition”.

Let p be an atomless measure and @ be an Orlicz function with right
derivative @ on R, for p-a.e. te T We say that ¢ satisfies the 4,-condition if
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there are a constant K >0, a set T,eX,, and a non-negative function f
defined and p-measurable on T such that | f(1)o(t, f(1))du < oo and
T

o(t, Wy < Ko(t,u) forevery teT\ Ty, u=f(2).

Let u be a purely atomic measure. Let & =(®,) be an Orlicz function
and let ¢, denote the right derivative of @,, n=1, 2,... We say that
¢ = (¢,) fulfils the ,~condition if there are constants K, 6 > 0, non-negative
sequences (c,), (d,) such that ®,(d,) =4, Y c,¢,(c,) < and

n=1

oa(lu)y < Ko,(uw) if uele,, d,] for all neN.

It is said that an Orlicz function @ = (®,) satisfies the 5P-condition (see
[10], [17]) if there are constants K, § > 0, me N, a sequence (c,) e [? such that
Z ¢, < o0 and

n=m

@, (lu) < K®,(u)+c, if @,(u) <o forall n=>m

(here I? denotes the space of all sequences (s,) with s,e[0, co] such that
Y s, < o for some ke N).

nzk

Let 4 be a mixed measure, ie. T=T,uTy; T, e, TnT,=0Q,
U= uy+p,, where pyy is an atomless measure on 2 n 7} and u, is a purely
atomic measure on X N T,. Recall that @ (¢) satisfies the (4,, §;)-condition if
the restrictions of @ (o) to the sets T; and T, satisfy the 4;,-condition and ;-
condition, respectively on T; and T,.

Recall that an Orlicz function @ is uniformly convex on R, (see [15]) if
there exists a set T,eZX, such that

VO<a<130<d(@<!l VteT\T, Vuz2z0VO<bhb<a:
D(t, (u+bu)/2) < (1—-6(a)) (®(t, u)+ (2, bu)}/2.

It is known (see [1]) that an Orlicz function @ is uniformly convex on R, iff
for every ¢ > 0 there exists a constant k, > 1 such that

(0.1 o(t, 1+e)u) =k, o(t, u)

for every te T\ Ty, u > 0 (¢(t, -) denotes the right derivative of ®(t, -)).

Now, we introduce a partial order “—3” in the class of all Orlicz
functions. Let p be an atomless measure and let &, ¥ be Orlicz functions.
We say that & is non-stronger than ¥ (written @ 3 ¥) if there exist a
constant K >0, a set ToeX,, and a non-negative function he L}(T) such
that '

D(t, Kuy < P(t, u)y+h(t) forevery teT\Ty, u=0.

If uis a purely atomic measure and @ =(&,) and ¥ = (¥,) are Orlicz
functions, then we say that & is non-stronger that ¥ (written @ -3 V) if there



62 H. Hudzik and A. Kaminska

exist constants K, § > 0, and a non-negative sequence (c,) with Y ¢, < o

nz1

such that
@, (Ku) < ¥, (u+c, forall neN if P,(u)<d

(see [10]).

Let 4 be a mixed measure, ie. T=T,uT,: T, LeX, 1 nT, =0:
U= u; +u,, where py is an atomless measure on X N T; and u, is a purely
atomic measure on X N T;. Let @ and ¥ be Orlicz functions. Recall that @ is
non-stronger than ¥ if ¢/T, 3 ¥/T, and &/T, 3 ¥/T, (here ®/T; denotes the
restriction of @ to the set Tj).

Let @ and ¥ be Orlicz functions. Recall that @ and ¥ are equivalent
(written ® ~ ¥) if ® 3 ¥ and ¥ 3.

Obviously, two equivalent Orlicz functions ¢ and ¥ define the same
Orlicz space and equivalent Luxemburg’s norms ||-|ls and ||‘||-

TueoreM O.1. If u is an atomless (a purely atomic or mixed) measure and
@ is an Orlicz function uniformly convex on R, and satisfying the A,-condition
(the uniform A,-condition), then (LY, ||-||le) is a uniformly convex space.

For the proof of this theorem see [5] and [15].

Criteria for uniform convexity of Orlicz or Musielak—Orlicz spaces are
contained in [6] and [8].

V. Akimovi¢ [1] proved that if complementary Orlicz functions @ and
¢* without parameter satisfy the 4,-condition, then there exists an Orlicz
function @, without parameter equivalent to @ and such that the Orlicz
space (Lg,, Il*llg,) is uniformly convex.

M. Denker and R. Kombrink [3] proved in the case of a purely atomic
measure p such that u({n})=1 for n=1,2,... and an Orlicz function @
without parameter that /, is a B-convex space iff @ and @* satisfy the
d,-condition (in this case the 4,-condition for small u > 0).

In this paper, modifying and complementing methods of V. Akimovi¢
(1] and of M. Denker and R. Kombrink [3], we extend these resulis to
Musielak—Orlicz spaces, generated by arbitrary non-negative, g-finite and
complete measure p.

1. Results.

LemMa 1.1. If @ is an Orlicz function and ¢ is its right derivative with the
generalized inverse function @*, then the inequality

o(t,2u) < kp(t,u) for some k>0, all u>0 and teT
implies

Q*(t, kv) = 2¢*(t,v) foreach v=0 and teT.



B-convex Musielak-Orlicz spaces 63

Proof. By assumptions sup {u > 0: ¢(t, 4/2) < v} <supf{u>0: ¢(t, u)
<kv}. So  20*(t,v) =sup{2u: @(t,u) < v} =sup{u>0: ¢(t, u/2) <v}
<sup{u>0: ¢(t, u) < kv} = @*(t, kv) for all v>0 and teT

Further, we shall consider the cases of atomless and of purely atomic
measure u, separately.

1.1. The case of an atomless measure.

Lemma 1.1.1. Let @ and ¥ be Orlicz functions. Then:

(i) @ satisfies the A,-condition (the uniform A,-condition) iff it satisfies
the A;-condition (the uniform Ai-condition) for every 1> 1;

(i) if @ 3V, then P* 3 %,

(iii) if @ ~ ¥, then &* ~ P*;

(iv) if @ ~ ¥ and D satisfies the A,-condition (I > 1), then ¥ satistes it
also.

Proof. (i) This is proved in [S]. (ii) Easy proof is omitted. (iii) This
follows from (ii).

(iv) By assumptions there are a set Toe X, positive constants K and k,
and a non-negative function he L4 (T) such that

D(t, ) < K&(t, w)y+h(t)
and
D, ki uy—h() < P(t, u) < D(t, kyu)+h(p)

for every te T\ T,, u > 0. Applying the last inequalities and denoting by K,
and h, the constant and function from the 4,-condition for | = k%, respecti-
vely, we have for every te T\ T, and u = O:

Y, wy < P(t, lkyu)+h(t) < KO(t, k, u)+2h(1)
S KKo®(t, kit u)+ Kho(t)+2h(t) < KKy ¥ (t, u)+ Kho(t)+ 2h(1).
Since the function h, (t) = Khq(t)+2h(t) belongs to L4(T), so the last in-
equality means that ¥ satisfies the A,-condition.

LEmMma 1.1.2. For every Orlicz function & satisfying the A-condition
(I > 1) there exists an Orlicz function ®, equivalent to ® and satisfying the
uniform A-condition.

Proof. We may assume without loss of generality that [ = 2. First, we
shall prove that the 4,-condition is equivalent to the following one

(4 3K>013f: T->R, with | &(t,f(t)du< 0 I TheX, VteT\T,
T

Vu>f): o, 2u) < Kb(t, u).
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Assume that @ satisfies the 4,-condition. Let f(t) =sup ju > 0: &(t, u)

< h(t)}. Since f(t) =sup{ueQ,: ®(t, u) < h(1)}, where Q, is the set of all

non-negative rational numbers, so it is a p-measurable function. We have
& (1, £ (1)) = h(t) and so

D, 2u) < KP(t, )+ h(t) <(K+1)P(¢, u)
for every te T\ T, and u > f(t), i.e, @ satisfies the A%-condition.

Conversely, let us assume that @ satisfies the 4%-condition. Then denot-
ing @(t, f(1)) = h(1), we have for every te T\ T, and u > 0:

&(t, 2u) < K&(t, uy+ Kh(t).

Since | Kh(t)dp < o0, so @ satisfies the 4,-condition.
T
Now, we define the Orlicz function @, by

(1, £ ()
(pl(t,u)= %—F*(‘E"UZ fOr 0<u<f(t),

O(t,u)—30(t, (1)) for u>f(1).

Since @(t, f(1)/f (1) < @(t, f (1) for f(r) >0, where @(t, -) denotes the
right derivative of @(t, +), so @, is an Orlicz function. It is obvious that

D, (t,u) < O(t, +3P(t, £ (1)
and
(1, u) < D, (1, W+ D(t, f (1)

for every te T, u > 0. Since [ @(t, f (t))du < o0, so &, ~ @. In order to prove
T )
that ¢ satisfies the uniform 4,-condition we shall consider three cases for
f()>0.
@M 0<u<f(t))2. Then @, (t, 2u) = 4P (t, u).
(I1) f(t)/2 <u <f(t). Then we have

Dy (1, 2u) = B(t, 20)—3 D (1, £ (1)) < B(t, 2 (D) =3 P(t, f (1))

o(t,f (1)

2
G 7w 2O

<K= @1, f(1) = (K =)

2t/0)

4(K—1%
SHK=D T

=8(K -}, (1, u).
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() u = f(t). We have
D, (t, 2u) = D(t, 2u)—%¢(t,f(t)) S K®(t, wy—39(t, f(1)
; 2K
< Ko(t, u)—%¢(t,f(t})+KQ(t,f(t))—-T (1, f (1))

2K+1
<2KO(t, u)——t

D(t, f (1) < 2K D, (1, u).

Taking into account that K > 2, we have @,(t, 2u) < 8K®, (t, u) for every
te T\ Ty, u >0, and so the proof is finished.

CoroLLARY 1.1.3. If @ and ®* are complementary Orlicz functions without
parameter satisfying the A,-condition for large u >0 (see [14]), then there
exists an Orlicz function @, equivalent to ® such that @, and ®F satisfy the
A-condition for all u =0 (i.e. the uniform A-condition)®.

LEmMA 1.1.4. Let @ be an Orlicz function and let ¢ be its right derivative.
Then @ satisfies the A-condition (uniform A-condition) if and only if ¢ satisfies
the A-condition (uniform A,~condition).

Proof. We shall prove only the case of the 4,-condition. Let & satisfy
the 4,-condition. Then there exists a constant K > 0, a set ToeX, and a u-
measurable function f: T — R4 such that | &(t, f(t))du < 0 and

T

&(t, 2u) < KP(t, u)
for every te T\ T, and u > f(t). We have for u-ae. teT and all u >0
3up(t, 3u) < O(t, u) < up(t, u).

Thus, we have for p-ae. teT and all u=f(t)

d(t,4u) K2d(t,u) K?o(t,u
( )< ( )< o )'

1,2 < S
ol 2w < —5 2u 2

Moreover, we have for u-ae. teT, f()o(t, f(1) < (1, 2( (1)) < KD(t, £ (1)),
so | f()elr, f(D))du < . Thus ¢ satisfies the 4,~condition. Conversely, let
T

¢ satisfy the 4,-condition. Then there exist a constant K >0, a set Toe X,
and a non-negative and u-measurable function f defined on T such that

! @ et f(®)du < o and

@ The function @, may depend on parameter.

5 — Roczniki PTM — Prace Matematyczne XXV



66 H. Hudzik and A. Kaminska

@(t, 2u) < Ko(t, u)
for every te T\ T, and u > f(¢t). We have

10, 2u)-32(1, 2/ ()= [ o(t,20)dv <K | o(t, v)dv
o) 0

=K {®(t, w—-o(, £ (1))

Hence, we have for every te T\ T, and u = f (¢)
D(t, 2u) < 2KP(t, w)+ D(t, 2/ (1)).

Since (1, 21 (1) < Y (D 91, Y W) < 2KF W@, £ (), so | (e, U (1) du
T
< o0, and this means that @ satisfies the 4,-condition.

LemMma 1.1.5. Let @ and ®* be complementary Orlicz functions and let @*
satisfy the A,-condition. Then there exists an Orlicz function @, uniformly
convex on R, and equivalent to .

Proof. By Lemma 1.1.2 there exists an Orlicz function ¢§ ~ &* satisfy-
ing the uniform A4,<ondition. Thus the right derivative ¢F of &F also
satisfies the uniform 4,-condition. Hence, by Lemma 1.1, we obtain

(1.1.1) @, (t, ) = 2¢,(t,v) foreach v>=0 and te T\TO,

where u(T,) =0 and [ is an absolute constant > 2®. Now, let us denote
t

(1.1.2) u=F k=0,+1,+2 +...
and define the function @,: @,(t, -)-continuous, @,(t, 0) =0, @,(t, u)
= @, (t, ) and @, (t, -)-linear between points u, and u,,,, k=0, +1, +2,
+ ... We can prove that it follows from the last conditions that for every
& > 0 there exists a constant k, > 1 such that

(1.1.3)  @y(t, (1+8)u) =k, @,(t,u) forevery u>0 and teT\Tp.

We may assume without loss of generality that 1+¢ < I First, we shall prove
inequality (1.1.3) for u > 1. Let te T\ T, and u > 1. There exists ke N U {0}
such that u, < u <u;,,. Since 1+e<1 so uy, <(1+¢gu <uy,,,. We shall

consider two cases: (I) u, <(1+8)u < uq and (II) u,; < (148 u < w5,
Denote by ¢, , afunction identical with ¢, on the interval [u,, u, . 1. We have

(1.1.4) 9024 (t, w) = g (u+by (1),

3 By ¢, we denote the generalized inverse function of ¢¥.
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more precisely

Py (L, Wy 1) — @y (L, Uy)
Upry — Uy

(1.1.5) Qo (t, u) = @ (t, w)+ (u—w).

(1a) b,(t) = 0. Let us consider the function

Sre(t, ) = @5, (1, A+ u)@a, (2, u).

We have [fi.(t, W], = a.(t) by (D /(@ () u+ b (1)) Since a,(t) > 0 for every
teT so [fi.(t, u)], = 0. Thus the function f.(t, u) is non-decreasing with
respect to the variable u for every fixed re T, and by (1.1.1)

Q1 (t, U ) — o1 (8, wy)
eu

(pl([, uk)+ u u K
k+1 7 Yk
t, Z i (e, =
Jee(ts 1) 2 fi o (¢, wy) TR
=1+‘P1(t, W) — @1 (L, w) ey > 14 g o1
@1 (t, uy) U1 — Uy -1

(Ib) by(t) <0. Then, we have [f,.(t,w)], <0 and so f (¢, u) is a
decreasing function with respect to the variable u for every fixed te T. Hence,
we have

O1(t, Uy ) — @1 (L, W)
&u
U+ 1 Uy
(L, Ugsy)

Q1 (t, wey )+ K+ 1

ﬁ(,s(t, u) ka,e(ti uk+1) =

= 14elf2(1-1) > 1.
Denoting &k, = min[1+¢/(I—1), 1 +el/2(I—-1)] = L +¢/(I—1), we get the in-
equality (1.1.3) in the case L .

(ITa) Let u,yy <(1+e)u <uy,, and y, < \/1—-1:5-14 < ug+1. Then whole
interval [u, \/1+¢-u] is contained in the interval [u,, u,,). Let &, >0 be
such that /1+¢& = 1+¢,. Then, by the case (I), we have

@2(t, (L+e)u)@a(t, u) = @y (t, (1 +e)u) @ (t, u) >k, > 1.
(IIb) Let Ji+e-uelupsy, h+;) and J1+4& =1+4¢,. Denoting

I+e-u=v, we have [v, (1+¢&;)v] = [ug+1, U+, and so
Q2(t, (1+8)u) _ @2, 1+8)u) _ @a(t, (1+21)7)
@, (t, u) Q,(t, /14 w0 @, (2, v)
Thus, inequality (1.1.3) is proved for u > 1. The proof of this inequality for

0 <u <1 is analogous to the proof in the case u > 1 and so it is omitted
here. The Orlicz functions @; and @, are equivalent, because for y-ae. teT

= firteg (6 0) 2 ke > 1.
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and for every u >0
@1(t, T u) < @ (t, w) < @y (¢, ).

Since @, is equivalent to P, so P, is also equivalent to @. This finishes the
proof.

Remark 1.1.6. If @ is an Orlicz function uniformly convex on R, then
its complementary function @* satisfies the uniform 4,-condition (see [15]).
This is in some sense a converse of the last lemma.
- Tueorem 1.1.7. Let ® and ®* be complementary Orlicz functions satisfy-
ing the A,-condition. Then there exists an Orlicz function @, equivalent to ®
and such that the space (Lo, ||"llo,) is uniformly convex.

Proof. By the last lemma there exists an Orlicz function @, uniformly
convex on R, and equivalent to @. By Lemma 1.1.1 (iv), @, satisfies the 4,-
condition. Applying Theorem 0.1 we get the desired result.

1.2. The case of a purely atomic measure.

Lemma 1.2.1. An Orlicz function & =(®,) satisties the d,-condition with
1> 1 iff @ =(¢,) satishes the d,-condition.

Proof. We may assume that & satisfies the d,,-condition (see [11]).
Then there exist constants K, > 0, non-negative sequences (c,), (d,) such
that @,(d,) =93, Y ®P,(c,) <o and

nz1

(1.2.1) ®,2lu) < K®,(u) for all uelc,, d,], neN.

We have &,(u) < up,(u) and &,(2u) > lug,(lu) for all u> 0, ne N. Hence
and from (1.2.1) we get Y. ¢, ¢,(c,) <K ) @,(c,) < o0 and ¢,(lu) < (K/) x

nz1 nz1

x @, (u) for uelc,, d,}, ne N. Thus ¢ = (¢,) satisfies the J,-condition.
Conversely, assume the J,-condition of ¢ ={(¢,) be satisfied. Then

on(lv) < Ko, (u) for all uelc,, d,], neN, where &,(d,) =6 and ) c,0,(c,)
n21

< oo. Integrating this inequality we obtain

1 @, ()= 1 @,(le) = | oaide <K | @y(0)dt = K&,(0)~K,(c)

for each uefc,, d,], neN. Then

&, () < IKP,(u)+D,(lc,) for all uelc,, d,}, neN.
Moreover, Z: D,(lc,) <1 g ca@ullc) <IK Y c,¢,(c,) < 0. Therefore @
=(d,) satis;i/e; the 6,~con<;;tilon. !

LEmMMA 1.2.2. Let & =(®,) and ¥ =(¥,) be Orlicz functions. If ® ~ ¥
and @ satisfies the &,-condition, then ¥ satisfies the 52-condition.



B-convex Musielak—Orlicz spaces 69

Proof. By assumptions, there exist constants K, K; > 1, 6 >0, and
sequences ¢ = (c,), d = (d,), e =(e,) with non-negative elements and belong-
ing to [; such that

(1.2.2) V(K™ u) < @,(w)+c,,
(1.2.3) ®,(K™'u) < P, (u)+d,,
(1.24) ®,(2K2u) < K, &, (1) +e,,

if ®,(u)<5, ¥,u) <0, neN.

Let &, = 6/3K,. If ¥, (u) < 5o, then &,(K~'u) < §/2K, by (1.2.3) and
®,(2Ku) = ¢, 2K K 'u) < K, ®,(K"'u)+e, by (1.2.4) for sufficiently large
neN. Then ¥,(u) < 4, implies

¥, (2u) < 2,2Ku)+c, < K, 9,(K 'w+e,+c, <K, ¥,(w)+K,d,+e,+c,

for sufficiently large ne N, by (1.2.2), (1.2.4) and (1.2.3). Thus ¥ = (?,) fulfils
the 8%-condition.

Remark. The last two lemmas will stay valid if we replace the §;-
condition and §,-condition by the JP-condition and &3%-condition,
respectively.

Lemma 1.23. If @ =(®,) and ¥ =(¥,) are equivalent Orlicz functions,
then @* = (®F) and ¥* = (¥¥) are equivalent too.

Proof. It is enough to show that if ® 3V, ie. ¢,(ku) < ¥,(w)+c, if
Y,.(u) <J, neN, for some constants k, 6 >0 and a non-negative sequence
(c,), where Z ¢, < oo, then ¥* 3 &*. Let us denote by ¢, and ¥, the right

nz1
derivative of @, and of ¥,, respectively.

Let N, be a subset of N such that for all ne N, there exists u, > 0 such
that ¥,(u,) <6 and ¥,(u)=oco for all u>u, Then we have PD,(ku)
< Y,(u+c, for all u>0 and neN,;. Hence

¥x (v) = sup [uv— ¥, ()] < sup [uv~@,(ku)]+c, = &} (k™' v)+c,

uz0 uz0

for all v > 0. Therefore

(1.2.5) Yk (kv) < &F(v)+c, foreach v=0, neN,.
For all ne N, = N\ N, there exists u, > 0 such that ¥,(u,) =0 and
(1.2.6) D, (ku) < ¥,(u)+c, forevery u<u, neN,.

Let &,(u) = @,(ku) and @, be the right derivative of &, and &* be the
complementary function to &,. We have

(1.27) w=V¥,(w+¥v) foreach u>0, vel lim ¥,(w), lim ¥,(w)]

w=u W"’l‘+
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(see [14]), and
(1.2.8) u < @, (w)+d*(v) forall u,v>=0,

by the Young’s inequality (see [14]). Thus, by (1.2.5), (1.2.7) and (1.2.8) it is
obtained

(1.2.9) P*(v) < ®*(v)+c, for each v < Y,(u,), neN,.
Since
1up,Guw) < P, (w) < P, (W+c, <uy,(u+c, forall u<u, neN,
$0
(1.2.10) tu,0,Gu,) <u,y,(u,)+c, forall neN.

But @*(v) > fu,v—3%u,®,(3u,) for all ne N, and v > 0 by the definition of
conjugate function. Then, by (1.2.10)

(1.2.11) &*x(v) = tu,v—u,y,(u,)—c, forall neN,,v=0.
Let @ > 0 be arbitrary. If &*(v) <o and ne N,, then by (1.2.11)
v 2(ca+a
o S
However, putting u = u,, v = ¥,(u,) in (1.2.7), we have
U Yo (uy) =0+ ¥¥(Y,(u,)) =6 for each neN,,
because ¥,(u,) = 0. Therefore

+2 forall v>=0.

2 max(c,+a)

< " +2 for all neN,,v=0.
V1) 5 ’

Denoting 2 max (¢, +a)/6 +2 = k;, we get v/k, < y,(u,) if &F(v) <a. Now,

applying inequality (1.2.9) and the fact &*(v) = &*(k~'v) it is obtained
(1.2.12) P (kk;'v) < P¥(v)+c, if ®F(v)<a, neN,.
Combining (1.2.5) and (1.2.12), we obtain ¥* 3 @*, which finishes the proof
of this lemma.

LemMa 1.24. If an Orlicz function & = (®,) satisfies the 83-condition, then

there exists an Orlicz function ® = (®,) equivalent to ® and satisfying the
uniform 6,-condition. If we additionally suppose

(*) @) =ro,(u) for some l,r>1 and all ueR,, neN,

then the function $ = (@,) fulfils also condition (*) with some I, ry > 1.
Proof. If & satisfies the 8%-condition, then it satisfies also the &)-
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condition for all /> 1 (see [11]). Then there are k, § > 0, meN, (c,), (d,)
with non-negative terms and such that (see Lemma 1.2.1)

(1.2.13) ¢n(lu) < ke,(w) for all uelc,, d,], n > m,

where Y ¢, @,(c,) < ©, ?,(d,) = 6. We can assume Ic, < d, for n > m. Let

us define a new sequence @ = ({p,) as follows:

% 0. (Fu) for uelcy/l, c/l™Y), i=1,2,...,
puw) - for uelc,, d,),
Fkip,u/l)y for ue(l~'d, l'd), i=12,...

(1.2.14)  &,(u) =

for n>m and @,(u) =u for n<m, u>0. Then
(1.2.15) @) =1p,(u) for n<m and u > 0.

It is not difficult to show that @,(u) is non-decreasing. If u, lue[c,, d,), then
@,(u) = @,(u) and @,(lu) = @,(lu). Hence

(1.2.16) r@,(u) < @,(lu) < kp, ()
if u, luelc,, d,), by (1.2.13). If uelc,, d,) and lueld,, ld,), then

(1.2.17) @,(lu) = lko, (% Iu) = lk@,(u).

Now, let ue[l'"'d,, I'd,) for some ie N. Then

o 1 IS
(1.2.18)  ,(lu) = [+ ki* 1 g, (I—ﬁ lu) = Ikl Kk @, (F u) = k@, (u).

Similar equality will be satisfied if ue[c,/F, c,/I~!) for some ie N. Therefore
(1.2.19) rg,(w) < @,(lw) < lkg,(u) forall u>0, neN,
by (1.2.16), (1.2.17) and (1.2.18). Let

@, (u)= [ @,()dt for neN, u>0.
0

We shall prove that & is equivalent to &. Indeed, for n > m and uel[c,, d,)
we have

o) = | Ga(O)di+ | @alt)dt = By (c)+ By () B, (co).

But &,(u) < ¥,(c,) for 0<u<c, so

(1.2.20) b, (u)< D, (W+d,(c,) for 0<u<d, n>m.
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Similarly, we get the following inequality
(1.2.21) b, ) < P,(W)+d,(c,) for 0<u<d, n>m.
Note that 0 < &,(u) < oo for all u >0, neN, and 6; = inf &,(d,) >0 for

n>ny

some n, € N, by (1.2.21). So there exists a sequence (d,) such that &,(d) =96,
for all neN. Let 0 <d) <d, be such that ®,(d;) < o for n<n;. Put
6, = min [8;, inf &,(d))} and e, = &,(c,) for n>n, and e, = P,(d,) for

n<n

n<n,. Then @,(u) < &,(u)+e, if ,(u) <, for all ne N. So & 3 P, because
Y P(c)< Y ¢ 0.(c,) <co, by the assumption. Let d,=supu

n>n 'l>’l1

> 0: @ (1) < 8} for n < m. We have &,(u) < ®,(d,) for 0 < u < d,. Hence and
from (1.2.20) it is seen that & 3@ if Y &,(c,) < 0. But, by the definition of @,

and by (1.2.13), wé get

I_i+1c,,
Y Puled = ) 21 [ Ik ipu(ftyde
n>m n>miz= l_icn
=Y ¢, @, Z I"ik~i(=1)/F < oo.

By (1.2.19) it is evident that & = (&,) and @ = (®,) satisfies the thesis of our
lemma.

Remark. If @ =(®,) is an Orlicz function satisfying the §3-condition,
then the function & = (®,) defined by: &,(u) =u for all n <m and u > 0;
D, (u) = (D, (w)/cR)u*> for O<u<c,nzm; &,(u)=®,u—3P,(c,) for
cn<u<d, n=mand &,(u) =[(2,(2d,)—% D,(c,)/d?] uz—[d’ (2d,)—®,(d,)]

for u > d,, n = m, where ¢, and d, are such that @,(d,) =9, Z ?,(c,) < o0,

n=m

is an Orlicz function satisfying the uniform é,-condition and equivalent to @.

THEOREM 1.2.5. Let & =(®,) and ®* = (PF) be complementary Orlicz
functions satisfying the 33-condition. Then there exists an Orlicz function &
equivalent to @ and such that (I3, ||'||g) is a uniformly convex space.

Proof. Since @* satisfies the d%-condition, so there exists an Orlicz
function &* equivalent to @* satisfying the uniform &,-condition (see the previ-
ous lemma). Thus there exists a constant k > 0 such that @} (2s) < k@j (s) for
every s > 0, where @} denotes the right derivative of &* (see Lemma 1.2.1).
By Lemma 1.1 we have

(1.2.22)

Bn(ku) = 2¢,(u)  for every u >0,
where @,(u) =sup|s > 0: §¥(s) <uj. Let

u

&,(u)= | @,()dv for every u >0, neN.

o
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Then & =(&,) and &* =(&*) are complementary Orlicz functions. Since
&* ~ d*, we get & ~ & (see Lemma 1.2.3).

We shall find an Orlicz function & equivalent to & and satisfying the
thesis of our theorem. Since @ satisfies the §9-condition and & ~ &, by
Lemma 1.2.2, & satisfies the 69-condition. Applying Lemma 1.2.4 we shall
find an Orlicz function & ~ &, & satisfying the uniform §,-condition, and
such that there exist [, r > 1 satisfying for every u > 0 the inequality

(1.2.23) @n(lu) = 19, (u),
where ¢, is the right derivative of &,.
Let
uk = Ik, kEZ

and a function @, be defined in the following way: @,(u) is continuous on
R, ,00) =0, ¢,(u) = ¢,() and @, is linear on each interval [u, u,,,]. We
shall prove that

Pu((L+e)u) > k, @, (u)

for arbitrary & > 0, some constant k, > 1 and all ne N, ueR,. The proof
of this formula will be omitted, because it is analogous to that of inequality
(1.1.3). Let us note only that the roles of the parameter ¢, the function ¢, (r, *)
and condition (1.1.1) in the proof of (1.1.3) are played here by n, @, and in-
equality (1.1.23), respectively. Thus

‘ k,=1+[(r—D]ef(l—1)min(1, I/r),

where /, r are constants from (1.2.23).

Hence it follows that @ = (&,), where &, (u) = | @,(v)dvforallne N,u >0,
0

is ‘an Orlicz function uniformly convex on R, .

Now, we shall prove that the function & is equivalent to ¢ and that &
satisfies the uniform J,-condition.

Let u >0 be arbitrary. There exists an index keZ such that v,
< u < U4,. Then, we have for any neN

Gn(7 1) < @uI7 1) = Gu(t) = P () < §(U) < B (tes 1)
= Qnltis 1) = Pulluy) < @, (lu).
Hence, we have for any neN, u = 0:
Gn7' 1) < @,() < @ ().

This implies that & ~ &. Since ¢ ~ @, so & ~ ¢. Moreover, the Orlicz
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function @ satisfies the uniform &,-condition. Hence and from the last
inequalities follows that & also satisfies the uniform d,~condition.

Now, applying Theorem 0.1, we obtain that the space (I ||-|lg) is

aniformly convex, and the proof is finished.
‘ CoROLLARY 1.2.6. It follows from Theorems 1.1.7 and 1.2.5 that if (T, X, p)
is a mixed measure space and ®, ®* are complementary Orlicz functions
satisfying the (4,, 0,)-condition, then there exists an Orlicz function @, such
that &, ~ P and (Lo, IIllo,) is a uniformly convex space.

Remark 1.2.7. If & and ®* are complementary Orlicz functions and &*
satisfies the d,-condition ((4,, d,)-condition) in the case of a purely atomic (a
mixed) measure u, then there exists an Orlicz function ¢, ~ @, &, uniformly
convex on R, .

This follows from the proof of the last theorem and from Lemma 1.1.5.

1.3. B-convexity.

THEOREM 1.3.1. Let @ and ®* be complementary Orlicz functions. Then
the spaces (L%, ||*|lg) and (Lt || *|le¥) are B-convex if and only if @ and ®*
satisfy the A,-condition (0,-condition) [(4,, §,)-condition], respectively, in the
case of an atomless (a purely atomic) [a mixed] measure p.

Proof. We prove this theorem only in the case of an atomless measure
u. The proof in other two cases is analogous. Let @ and ¢* satisfy the
4,-condition. Then there exist Orlicz functions &, and @; equivalent to
@ and @*, respectively, and such that the spaces (L, ||*|lo,) and (L , |} “|lo,)
are uniformly convex and thus they are B-convex (see [4] Example 3 (ii),
p- 118). Since the norms ||*|l, and || |4, are equivalent to the norms ||-[le,
and || -]|g,, respectively, so by Theorem 5, p. 129, [4], the spaces (L, [|-|lq)
and (L%, ||']l:) are B-convex.

Conversely, let us suppose @ or ®* does not satisfy the 4,-condition.
We shall prove that the space (L%, |[‘|ls) is not B-convex. For, we shall
consider two cases.

(I) @ does not satisfy the 4,-condition. Then (see [7])* the space
(L%, || -llg) contains an isometric copy of [®. Since the space [* is not
B-convex (see [4], Example 3 (iv)), (L%, || -llp) is not B-convex too.

(IT) & satisfies and @* does not satisfy the 4,-condition. Then the dual
space (L%4)* of L% is isomorphic to the space L. Since, by the case (I) the
space L% is not B-convex, so (see [4], Theorem 3, p. 127) the space I, is not
B-convex too.

COROLLARY. 1.3.2. Let @ be an Orlicz function. The following conditions
are equivalent:

(i) @ and ®* satisfy the A,-condition (0,-condition) [(4,, 8,)-condition]
in the case of an atomless (a purely atomic) [a mixed] measure p, respectively,

4 In the case of a purely atomic measure y, see [9].
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(i) L% is reflexive,

(i) LY is uniformly convexifiable,
(iv) LY is B-convex.
Proof. The space L% is reflexive iff & and @* satisfy the 4,-condition

(6,-condition) [(4,, d,)-condition] in the case of an atomless (a purely
atomic) [a mixed] measure space (T, X, y). This follows from the results
of papers [7], [9] and [12]. Next, applying the results of this paper, we obtain
our corollary.
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