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Some generic properties in convex and non-convex optimization
theory

0. Introduction. In this paper we consider minimization problems for 
classes of real valued lower semicontinuous functionals

We study also problems [/, p] of best approximation of the range of a 
continuous mapping

(E a Banach space) to a point peE.  The hypotheses made on the domain X  do 
not ensure in general the existence of solutions. This is the case if g is in <9’(X), 
the space of all functionals which are bounded from below and lower 
semicontinuous on X  (here X  is an open or closed set in a metric space) or if 
g is in Ÿ~(X ), the space of all ge£f{X)  which are convex and coercive on a

Banach space X. Under the metric d(giy g2) = sup !gi(x) — +

—Я2 (x)|) such spaces are complete and so they are Baire spaces.
In such framework we study the “pathological” set of all functions for 

which the minimization problem is not well posed in the sense of Tihonov, 
(that is there is failure of existence or uniqueness or continuous dependence of 
solutions), and we prove that in the corresponding Baire space this set is small, 
namely of Baire first category. This implies in particular that for most g"s, that 
is for all g in a dense G0-set, the minimization problem is actually well posed.

Similar problems are studied for other classes of convex and non-convex 
functionals and for problems of best approximation [/, p].

This note develops certain ideas contained in [1], [3], [7]. For further 
developments, see Kenderov [5] and Penot [9].

Notations and some basic lemmas, useful in the study of optimization 
problems for mappings (0.2), are given in Section 1. In Section 2 (resp. 3) we 
consider generic properties concerning best approximation problems for 
mappings (0.2) defined on a closed (resp. open) set. Generic properties concern­

a i ) g: X ^ R .

(0.2)

x



2 F. S. De Blasi and J. M yjak

ing the minimization of non-convex (resp. convex) functionals (0.1) are 
established in Section 4 (resp. 5). For a pathological example see Lions ([6], p. 
95).

1. Notations and lemmas. Let A be a subset of a metric space 9£. We 
denote by:

Я the closure of A, 
int A the interior of A, 

dA the boundary of A,
dist(A, p) the infimum over A of the distances from aeA  

to a point pE&, 
diam A the diameter of A,

N the set of positive integers,
R the set of real numbers,

5/(х , r) the open ball in Ж with center at x 
and radius r > 0.

Let E be a real Banach space, with norm || ||, and Y a complete metric 
space. Let I  be a closed (or open) subset of Y with positive diameter and let 
C be a non-empty bounded closed convex body contained in E.

We denote by J£(X , C) the set of all continuous mappings / :  X -*C. 
This set, endowed with distance

d(f, g) = sup \\f(x)-g(x)\l, / ,  g e J f ( X ,  C),
x

is a complete metric space.
Occasionally, when the clarity is not affected, we shall write J t  instead 

of J t (X ,  C). In the sequel analogous abbreviations will be introduced 
without comment.

For any / E'JÏ{X, C) and peE\C ,  we set 

ÀftP = inf (|/(x)-p |(, Of,P(a) = {*e* | II/(x) - pH'< Л/,р + о-}> a > 0.
x

Note that, for each a > 0, the set is non-empty and £2f  p((r') c= Qf<p(<r)
whenever 0 < a' < a. In addition, Qf,p(<j) is closed (in Y ) if X  is so.

For / е М ( Х ,  C) and peE \C  we shall consider the problem [/, p] of 
the best approximation of the range o f /  to p. More precisely, we wish to find 
an element x0ë X  such that

\\f(x0)-p\\ =Af<p.

Any such x0e X  is called a solution of the optimization (or best approxi­
mation) problem [/, p].

Definition 1.1. A sequence {x„} c= X  is called a minimizing sequence of 

problem [/, p] if and only if lim ||/(x„) — p\\ = A/>p.
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D e f in it io n  1.2. Let/ e J i { X ,  C) and p e E \ C . The problem [/, p] is said 
to be well posed if and only if it has exactly one solution, say x0, and, 
moreover, each minimizing sequence of [/, p] converges to x0.

The following characterizations of well posed problems will be very 
useful.

L em m a  1.1. Let X  be a closed subset of Y Let f  e M (X , C) and p e E \ C . 
Then the problem [/, p] is well posed if and only if

(1.1) inf diam QftP(a) = 0.
<7>0

Proof. This lemma is due to Furi and Vignoli [4] when E = R. The 
same proof works in our case and, therefore, is omitted.

R em ark 1.1 Suppose that X  is open. Then the sets

SY(x,r/n), neN,
xedX

are closed and non-empty, provided r > 0 is sufficiently small, and satisfy
00

and U = X.
n =  1

L e m m a  1.2. Let X  be an open subset of Y. Let f  e M{ X,  C) and pe E \ C .  
Then the problem [/, p] is well posed if and only if (1.1) is satisfied and, in 
addition,
(1-2) Я / > о )  c  x n 0

for some o0 > 0 and n0eIS.
Proof. Indeed, if we assume that (1.1) and (1.2) are satisfied ((1.2) for 

convenient <70 > 0 and n0 e Л0, then a straightforward application of 
Cantor’s theorem gives that the intersection of all closed sets Qf  p(cr), 
0 < о < <т0, consists of a unique point x e X .  Clearly x is the unique solution 
of problem [/, p] and any minimizing sequence converges to x. Thus [/, p] 
is well posed.

Conversely, suppose that the problem [/, p] is well posed and denote by 
x0e X  its unique solution. If diam Qf  p(a) does not vanish as there is 
some /? > 0 and a sequence (x1? xi, x2, x'2, ...} (x„, x'neQf  p{l/n)) such 
that for each ne IS the distance of x„ and x'n is greater than f .  Since this 
sequence is minimizing and non-convergent, we obtain a contradiction. Thus
(1.1) is true. To complete the proof, let <5 > 0 and n0e N  be such that 
Sy(x0,£) c= X„Q. Since x0eQf  p((j) and (1.1) is satisfied, for some <т0 > 0 
we have

o) ^  Sy(xo-> <5) ^  X n0i
that is (1.2) is true and the proof is complete.
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R em ark 1.2. If the best approximation problem [/, p] is well posed, 
then the corresponding solution x0 depends continuously upon /  and p, that 
is : if, for n -+ oo, /„ -> f  and pn-*p and if the problem [/„, p„] has a solution 
xn, then x„ -> x0 as n -* oo.

Proof. Indeed, given £ > 0  let n0eN  be such that d ( f „ f ) ^ e / 4  and 
||p„ — p\\ < £/4 for n ^  n0. From

1 1 /  ( * „ )  ~  P\ К  1 1 /  ( * , , )  -  fn ( x „ ) |  i  +  I I / »  ( x „ )  -  Pn \ I  + 1 1  P„ ~  P\ I
we obtain

l l /W -p ll  < ^f„,Pn+ i £ < h,P+£> n > "o,
being |Я/,Р —Яу PJ < £/2. Thus [x„] is a minimizing sequence of problem 
[/, p] and therefore it must converge to x0. This completes the proof.

R em ark 1.3. When p e f (X ) ,  the problem [/, p] has a solution but this 
is not necessarily unique and so the problem [/, p] is not well posed, in 
general. As a trivial example consider / (x) = sin x and p = 0. This same 
example shows that, if £ is a continuous and bounded function which is 
sufficiently near to /, then also the problem [g, 0] is not well posed. In order 
to avoid situations of this type we have restricted our attention to problems 
of best approximation [/, p] with /  e M  (X , C), hence with range contained
in a fixed set С с  E and with p e E \ C . (See also Remark 2.1 and Sections 4 
and 5.)

2. Well posed best approximation problems for mappings with closed
domain. Throughout this section we assume that X  is a closed subset of Y 
with positive diameter and we study problems of best approximation [/, p], 
where / e J t  = J4{X , C) and p e E \ C .

Theorem 2.1. Let X , M, and p be as above. Let be the set of all f  e 
such that the problem [/, p] is well posed. Then ./#0 is a dense G6 subset of M .

Proof. In order to prove the theorem it is sufficient to show that is 
the countable intersection of open dense subsets of J t .

To this end, set

(2.1) M k = { f  eJ t \  inf diam Qf,p((r) < 1 /к}, keN ,
<r>0

and observe that by Lemma 1.1

n  ^ k.
к — 1

Thus the theorem is proved if each M k is shown to be open and dense in M . 
J i k is open in J i . Indeed, suppose that / &J4k. Then there is o0 > 0
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such that

diam OftP(a) < 1 /к if 0 < a ^  a0.

We claim that any geS  #(/, a), where 0 < a < a0j3, is contained in J ik. For 
this purpose it is sufficient to verify that

(2.2) QgtP(a) cz QftP(3a) for every geS.„(f, a).

In fact the latter inclusion implies

diam Qg p(a) ^  diam Qf<p(a0) < \jk,

and so ge./Mk. To prove (2.2), let geS„( f ,o)  and x eQgtP(a). We have

ll/W -p ll < ll/W-fl'(-v)|| + ||^(x)-p || < Лы,+2б7 
and, since \2g>p-Àf J  < a,

\ \ f ( x ) - p \ \  <  A f , p  + 3<T.

This implies that x e-Qfp(3a) and completes the proof that Mk is open.
Л к is dense in Л . To see this, consider any /  е Л  and fix £ > 0 such 

that £ < 2 diam C.
Take a point geint C and a number t such that 1 — e/(2  diam C) <  t <  I 

and define

T(x) = q + t ( f (x) -q) ,  x e X .

It is evident that / e Л  and d{J, f  ) < e/ 2 .  Next, we choose 0 < Ô <  e/ 2  such 
that S£(0, ô) c  (1 — t)(C — q) and we observe that

(2 .3 ) f ( X )  +  SE(0,ô )<=C.

Now, let us fix any point satisfying

(2.4) ll./r(xo) — p|| ^  Xf p + 6j2.

From (2.3) it follows that ||/(x 0) — p\\ ^  Ô. By Dugundji’s theorem ([2], 
p. 188) there is a continuous mapping h: X E such that \\h(x)\\ ^  <5, .xeX,

(2.5) h{x0) = - ô f { x 0) - p
n / w - p i r

(2.6) h(x) — 0 for x e X \Sx(x0, (1/4/c)).

(Taking a larger k, if necessary, we can always assume that the last set is 
non-empty.) Hence we define

9 (x )=f{x)  + h(x), x e X ,
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and we note that g e M  and d(g,f)  < e, thus g e S A{f, e). Furthermore, as 
we shall see,

(2.7)

and so g e J t k. In fact,

Il0 (*o)-Pll

inf diam Qg,p{(r) ^  1 /(2k)
a> 0

\\?{x0)-p\\

| | /(x„ )-p | | - 5
~P\\

and, by virtue of (2.4),

1 И * о) - р 11 ^  A p ~ 0 !2

from which

(2.8) ^ p ^ A l p -0/2 .

On the other hand, if х б 1 \5 ^ (х 0, 1Д4Л:)), we have

(2-9) \\g(x)-p\\ = w f ( x ) - p \ \ ^  ÀftP.

Let 0 < g 0  < <5/2. By virtue of (2.8), for each xeQgp(o0) we have

IIp W - pII < K,p + <7o ^  *f,p- i s  + (j0 < A/iP.
From this and (2.9) it follows that

®g,p(ao) c  M *o, l/(4/c))
and so (2.7) is true. Then g e J t k and Mk is dense in J t . This completes the 
proof.

Using the preceding argument we can prove the following 
R em ark 2.1. Let X  be a closed subset of Y Let/: X -*■ E be continuous 

and bounded and let peE  satisfy dist (f(X), p) > 0. Then there is e0 > 0 
such that for each 0 < e ^  e0 and for almost all (in the sense of the Baire 
category) continuous and bounded mappings q>: X  -> E such that 

the problem of best approximation [<p, p] is well posed. 
Theorem. 2.2. Let X, Ji, and .J/0 be as in Theorem 2.1. In addition, sup­

pose that X  is connected. Then the set is dense in M.
Proof. We want to prove that for every / e M  and any e > 0 there is a 

g e J t \ J t 0 such that d (g , f )< e .
As in the proof of Theorem 2.1 we take a convenient Ô, 0 < Ô < e/2, and 

we construct a mapping/ s M  with d{f , f )  < e/2 satisfying (2.3). Suppose that 
J e M 0 (otherwise the statement is trivially satisfied). Then there is a unique
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point x0e l  such that

ll/(*o)^Pll =*f,p-
By Dugundji’s theorem ([2], p. 188) there is a continuous mapping h: X  -+E 
such that \\h(x)\\ < <5, x e X ,  and

7 (x) — p -r
h(x) = A/tP ^  _  - ? ( x )  + p for each x e Q f <p(6).

Now define g(x) = f (x)  + h(x), x e X ,  and observe that d(g, f)  < e.
Since, for each x e  X Qpp(S), we have

\\g(x)-P\\ > I I / M - pII-PM II > ùf,p+ s - ô  = Xf'P
while, for each xeQpp(ô),

\\g(x)-p\\ = A/fP
we can conclude that every point in the set 0 / tP(S) is a solution of problem 
[<g, p]. Moreover, Qj<p (<5) contains more that one point, being X  connected, 
and so the problem [g, p] is not well posed. This completes the proof.

Let X  be a closed subset of Y with positive diameter and let D be a non­
empty closed subset of E \ C . Set W = J t x D ,  where M  = ,M{X, C), and 
observe that 9JÎ, endowed with metric

max {d(f, g), ||x -y ||} , (/, x), (g, у)е<Ш,

is a complete metric space.
L em m a  2.1. Suppose that the problem [g, q], (g, q)e$R, is well posed. 

Then, for every e > 0 there exists ôgq(s) > 0 such that

diam 0 Ap(ôgtq(e)) ^  e for each (/, p)eSm((g, q), ôgt9(e)).

Proof. Let x0 be the unique solution of problem [g, q]. Let e > 0. By 
Lemma 1.1 there is o0 > 0 such that

(2.10) Цм(а) c: ^x(xo> £/2) for every 0 < a ^  cr0.
Let 0 < Ô < Gq/5. Let (/, p)eS,m((g, q), <5). Then, for each xefi/>p(<5), we have

\\g(x)-q\\ ^  \\g(x)-f(x)\\ + \\f(x)-p\\+\\p-q\\

<i Ô Àj- p-\- Ô Ô ^  Яg q -f 5Ô

and so xGQgg(5S). Hence QftP(S) a  Qgq(o0). Then, setting ôg<q(£) = ô, from 
the last inclusion by virtue of (2.10), we obtain the statement. This completes 
the proof.

L em m a  2.2. Suppose that D is a separable and closed subset of E \ C . 
Denote by StR0 the set of all (/, p)e9D? such that the problem [/, p] is well 
posed. Then 9К0 contains a dense Gô subset of 9PÎ.
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Proof. Let I  = \qx, q2, ...} be a dense subset of D. By Theorem 2.1, for 
each qke l  there is a dense Gô subset ,4tk of Æ such that the problem [/, qk] 
is well posed for each f e M k. Set

oo
j ? =  n  .*».

Jt = 1
Obviously - // is a dense Gd subset of , // and, for every /  e J i  and every 
q e I , the problem [/, q] is well posed.

Define
00

•W* = П U q), S^(\/k)),
k=  1 ( M l e V x I

where <59̂ (l/fc) corresponds to [p,g] and /с, according to Lemma 2.1. We 
observe that ftJi* is a dense Gs subset of 90L To finish the proof it is enough 
to verify that ЯН* с: <Щ0.

In fact, let (/, р)еШ#. Then, for every k s N  there exists (gk, qk)€ J t  x l  
such that

( / ,  p)eSm ((gk, qk), б ^ Х /к ) ) .

By Lemma 2.1
diam Æ/>p(<5^k(l/к)) ^  1 /к,

which implies

inf diam £?/>р(<т) = 0.
<т> 0

Then, by Lemma 1.1, problem [/, p] is well posed and so (/, p )esIR0. This 
completes the proof.

As an immediate consequence of Lemma 2.2 and a theorem of Kura- 
towski and Ulanu([8], p. 56) we have the following

Theorem 2.3. Let X  be a closed subset of Y Let D be a separable aM 
closed subset of E \ C . Then there exists a dense Gs subset of .Ж(Х , C) 
such that for every f  e,Æ0 the problem [/, p] is well posed for each peDfi 
where Df  is a dense G6 subset of D (depending on /) .

3. Well posed best approximation problems for mappings with open 
domain. In this section X  denotes a non-empty open subset of Y and {Xn} 
the sequence of closed sets, associated with X, defined in Remark 1.1.

We shall study problems of best approximation [/, p], where f e J l  
= ,JÏ(X, C) and p e E \ C .  Let us define

(3.1) = [ / e Jt\ Qf'P{o) c  X n for some о > 0 and some neN\ .

Note that for each/ e M  there is af  > 0 such that QffP{o) is closed (in Y) for
0 <■-' a ^  <jf.
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L em m a  3.1. Let X  be an open subset of Y Let p e E \ C . Then Л  is an 
open dense subset of M  — J/ (X,  C).

Proof. First of all we show that Л  is open. Letf е Л  . Let o0 > 0 and 
n0e N  be such that Qf p ((j0) cz X „Q. We claim that for 0 <r g < <т0/3, the ball 
5 Д /, cr) is contained in Л .  Indeed, let хеО^Да), where geS  #{ fo) .  
We have

ll/(*)-p |l ^  \\f(x)-g(x)\\ + \\g(x)-p\\ < À0iP + 2a ^  a/)P + 3<t,

that is xeQf<p{3<r). Hence Qg<p(o) cz Qf  p((j0) cz X„0, for every g e S ^ ( f o ) ,  
and so Л  is open.

In order to prove that Л  is dense in Jt ,  consider any ball S # ( f  f.), 
where f e J t  and 0 < e < 2 diam C.

Let geint C. Let t be such that 1— s/(2 diam C) < t < 1. Define/ and 
x0 as in Theorem 2.1. Let т > 0 be such that SY(x0, 2x) cz X.

By Dugundji’s theorem ([2], p. 188) there is a continuous mapping 
h: X - ^ E  satisfying (2.5), (2.6) (for each x e X \ S Y(x0, r)), and such that 
||/i(x)|| < <5, x e X  (0 < Ô < g/2). Then, setting g(x) — f{x) + h(x), x e X,  we have 
ge.W and d(g, f)  <e. As in the proof of Theorem 2.1 one can verify that

A,.,>(0-()) c  Мхсъ'О if 0 < o 0 < <5/2.

Let n0 be large enough so that Sy(x0, t) c z  X„ . Then we have

Ц,,„(<т0) c
which implies that д е Л .  This completes the proof.

T heo rem  3.1. Let X  be an open subset of Y. Let p e E \ C . Let be the 
set of all f  e M  = M{X,  C) such that the problem [/, p] is well posed. Then 

is a dense G6 subset of , M.
Proof. Using the argument of Theorem 2.1 one can prove that each set 
defined by (2.1) is open and dense in ,# . By Lemma 3.1 the same is true 

for Л .  Since, by Lemma 1.2,
00

M q = Л n  ^#k)
k= 1

we can conclude that J t 0 is a dense Gd subset of M . This completes the 
proof.

R em ark 3.1. The statement of Remark 2.1 remains true also when X  is 
supposed to be open.

4. Well posed minimization problems for nonconvex functionals. In this 
section we study minimization problems for lower semicontinuous (non­
convex) functionals defined on a subset of a complete metric space Y
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Let X  be a non-empty subset of Y with positive diameter. Denote by 
^  = !F(X) the set of all functionals f : X - * R  which are bounded from 
below. For f , g e ^  we put

Observe that d0 is a distance on ; moreover, if X  is closed and /  lower 
semicontinuous, the set Qf (a) is closed (in Y). For a n y /e J ^  we want to 
establish whether /  has minimum on X. We call this a minimization problem. 
We say that a minimization problem is well posed if there exists exactly one 
point x0e X  such that /  (x0) = Xf  and, moreover, any minimizing sequence 
converges to x0.

Let X  be a closed (or open) subset of Y with positive diameter. We denote 
by X ) the set of all /  e JF(X) such that /  is lower semicontinuous. Note that 
S?(X) becomes a complete metric space under the distance d0.

Lemma 4.1. Let X  be a non-empty closed (resp. an open) subset of Y Let 
f  e ST(X). Then the minimization problem for f  is well posed if and only if
(4.1) inf diam (<r) = 0

(resp. if and only if (4.1) is satisfied and, in addition, Qf (o0) a X „ Qfor some 
cr0 > 0 and n0 e IV, where the sequence {Xn} corresponds to X  according to 
Remark 1.1).

Proof. This lemma, when X  is closed, is established in [7]; when X  is 
open is proved as Lemma 1.2.

Theorem 4.1. Let X  be a non-empty open subset of Y. Let ST0 be the set of 
all f  X ) for which the minimization problem is well posed. Then У*0 is
a dense Gô subset of S f .

Proof. Let {X n} be the sequence of closed sets, corresponding to X, 
defined in Remark 1.1.

Denote by 9  the set of all /  e Sf such that Qf  (<т) c  X n for some о > 0 
and some neN.

9  is an open dense subset of The fact that 9  is open is proved 
using the argument of Lemma 3.1. To see that 9  is dense, fix any / e ^  and 
e > 0. Choose x0 e Qf  (e/3) and define

Obviously, g e ^  and d0(g , f  ) < e, thus the density is proved.
By a similar method one can show that the sets У к = {/еУ1  

inf diam Qf (o)<l/k],  keN ,  are open and dense in Sf.

Xf  — inff(x), üf (cr) = (xeXj f  (x) ^  Af + oj, о > 0. 
x

f ( x 0) - h ,  if x = x0,
f(x),  if x Ф x0.
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By Lemma 4.1, 0 = 9* n  ( П ^k)  and so is a dense Gb subset of Sf.
k= 1

This completes the proof.
Let X  be a closed (or open) subset of Y with positive diameter. Denote 

by &(Х) the set of all f e^F(X)  which are continuous. Observe that r€(X) 
is made into a complete metric space under the distance d0.

T h eo r e m  4.2. Let X  be a non-empty open subset of Y. Let 0 be the set of all 
f  e ($(X)for which the minimization problem is well posed. Then c&0 is a dense Gô 
subset of C6(X).

Proof. The proof can be carried out using the preceding technique. 
R em ark 4.1. When X  is closed, corresponding results have been 

previously established by Lucchetti and Patrone [7].
We observe also that if the minimization problem for /  e ^ ( X )  is well 

posed, then the solution depends continuously upon f  that is: if f n 
~^ f fne ^(X)-> and if the minimization problem for/„ has a solution x„, then 
x x 0 as n -*■ oo.

5. Well posed minimization problems for convex functionals. Let F be a
real Banach space with norm ||-||. In this section we study minimization 
problems for lower semicontinuous convex functionals / :  X  -+ R, with 
domain X  c= F. We consider both cases, X  a closed convex bounded subset 
of F and X  = F.

Let X  be a closed convex and bounded subset of F with positive 
diameter. We denote by Ж  = Ж (X) the set of all functionals f  E&  = Ж(Х) 
such that /  is convex and lower semicontinuous on X. Under the distance d0 
the set Ж  becomes a complete metric space.

In the proof of Theorem 5.1 we use the following lemma. The proof, 
quite elementary, is omitted.

Lemma 5.1. Let Ф — {(реЖ\ q>(x) ^  x e l} ,  where Then Ф
is non-empty and the functional g: X  -* R defined by g(x) = sup cp(x), x e X ,

Ч>еФ
is in Ж.

T h eo r e m  5.1. Let X  and Ж be as above. Let Ж 0 be the set of all f  еЖ  
for which the minimization problem is well posed. Then Ж0 is a dense Gô 
subset of Ж .

Proof. For every IteiV we define 

(5.1) Ж к — {f еЖ\  inf diam Qf (a) < 1 /к].
<т> 0

GO

Since, by virtue of Lemma 4.1, Ж 0 — f) the theorem is established if
k= 1

we show that each set Жк is open and dense in Ж .
The fact that Жк is open is proved using the argument of Theorem 2.1.
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To see the denseness, consider any /e J T  and e > 0. Then, choose any 
x0 e Qf  (e/4) and define

(5.2) P(x) =
f ( x  0) - h ,
f ix) ,

if x  = x0, 
if x Ф x0.

Observe that P is bounded from below. Also, define

a(x) = / ( x 0) - IIs -X qII
r

x e X,

where r > 0 is the radius of a ball, with center at x0, which contains the 
(bounded) set X. It is clear that ae Ж  and for this functional, the minimization 
problem is well posed. Moreover, for each x Ф x0,

a(*) ^  f ( x 0) - j è  <  Àf + j e -  j e  < f(x)  = P(x)

and, since a(x0) = P(x0), we have a(x) ^  P(x) for each x e X,  thus <х е Ф.
With the above choice of P, define g as in Lemma 5.1. Observe that 

g e Ж. Moreover,

(5-3) a(x )^g (x ), x e X, = /(x 0) -  je  = Xg.

These imply Qg(cr) c  Qa(cr), о > 0, from which it follows that also for g the 
minimization problem is well posed. Thus д е Ж к.

Since the functional defined by f ( x ) — |e ,  xeA,xis in Ф and /(x ) 
^  P(x) ^  g(x), we have

/(x ) >g{x) ^ / ( x ) - | c ,  x e X.
Hence ) / (x) — g{x)\ ^  |e ,  x e X,  and so d0(g,f) < e. This completes the proof.

R em ark 5.1. Theorem 5.1 is false when X  is unbounded. To see why is 
so, take in Theorem 5.1 X  = R and/ e /  such that/(x) = 0, x e X. Then for 
this/ and for each gEЖ  satisfying d0(g , f  ) ^  e (0 < e < 1) the minimization 
problem is not well posed since each such g is a constant function.

We consider now the case in which the functionals /: X  -> R are defined 
on the set X  — F. Denote by I'" = 'V(X) the set of all functionals /  e ^ ( X )  
such that /  is lower semicontinuous convex and coercive, that is

lim f  (x) = + oo.
11*11-+00

Under the distance d0 the set V  is a complete metric space.
Note that if /  e !F{X) is coercive then, for each o*> 0, the set Qf{o) is 

bounded.
The following lemma is elementary and is stated without proof. 
Lemma 5.2. Let Ф — {(^e Y\  <p(x) ^  p(x), x e l } ,  where Pe $F(X). Then, 

if the set Ф is non-empty, the functional g : X  -> R defined by g (x) 
= sup q>(x), x e X, is in 'V .

<реФ

J
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T h eo r e m  5.2. Let X  = F . Let ir  0 he the set of all functionals f  e  T' =  t~(X) 
for which the minimization problem is well posed. Then i  '0 is a dense Gs 
subset of i  \

Proof. As in the proof of Theorem 5.1 we introduce the sets ir k 
defined by (5.1), where JT is replaced by i". The openness of is proved 
as in Theorem 5.1. In order to establish the denseness we fix any/етГ , e > 0 
and a point x0eQf (s/4). Since /  is coercive there exists r0 > 0 such that

Qffic) a  Sx (x0, r0).

Let r > r0. Then,

(5.4) ll*-*o|| ^  r implies f  (x) > Xj- + Je.

Now we define

f (x )  = max {/(x), Xf + *e}, x e X ,

(5‘5) ' , 4 7 / 4 . 1  Hx - Xoll _  vy (x )= /(x 0) + ? £ ---- ----- » x e X ’

and we observe that /  and у are in iT. Furthermore, the minimization 
problem for у is well posed.

We claim that

(5.6) | |x - x 0| |> r  implies y(x )^J(x) .

Otherwise, there is x t e X  with ||хх — x0|| > r such that у(х^ > /(x j) . Let £ 
= Dc0 + (1 — r)x,, 0 < t < 1, be the unique point of the line segment of end 
points x0 and Xj satisfying ||<̂ — x0ll = r. Then, by the choice of x0 and (5.4), 
we have

y(£) =  /(*<))+?£ <  Я/ T i e + i f i  < / ( £ )  =/(£)•

On the other hand by the definition of у and the convexity of /  we obtain

y(£) =  ty(x0) +  ( l - t )y (x1) >  t /(xo) +  (l-0/(->Ci)

This is a contradiction and so (5.6) is proved.
Next, we set

a(x) = y ( x ) - |8 + / ( x 0)-y (x 0), x e l .

Clearly a e f  and, moreover,

(5.7) a (x )^ /(x ) ,  x e l .

To see this, first we observe that/(-Xo)- y(xo) ^  0- Hence, if ||x —x0|| > r, by 
virtue of (5.6) and (5.4) we have

a(x) < y(x) ^ / ( x )  = /(x )
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while, if ||x — x0|| < r,

a(x) ^ y(x) — J£ < /(x 0) + Je — Je = Ay+Je— Je < / (x) 
thus, also (5.7) is true.

Therefore, it follows that a(x) < /?(x) for each x e X,  where is defined 
by (5.2). With this choice of we define the set Ф and the functional g as in 
Lemma 5.2. Since а еФ, by Lemma 5.2 we have that ge t" .  By construction g 
satisfies (5.3). Then from (5.3) it follows that Qg(<r) с: Ц*(ст), a > 0, thus since 
for a the minimization problem is well posed, the same is true for g. This 
shows that д е У к. The conclusion is similar to that of Theorem 5.1. This 
completes the proof.

R em ark 5.2. It is easy to see that the functional /  defined by (5.5) 
has infinite points of minimum. From this and the construction of /  it 
follows that each functional /  e Y  = Y  (X) can be approximated (in Y )  by 
one, namely £  for which the minimization problem is not well posed. This 
shows that the set Y \ Y 0 is dense in Y .

Notice that, if I  is a reflexive Banach space, for each /  e Y  the 
minimization problem has always a solution, though this is not necessarily 
unique. In a non-reflexive Banach space even existence can fail but, in view of 
Theorem 5.2, this occurs rather exceptionally (in the sense of the Baire 
category).

References

[1] J. Bar an ger and R. T em am , Nonconvex optimization problems depending on a parameter, 
SIAM J. Control 13 (1975), 146-152.

[2] J. D u g u n d ji, Topology, Allyn and Bacon, Boston 1967.
[3] M. E d e ls te in , On nearest points of sets in uniformly convex Banach spaces, J. London 

Math. Soc. 43 (1968), 375-377.
[4] M. F u ri and A. V ig n o li  About well-posed optimization problems for functionals in metric 

spaces, J. Optimization Theory and Applications 5 (1970), 225-229.
[5] P. S. K en d er ov, Most of the optimization problems have unique solution, C. R. Acad. Bulgare 

Sci. (to appear).
[6] J. L. L ion s, Contrôle optimal de systèmes gouvernés par des équations aux dérivées 

partielles, Dunod-Gauthier-Villars, Paris 1968.
[7] R. L u c c h e tt i and F. P a tro n e , Sulla densità e genericità di alcuni problemi di minima ben 

posti, Pubblicazioni dellTstituto di Matematica, Università di Genova, n. 217 (1977).
[8] J. C. O x to b y , Measure and category, Springer-Verlag, New York 1971.
[9] I .P . P en o t, A characterization oj tangential regularity, Nonlinear Anal. 5 (1981), 

625-643.

ISTITUTO MATEMATICO U. DINI, FIRENZE, ITALY
and
INSTYTUT MATEMATYKI AG H, KRAKÔW, POLAND


