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Some generic properties in convex and non-convex optimization
theory

0. Introduction. In this paper we consider minimization problems for
classes of real valued lower semicontinuous functionals

0.1) g: X - R.

We study also problems [f, p] of best approximation of the range of a
continuous mapping

(0.2) fr X—E,

(E a Banach space) to a point pe E. The hypotheses made on the domain X do
not ensure in general the existence of solutions. This is the case if g is in & (X),
the space of all functionals which are bounded from below and lower
semicontinuous on X (here X is an open or closed set in a metric space) or if
g 1s in 77 (X), the space of all ge % (X) which are convex and coercive on a

Banach space X. Under the metric d(g,, g,) = sup |g, (X)— g, ()IA1 +1g, (x)
X

—g,(x)]) such spaces are complete and so they are Baire spaces.

In such framework we study the “pathological” set of all functions for
which the minimization problem is not well posed in the sense of Tihonov,
(that 1s there is failure of existence or uniqueness or continuous dependence of
solutions), and we prove that in the corresponding Baire space this set is small,
namely of Baire first category. This implies in particular that for most ¢’s, that
is for all g in a dense G;-set, the minimization problem is actually well posed.

Similar problems are studied for other classes of convex and non-convex
functionals and for problems of best approximation [f, p].

This note develops certain ideas contained in [1], [3], [7]. For further
developments, see Kenderov [5] and Penot [9].

Notations and some basic lemmas, useful in the study of optimization
problems for mappings (0.2), are given in Section 1. In Section 2 (resp. 3) we
consider generic properties concerning best approximation problems for
mappings (0.2) defined on a closed (resp. open) set. Generic properties concern-
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ing the minimization of non-convex (resp. convex) functionals (0.1) are
established in Section 4 (resp. 5). For a pathological example see Lions ([6], p.
95).

1. Notations and lemnmas. Let 4 be a subset of a metric space 4. We
denote by:
A the closure of A,
int A the interior of A,
0A the boundary of A4, A
dist(4, p) the infimum over A of the distances from acA4
to a.point pe ¥,
diam A the diameter of A4,
N the set of positive integers,
R the set of real numbers,
S, (x, r) the open ball in & with center at x
and radius r > 0.

Let E be a real Banach space, with norm |-}/, and Y a complete metric
space. Let X be a closed (or open) subset of Y with positive diameter and let
C be a non-empty bounded closed convex body contained in E.

We denote by .# (X, C) the set of all continuous mappings f: X — C.
This set, endowed with distance

d(f, 9) = sup Ifx)—g(ll, [ ge#(X,C),

is a complete metric space.

Occasionally, when the clarity is not affected, we shall write .# instead
of #(X,C). In the sequel analogous abbreviations will be introduced
without comment.

For any fe.# (X, C) and pe—ET, we set
Ap = ir;f (fx)=pll, 2 ,(0)={xeX] ([f(X)—pll < i,p+0}, ¢>0.

Note that, for each ¢ > 0, the set ; (o) is non-empty and Q; ,(¢) < 2, ,(0)
whenever 0 < ¢’ < o. In addition, Q; (o) is closed (in Y ) if X is so.

For fe #(X, C) and pe E\C we shall consider the problem [f, p] of
the best approximation of the range of f to p. More precisely, we wish to find
an element x,e X such that

Ilf (xo)—pll = Ay,
Any such xoeX is called a solution of the optimization (or best approxi-
mation) problem [f, p].
DerINITION 1.1. A sequence {x,} = X is called a minimizing sequence of

problem [f, p] if and only if lim |If(x)—pll = 4.

n—o
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DeriniTION 1.2. Let f € # (X, C) and pe E\C. The problem [f, p] is said
to be well posed if and only if it has exactly one solution, say x,, and,
moreover, each minimizing sequence of [f, p] converges to x,.

The following characterizations of well posed problems will be very
useful.

LemMA 1.1. Let X be a closed subset of Y. Let fe #(X, C) and peE\C.
Then the problem [f, p] is well posed if and only if

1.1) inf diam Q; ,(¢) = 0.
>0
Proof. This lemma is due to Furi and Vignoli [4] when E = R. The
same proof works in our case and, therefore, is omitted.

Remark 1.1 Suppose that X is open. Then the sets
X"=X\U SY(x’ r/n)’ nGN,
xedX
are closed and non-empty, provided r > 0 is sufficiently small, and satisfy

XIC.X2C... and UX,.=X.
n=1
LemMMA 1.2. Let X be an open subset of Y. Let f € # (X, C) and peE\C.
Then the problem [f, p] is well posed if and only if (1.1) is satisfied and, in
addition,

(1.2) Qrplo0) © X,y

for some 64> 0 and nyeN.

Proof. Indeed, if we assume that (1.1) and (1.2) are satisfied ((1.2) for
convenient g4 >0 and nyeN), then a straightforward application of
Cantor’s theorem gives that the intersection of all closed sets Q; (o),
0 < 0 < 0y, consists of a unique point Xe X. Clearly X is the unique solution
of problem [f, p] and any minimizing sequence converges to X. Thus [f, p]
is well posed.

Conversely, suppose that the problem [f, p] is well posed and denote by
Xo€ X its unique solution. If diam Q; ,(¢) does not vanish as g— O there is
some f>0 and a sequence {Xx;, X}, X, X3, ...} (X,, X,€2,,(1/n) such
that for each ne N the distance of x, and x; is greater than B. Since this
sequence is minimizing and non-convergent, we obtain a contradiction. Thus
(1.1) is true. To complete the proof, let 6 >0 and noe N be such that
Sy(x0,0) = X,,,. Since xo€€ ,(0) and (L.1) is satisfied, for some o, >0
we have

Qr ,(00) = Sy(xp, 8) = X

ﬂo’

that is (1.2) is true and the proof is complete.
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Remark 1.2. If the best approximation problem [f, p] is well posed,
then the corresponding solution x, depends continuously upon f and p, that
is: if, for n — o0, f, — f and p, — p and if the problem [f,, p,] has a solution
x,, then x, —x, as n— oc.

Proof. Indeed, given ¢ > 0 let noe N be such that d(f,, f) <e/4 and
lp,—pll < ¢/4 for n = n,. From

”f(xn)_.p” < ”f(xn)_.f;:(xn)“ +”fn(xu)_pn“+”pn—p”

we obtain
”f(xn)“p” < )‘f",pn+%8 < A-f,p'*‘ﬁ, n = ng,

being |4;,—4;, ) <&/2. Thus |x,; is a minimizing sequence of problem
[/, p] and therefore it must converge to x,. This completes the proof.
Remark 1.3. When pe f(X), the problem [, p] has a solution but this
is not necessarily unique and so the problem [f, p] is not well posed, in
general. As a trivial example consider f(x) =sin x and p = 0. This same
example shows that, if g is a continuous and bounded function which is
sufficiently near to f, then also the problem [g, 0] is not well posed. In order
to avoid situations of this type we have restricted our attention to problems
of best approximation [f, p] with fe .# (X, C), hence with range contained

in a fixed set C = E and with pe E\C. (See also Remark 2.1 and Sections 4
and 5.

2. Well posed best approximation problems for mappings with closed
domain. Throughout this section we assume that X is a closed subset of Y

with positive diameter and we study problems of best approximation [f, p],
where fe # = 4 (X, C) and peE\C.

TueoReM 2.1. Let X, ./, and p be as above. Let M be the set of all f € M
such that the problem [ f, p] is well posed. Then .# is a dense G; subset of M.

Proof. In order to prove the theorem it is sufficient to show that .#, is
the countable intersection of open dense subsets of .#.
To this end, set

(2.1) My = {fe. M inf diam Q;,(c) < 1/k}, keN,

a>0

and observe that by Lemma 1.1

./”oz ﬂ '/”k'

k=1

Thus the theorem is proved if each .#, is shown to be open and dense in .#.
M, is open in #. Indeed, suppose that fe .#,. Then there is g, >0
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such that
diam Q; (o)< 1/k if 0<o<o,.
We claim that any geS ,(f, ), where 0 < ¢ < 64/3, 1s contained in .#,. For
this purpose it is sufficient to verify that
(2.2 Q,,(0) =, ,(306) for every geS ,(f, o).
In fact the latter inclusion implies
diam Q, (o) < diam Q; ,(g,) < 1/k,
and so ge.#,. To prove (2.2), let geS ,(f, 0) and xeQ, ,(¢c). We have
If G =pll < H1f () =g (N +llg ()= pil < 4, + 20
and, since |4,,—4, | <o,

Ilf G —pli < 4, +30.
This implies that x<Q, ,(30) and completes the proof that .#, is open.
M, is dense in .#. To see this, consider any fe.# and fix ¢ > 0 such
that ¢ < 2 diam C.

Take a point geint C and a number r such that 1 —¢/(2 diam C) <t < 1
and define

J(x) =>q+t‘(f(x)—q), xeX.

It is evident that fe.# and d(f, f) < ¢/2. Next, we choose 0 < § < ¢/2 such
that S;(0, ) = (1 -t)(C—q) and we observe that

(2.3) F(X)+5.(0,8) = C.

Now, let us fix any point x,€ X satisfying
(2.4) IS (xo)=pIl < A7,+8/2.

From (2.3) it follows that ||f(x,)—p|l = . By Dugundji’s theorem ([2],
p. 188) there is a continuous mapping h: X - E such that ||h(x)|] < J, xe X,

. ](Xo)"p
25 h(xy) = —0S5———
23 o = =0 e =il
(2.6) h(x) =0 for xeX\Sx(xo, (1/4k)).

(Taking a larger k, if necessary, we can always assume that the last set is
non-empty.) Hence we define

g0 =F(x)+h(x), xeX,
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and we note that ge .# and d(g, f) <e&, thus geS ,(f, ¢). Furthermore, as
we shall see,

2.7) inf diam Q, () < 1/(2k)
>0
and so ge.#,. In fact,
| | F(xe)=p
—pll = —5 =% T _
lotxo)=pl = | 7(9=8 o= )
‘ é
= (fi(xe)=p) 1=
Wf““ ”< |Mua—mJ“
= |17 (xo)—pll =&

and, by virtue of (2.4),
llg (xo)— pll < 47,,—0/2

from which

(2.8) Dy < Ajp—0/2.

On the other hand, if xeX\Sx(x,, 1/(4k)), we have
(2.9) llg (x)—pll =117 ()= pll = 47,

Let 0 <oy < /2. By virtue of (2.8), for each xeQ, ,(s,) we have

llg (x) = pll < 45, +00 < A7, —30+00 < A7,
From this and (2.9) it follows that

Qg,p (GO) < SX (xo, 1/(4k))

and so (2.7) is true. Then ge .#, and .#, is dense in .#. This completes the
proof.

Using the preceding argument we can prove the following

Remark 2.1. Let X be a closed subset of Y. Let f: X — E be continuous
and bounded and let peE satisfy dist (f(X), p)> 0. Then there is &, > 0
such that for each 0 <& < ¢, and for almost all (in the sense of the Baire
category) continuous and bounded mappings ¢: X - E such that
d(o,f) < e, the problem of best approximation [¢, p] is well posed.
" THEOREM. 2.2. Let X, M, and M be as in Theorem 2.1. In addition, sup-
pose that X is connected. Then the set M \M is dense in M.

Proof. We want to prove that for every f e # and any ¢ > O there is a
ge A\ M, such that d(g, f) <s.

As in the proof of Theorem 2.1 we take a convenient 4, 0 < < ¢/2, and
we construct a mapping f € .# with d(f, f) < /2 satisfying (2.3). Suppose that
fe.#, (otherwise the statement is trivially satisfied). Then there is a unique
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point x,€ X such that

I (xo)=pll = 47,
By Dugundji’s theorem ([2], p. 188) there is a continuous mapping h: X — E
such that ||h(x)|| < J, xeX, and

f(x) p —f(x)

h(x )—/1“,”],( +p for each xeQj,(d).

Now define g(x) =f(x)+h(x), xe X, and observe that d(g, f) <e¢
Since, for each xe X' Q5 ,(6), we have

llg ()= Bll = 1f (0= pll = lh ()| > A7, +6—8 = 47,

while, for each xeQy ,(9),
llg(x)—pll = 47,

we can conclude that every point in the set Q5 ,(d) is a solution of problem

[g, p]. Moreover, Q5 ,(5) contains more that one point, being X connected,

and so the problem [g, p] is not well posed. This completes the proof.
Let X be a closed subset of Y with positive diameter and let D be a non-

empty closed subset of E\C. Set Y = # x D, where 4 = .#(X, C), and
observe that I, endowed with metric

max {d(f, ), lx—=yll}, (/. %), (g, y)eM,

is a complete metric space.

LEMmA 2.1. Suppose that the problem Lg, ql, (g, M, is well posed.
Then, for every e > 0 there exists 6,,(¢) > 0 such that

diam Q; ,(8,,(e)) <& for each (f, p)eSu((g, ), J,,(¢))-

Proof. Let x, be the unique solution of problem [g, ¢q]. Let ¢ > 0. By
Lemma 1.1 there is o, > 0 such that

.(2.10) Q,.(0) = Sx(xo,8/2) for every 0 <o < gy.
Let 0 <6 < 0¢/5. Let (f, p)eSp((g, ), ). Then, for each xeQ, ,(5), we have
llg (x)—qll < llg (x)— f Nl +If (x)=pll +1lp—4l|
<O0+Ays,+0+6 <4y ,+56

and so xeQ, ,(50). Hence Q; ,(0) = ,,(d,). Then, setting J, ,(¢) = 4, from
the last inclusion by virtue of (2.10), we obtam the statement. This completes
the proof.

LeMMA 2.2. Suppose that D is a separable and closed subset of E\C.
Denote by M, the set of all (f, ppe M such that the problem [f, p] is well
posed. Then I, contains a dense G; subset of IN.
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Proof. Let 2 = {q,, q,, ...} be a dense subset of D. By Theorem 2.1, for
each g, € X there is a dense G, subset .#, of .# such that the problem [f, g,]
is well posed for each fe.#,. Set

l/: m ‘///k'

Obviously .# is a dense G, subset of ./# and, for every fe.# and every
geZX, the problem [f, q] is well posed.
Define

M, = ﬁ U Son ((99 9, 6g,q(1/k))s

k=1 (g.q)e A x2

where 6, ,(1/k) corresponds to [g,q] and k, according to Lemma 2.1. We
observe that 9, is a dense G, subset of M. To finish the proof it is enough
to verify that 9, < M,.

In fact, let (f, p)e M,. Then, for every ke N there exists (g, gy)¢ -# x X
such that

(f, peSy ((gk’ qx)» 5g,,,q,‘(1/k))-
By Lemma 2.1
diam Q,, (5gk,qk(1/k)) < 1/k,
which implies

inf diam Q, (o) = 0.
>0
Then, by Lemma 1.1, problem [f, p] is well posed and so (f, p)eM,. This
completes the proof.
As an immediate consequence of Lemma 2.2 and a theorem of Kura-
towski and Ulam.([8], p. 56) we have the following

THEOREM 2.3. Let X be a closed subset of Y. Let D be a separable and
closed subset of E\C. Then there exists a dense G; subset # of .# (X, C)
such that for every fe .#, the problem [f, p] is well posed for each pe Dy,
where D, is a dense G; subset of D (depending on f).

3. Well posed best approximation problems for mappings with open
domain. In this section X denotes a non-empty open subset of Y and {X,}
the sequence of closed sets, associated with X, defined in Remark 1.1.

We shall study problems of best approximation [f, p], where fe .#

= .# (X, C) and peE\C. Let us define
(3.1) A =|fe.Hl Q,c) <X, for some ¢ >0 and some neN).

Note that for each f e .# there is o, > 0 such that Q; (o) is closed (in Y) for
0<o0<oay.
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LEMMA 3.1. Let X be an open subset of Y. Let pe E\C. Then . is an
open dense subset of .H = .#(X, C).
Proof. First of all we show that .# is open. Let fe.#. Let 6, > 0 and
ne€ N be such that Qf,,(ao) < X,,- We claim that for 0 < 6 < 0/3, the ball
S ,(f, o) is contained in .#. Indeed let xeQ,,(0), where geS ,(f, o).
We have :

)= pll < IIf () =g DN+ g (x) = pll < 4g,,+20 < 4y,,+ 30,

that is xeQ, ,(30). Hence @, ,(0) = Q; ,(00) < X,,, for every geS ,(f, o),
and so .# is open.

In order to prove that .Z is dense in .#, consider any ball S ,(f, ¢),
where fe.# and 0 <¢ < 2 diam C.

Let geint C. Let t be such that 1—¢/(2 diam C) <t < 1. Define f and
Xo as in Theorem 2.1. Let 7 > 0 be such that Sy(x,, 217) = X.

By Dugundji’s theorem ([2], p. 188) there is a continuous mapping
h: X - E satisfying (2.5), (2.6) (for each xe X\Sy(x,, 1)), and such that
llh(x)]] <8, xe X (0 < < ¢/2). Then, setting g (x) = f(x)+h(x), xe X, we have
ge.# and d(g, f) <e&. As in the proof of Theorem 2.1 one can verify that

no’

Q,,(00) = Sy(xp,7) if  0<a, < /2.

Let n, be large enough so that Sy(x,, 1) = X, . Then we have

"0
Q (0= X

no

which implies that ge .#. This completes the proof.

THEOREM 3.1. Let X be an open subset of Y. Let pe E\C. Let .#, be the
set of all fe . # = M (X, C) such that the problem [f, p] is well posed. Then
My is a dense Gz subset of M.

Proof. Using the argument of Theorem 2.1 one can prove that each set
M, de_ﬁned by (2.1) is open and dense in.#. By Lemma 3.1 the same is true
for .#. Since, by Lemma 1.2,

o
we can conclude that .#, is a dense G; subset of .#. This completes the
proof.

Remark 3.1. The statement of Remark 2.1 remains true also when X is
supposed to be open.

4. Well posed minimization problems for nonconvex functionals. In this
section we study minimization problems for lower semicontinuous (non-
convex) functionals defined on a subset of a complete metric space Y.
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Let X be a non-empty subset of Y with positive diameter. Denote by
F = Z (X) the set of all functionals f: X - R which are bounded from
below. For f,ge # we put

~ [f () —g(x)|
do(f, 9) = sg’p 1+f(x)—g(x)’

A =inff(x), /(o) ={xeX| f(x)<A+a}, ¢>0.
Pt

Observe that d, is a distance on % ; moreover, if X is closed and f lower
semicontinuous, the set ©,(c) is closed (in Y). For any fe€.# we want to
establish whether f has minimum on X. We call this a minimization problem.
We say that a minimization problem is well posed if there exists exactly one
point x,€ X such that f(x,) = A, and, moreover, any minimizing sequence
converges to Xxg.

Let X be a closed (or open) subset of Y with positive diameter. We denote
by & (X) the set of all f € # (X) such that f is lower semicontinuous. Note that
& (X) becomes a complete metric space under the distance d,.

LemMa 4.1. Let X be a non-empty closed (resp. an open) subset of Y. Let
S €& (X). Then the minimization problem for f is well posed if and only if
4.1) inf diam Q,(c) =0

>0
(resp. if and only if (4.1) is satisfied and, in addition, Q,(co) < X, for some
0o > 0 and nye N, where the sequence {X,} corresponds to X according to
Remark 1.1).

Proof. This lemma, when X is closed, is established in [7]; when X is
open is proved as Lemma 1.2.

THEOREM 4.1. Let X be a non-empty open subset of Y. Let &, be the set of
all fe ¥ = F(X) for which the minimization problem is well posed. Then &% is
a dense G subset of <.

Proof. Let {X,} be the sequence of closed sets, corresponding to X,
defined in Remark 1.1.

Denote by . the set of all f e such that Q;(0) < X, for some o >0
and some neN.

& is an open dense subset of . The fact that .Z is open is proved
using the argument of Lemma 3.1. To see that & is dense, fix any fe.% and
¢ > 0. Choose x,€Q/(¢/3) and define

f(xO)—%gv if x= X0
f(x), if x # x,.

Obviously, ge ¥ and dy(g, f) <e, thus the density is proved.
By a similar method one can show that the sets %, = {fe¥]
inf diam Q, (o) < 1/k}, ke N, are open and dense in &.

>0

g(x)=%
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By Lemma 4.1, ¥, = % n(

k

18

%,) and so ¥, is a dense G; subset of 7.
1

This completes the proof.

Let X be a closed (or open) subset of Y with positive diameter. Denote
by € (X) the set of all fe % (X) which are continuous. Observe that % (X)
is made into a complete metric space under the distance d,.

THEOREM 4.2. Let X be a non-empty open subset of Y. Let €, be the set of all
f €6 (X) for which the minimization problem is well posed. Then €, is a dense G,
subset of € (X).

Proof. The proof can be carried out using the preceding technique.

Remark 4.1. When X is closed, corresponding results have been
previously established by Lucchetti and Patrone [7].

We observe also that if the minimization problem for fe.%(X) is well
posed, then the solution depends continuously upon f, that is: if f,
- f, fne £ (X), and if the minimization problem for f, has a solution x,, then
X, = Xo a8 N — 0.

5. Well posed minimization problems for convex functionals. Let F be a
real Banach space with norm ||:||. In this section we study minimization
problems for lower semicontinuous convex functionals f: X — R, with
domain X < F. We consider both cases, X a closed convex bounded subset
of Fand X =F.

Let X be a closed convex and bounded subset of F with positive
diameter. We denote by " = # (X) the set of all functionals f e # = # (X)
such that f1s convex and lower semicontinuous on X. Under the distance d,
the set )" becomes a complete metric space.

In the proof of Theorem 5.1 we use the following lemma. The proof,
quite elementary, is omitted.

LEMMA 5.1. Let & = {peX| ¢(x) < B(x), xe X}, where B F. Then ®
is non-empty and the functional g: X — R defined-by g(x) = sup ¢(x), xe X,

cP
is in A . ’
THEOREM 5.1. Let X and A be as above. Let A"y be the set of all fe A

for which the minimization problem is well posed. Then Ay is a dense G
subset of A .

Proof. For every ke N we define

(5.1) Ay ={fex| inf diam Q,(c) < 1/k}.
>0

Since, by virtue of Lemma 4.1, X', = () X, the theorem is established if
k=1
we show that each set ¢, is open and dense in £ .

The fact that ", is open is proved using the argument of Theorem 2.1.
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To see the denseness, consider any fe X and &> 0. Then, choose any
X0 €Q;(e/4) and define

_ ) f(xe)— 36, if x =X,

-2 = { ), if x % xo.

Observe that f is bounded from below. Also, define
29 = f(ro)- et o ey,

where r > 0 is the radius of a ball, with center at x,, which contains the
(bounded) set X. It is clear that xe .#" and for this functional, the minimization
problem is well posed. Moreover, for each x # x,,

2(x) < f(x)—3E < A+ de—3e < f(x) = B(x)

and, since a(xq) = f(xo), we have a(x) < f(x) for each xe X, thus ac .
With the above choice of f, define g as in Lemma 5.1. Observe that
ge X'. Moreover, .

(53) 1)< g, xeX, A= flx)—3e =4y

These imply Q,(0) < Q,(0), ¢ > 0, from which it follows that also for g the
minimization problem is well posed. Thus ge .1,.

Since the functional defined by f(x)—2e, xeX,\is in & and f(x)
= B(x) = g(x), we have

f)=2g(¥)=f(x)—-3e, xeX.

Hence |f (x)—g(x)| < 3¢, xe X, and so d,(g, /) < &. This completes the proof.

Remark 5.1. Theorem 5.1 is false when X is unbounded. To see why is
so, take in Theorem 5.1 X = R and f e.# such that f(x) =0, xe X. Then for
this f and for each ge . #" satisfying dy(g, f) < ¢ (0 <& < 1) the minimization
problem is not well posed since each such g is a constant function.

We consider now the case in which the functionals f: X — R are defined
on the set X = F. Denote by ¥~ = ¥ (X) the set of all functionals f € # (X)
such that f is lower semicontinuous convex and coercive, that is

im f(x)=+0o0.
x|} =+ oo

Under the distance d, the set ¥ is a complete metric space.

Note that if fe % (X) is coercive then, for each ¢ > 0, the set Q,(0) is
bounded.

The following lemma is elementary and is stated without proof.

LeEMMA 5.2. Let @ = {pe | ¢(x) < B(x), xe X}, where Be F (X). Then,
if the set @ is non-empty, the functional g: X - R defined by g (x)
=sup ¢(x), xeX, is in V.

@ed
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THEOREM 5.2. Let X = F. Let ¥ be the set of all functionalsf € ¥~ = ¥7(X)
for which the minimization problem is well posed. Then ¥ is a dense G,
subset of V.

Proof. As in the proof of Theorem 5.1 we introduce the sets 7
defined by (5.1), where # is replaced by 7". The openness of ¥", is proved
as in Theorem 5.1. In order to establish the denseness we fix any fe ¥, &> 0
and a point Xerf(s/4). Since f is coercive there exists r, > 0 such that

Q, (%8) < Sx(xo, T'o)-
Let r > ro. Then,
(59 lx—xoll >r implies f(x)> A +3e.
Now we define
55 f(x) =max {f(x), 4, + j&}, xeX,

709 =T+ e 2 xex,

and we observe that f and y are in ¥". Furthermore, the minimization
problem for y is well posed.
We claim that

(5.6) Ix—xoll >r implies 7y(x) < f(x).

Otherwise, there is x, € X with ||x, — x|l > r such that y(x;) > f(x,). Let &
=txo+(1—1)x;, 0 <t <1, be the unique point of the line segment of end
points x, and x; satisfying || — x,|| = r. Then, by the choice of x, and (5.4),
we have

7@ = F(xo)+de < A+ de+5e < (O =T ().
On the other hand by the definition of y and the convexity of f we obtain
7(©) = 7(x0) +(1=1)7(x1) > 1 (xo)+ (1= (1) > T (-

This is a contradiction and so (5.6) is proved.
Next, we set

a(x) = y(x)— Fe+ f(x0)—(x0), x€X.
Clearly ae?” and, moreover,
(5.7 a(x) < f(x), xeX.

To see this, first we observe that f(x,)—7(x,) < 0. Hence, if ||x— x| > r, by
virtue of (5.6) and (5.4) we have

a(x) <y(0) < f(0) = f(x)
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while, if ||lx—xoll <r,
a(x) Sy()—3e < flxg)+de—3e=A,+3e—3e < f(x)

thus, also (5.7) is true.

Therefore, it follows that a(x) < B(x) for each xe X, where f is defined
by (5.2). With this choice of § we define the set @ and the functional g as in
Lemma 5.2. Since a € @, by Lemma 5.2 we have that g e ¥". By construction g
satisfies (5.3). Then from (5.3) it follows that Q, (o) < Q,(a), ¢ > 0, thus since
for o the minimization problem is well posed, the same is true for g. This
shows that ge¥",. The conclusion is similar to that of Theorem 5.1. This
completes the proof.

Remark 52. It is easy to see that the functional f defined by (5.5)
has infinite points of minimum. From this and the construction of f it
follows that each functional fe¥” = ¥ (X) can be approximated (in ¥7) by
one, namely f, for which the minimization problem is not well posed. This
shows that the set ¥"\ ¥, is dense in 7.

Notice that, if X is a reflexive Banach space, for each fe¥  the
minimization problem has always a solution, though this is not necessarily
unique. In a non-reflexive Banach space even existence can fail but, in view of
Theorem 5.2, this occurs rather exceptionally (in the sense of the Baire
category).
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