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1. Introduction. Pseudo MV-algebras have been introduced independently
by G. Georgescu and A. Iorgulescu in [4] and by J. Rach̊unek in [7] (here called gen-
eralized MV -algebras or, in short, GMV -algebras) and they are a non-commutative
generalization of MV -algebras. The notion of fuzzy sets, introduced by L. A. Zadeh
in [9], can be applied to many mathematical branches. Recently, Y. B. Jun and
A. Walendziak in [6] applied the concept to pseudo MV -algebras. They introduced
the notions of fuzzy ideals and fuzzy implicative ideals in a pseudoMV -algebra, gave
characterizations of them and provided conditions for a fuzzy set to be a fuzzy ideal.
It is well known that in studying the structure of the general algebras, the maximal
ideals and the prime ideals play an important role. In [2], the author of present paper
introduced the notion of fuzzy prime ideals of pseudo MV -algebras and gave many
interesting characterizations of it. In this paper we investigate fuzzy ideals and fuzzy
implicative ideals in Section 3. We provided the homomorphic properties of them.
Section 4 is devoted to introduce and characterize the notion of fuzzy maximal ideals
of a pseudo MV -algebra. We obtain in this section the homomorphic properties of
fuzzy maximal ideals. The relations among fuzzy maximal ideals, fuzzy prime ideals
and fuzzy implicative ideals are established. For the convenience of the reader, in
Section 2 we give the relevant material needed in sequel, thus making our exposition
self-contained.

2. Preliminaries. Let A = (A,⊕,− ,∼ , 0, 1) be an algebra of type (2, 1, 1, 0, 0).
Set x·y = (y− ⊕ x−)∼ for any x, y ∈ A. We consider that the operation · has priority
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to the operation ⊕, i.e., we will write x ⊕ y · z instead of x ⊕ (y · z). The algebra
A is called a pseudo MV-algebra if for any x, y, z ∈ A the following conditions are
satisfied:

(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(A2) x⊕ 0 = 0⊕ x = x,
(A3) x⊕ 1 = 1⊕ x = 1,
(A4) 1∼ = 0, 1− = 0,
(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)− ,
(A6) x⊕ x∼ · y = y ⊕ y∼ · x = x · y− ⊕ y = y · x− ⊕ x,
(A7) x · (x− ⊕ y) = (x⊕ y∼) · y,
(A8) (x−)∼ = x.

If the addition ⊕ is commutative, then both unary operations − and ∼ coincide
and A can be considered as an MV -algebra.
Throughout this paper A will denote a pseudo MV -algebra. We will write x=

instead of (x−)− and x≈ instead of (x∼)∼. For any x ∈ A and n = 0, 1, 2, . . . we put

0x = 0 and (n+ 1)x = nx⊕ x,

x0 = 1 and xn+1 = xn · x.

Proposition 2.1 (Georgescu and Iorgulescu [4]) The following properties hold
for any x, y ∈ A:
(a) (x∼)− = x,
(b) x⊕ x∼ = 1, x− ⊕ x = 1,
(c) x · x− = 0, x∼ · x = 0,
(d) 0− = 0∼ = 1,
(e) (x−)≈ = x∼,
(f) (x⊕ y)− = y− · x−, (x⊕ y)∼ = y∼ · x∼,
(g) x⊕ y = (y∼ · x∼)−.

Proposition 2.2 (Georgescu and Iorgulescu [4]) The following properties are
equivalent for any x, y ∈ A:
(a) x− ⊕ y = 1;
(b) y ⊕ x∼ = 1.

We define

x 6 y ⇐⇒ x− ⊕ y = 1.(1)

As it is shown in [4], (A,6) is a lattice in which the join x ∨ y and the meet x ∧ y
of any two elements x and y are given by:

x ∨ y = x⊕ x∼ · y = x · y− ⊕ y,

x ∧ y = x ·
(
x− ⊕ y

)
= (x⊕ y∼) · y.
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Definition 2.3 A subset I of A is called an ideal of A if it satisfies:
(I1) 0 ∈ I,
(I2) if x, y ∈ I, then x⊕ y ∈ I,
(I3) if x ∈ I, y ∈ A and y 6 x, then y ∈ I.

Denote by I (A) the set of ideals of A.

Remark 2.4 Let I ∈ I (A). If x, y ∈ I, then x · y, x ∧ y, x ∨ y ∈ I.

Definition 2.5 Let I be a proper ideal of A (i.e., I 6= A). Then
(a) I is called prime if, for all I1, I2 ∈ I (A), I = I1 ∩ I2 implies I = I1 or I = I2.
(b) I is called maximal iff whenever J is an ideal such that I ⊆ J ⊆ A, then either
J = I or J = A.

Proposition 2.6 (Georgescu and Iorgulescu [4]) For I ∈ I (A), the follow-
ing are equivalent:
(a) I is prime,
(b) if x ∧ y ∈ I, then x ∈ I or y ∈ I.

Proposition 2.7 (Walendziak [8]) If I ∈ I (A) is maximal, then I is prime.

Definition 2.8 An ideal I of A is called normal if it satisfies the condition:
(N) For all x, y ∈ I, x · y− ∈ I ⇐⇒ y∼ · x ∈ I.

Proposition 2.9 (Georgescu and Iorgulescu [4]) Let I be a normal ideal of
A. Then

x ∈ I ⇐⇒ x≈ ∈ I.

For every subset W ⊆ A, the smallest ideal of A which contains W , i.e., the in-
tersection of all ideals I ⊇ W , is said to be the ideal generated by W , and will be
denoted by (W ].

Proposition 2.10 (Georgescu and Iorgulescu [4]) Let I be a normal ideal of
A and x ∈ A. Then

(I ∪ {x}] = {t ∈ A : t 6 y ⊕ nx for some y ∈ I and n ∈ N}.



34 Fuzzy maximal ideals of pseudo MV-algebras

Following [4], for any normal ideal I of A, we define the congruence on A:

x ∼I y ⇐⇒ x · y− ∨ y · x− ∈ I.

We denote by x/I the congruence class of an element x ∈ A and on the set A/I =
{x/I : x ∈ A} we define the operations:

x/I ⊕ y/I = (x⊕ y) /I, (x/I)− =
(
x−
)
/I, (x/I)∼ = (x∼) /I.

The resulting quotient algebra A/I = (A/I,⊕,− ,∼ , 0/I, 1/I) becomes a pseudo
MV -algebra, called the quotient algebra of A by the normal ideal I. Observe that
for all x, y ∈ A,

x/I · y/I = (x · y) /I,
x/I ∨ y/I = (x ∨ y) /I,
x/I ∧ y/I = (x ∧ y) /I.

It is clear that:

x/I = y/I ⇐⇒ x · y− ∨ y · x− ∈ I ⇐⇒ x∼ · y ∨ y∼ · x ∈ I,(2)

x/I = 0/I ⇐⇒ x ∈ I,(3)

x/I = 1/I ⇐⇒ x− ∈ I ⇐⇒ x∼ ∈ I.(4)

Definition 2.11 Let A and B be pseudo MV -algebras. A function f : A→ B is
a homomorphism if and only if it satisfies, for each x, y ∈ A, the following conditions:
(H1) f (0) = 0,
(H2) f (x⊕ y) = f (x)⊕ f (y) ,
(H3) f (x−) = (f (x))− ,
(H4) f (x∼) = (f (x))∼.

Remark 2.12 If f : A → B is a homomorphism, then, for each x, y ∈ A, we also
have:
(a) f (1) = 1,
(b) f (x · y) = f (x) · f (y) ,
(c) f (x ∨ y) = f (x) ∨ f (y) ,
(d) f (x ∧ y) = f (x) ∧ f (y).

We now review some fuzzy logic concepts. Let Γ ⊆ [0, 1]. We define
∧

Γ = inf Γ
and

∨
Γ = supΓ. Obviously, if Γ = {α, β}, then α ∧ β = min {α, β} and α ∨ β =

max {α, β}. Recall that a fuzzy set in A is a function µ : A → [0, 1]. For any fuzzy
sets µ and ν in A, we define

µ 6 ν ⇐⇒ µ (x) 6 ν (x) for all x ∈ A.
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Definition 2.13 Let A and B be any two sets, µ be any fuzzy set in A and
f : A→ B be any function. The fuzzy set ν in B defined by

ν (y) =
{

supx∈f−1(y) µ(x) if f−1 (y) 6= ∅,
0 otherwise

for all y ∈ B, is called the image of µ under f and is denoted by f (µ).

Definition 2.14 Let A and B be any two sets, f : A→ B be any function and ν
be any fuzzy set in f (A). The fuzzy set µ in A defined by

µ (x) = ν (f (x)) for all x ∈ A

is called the preimage of ν under f and is denoted by f−1 (ν).

3. Fuzzy ideals. In this section we investigate fuzzy ideals and fuzzy implica-
tive ideals of a pseudo MV -algebra. First, we recall from [6] the definition and some
facts concerning fuzzy ideals.

Definition 3.1 A fuzzy set µ in a pseudo MV -algebra A is called a fuzzy ideal of
A if it satisfies for all x, y ∈ A:
(d1) µ (x⊕ y) > µ (x) ∧ µ (y),
(d2) if y 6 x, then µ (y) > µ (x).

It is easily seen that (d2) implies
(d3) µ (0) > µ (x) for all x ∈ A.

Example 3.2 Let A = {(1, y) : y > 0} ∪ {(2, y) : y 6 0}, 0 = (1, 0), 1 = (2, 0). For
any (a, b), (c, d) ∈ A, we define operations ⊕,− ,∼ as follows:

(a, b)⊕ (c, d) =





(1, b+ d) if a = c = 1,
(2, ad+ b) if ac = 2 and ad+ b 6 0,
(2, 0) in other cases,

(a, b)− =
(

2
a
,−2b

a

)
,

(a, b)∼ =
(

2
a
,− b

a

)
.

Then A = (A,⊕,− ,∼ ,0,1) is a pseudo MV -algebra (see [1]). Let A1 = {(1, y) : y >
0} and A2 = {(2, y) : y < 0} and let 0 6 α3 < α2 < α1 6 1. We define a fuzzy set µ
in A as follows:

µ (x) =





α1 if x = 0,
α2 if x ∈ A1,
α3 if x ∈ A2 ∪ {1} .

It is easily checked that µ satisfies (d1) and (d2). Thus µ is a fuzzy ideal of A.
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Denote by FI (A) the set of fuzzy ideals of A.

Proposition 3.3 (Jun and Walendziak [6]) Let µ be a fuzzy set in A. Then
µ ∈ FI (A) if and only if it satisfies (d1) and
(d4) µ (x ∧ y) > µ (x) for all x, y ∈ A.

Proposition 3.4 (Jun and Walendziak [6]) Let µ ∈ FI (A). Then, for all x, y ∈
A, the following are true:
(a) µ (x · y) > µ (x) ∧ µ (y),
(b) µ (x ∧ y) > µ (x) ∧ µ (y),
(c) µ (x ∨ y) = µ (x) ∧ µ (y),
(d) µ (x⊕ y) = µ (x) ∧ µ (y).

Proposition 3.5 (Jun and Walendziak [6]) Every fuzzy ideal µ of A satisfies
the following two inequalities:

µ (y) > µ (x) ∧ µ
(
y · x−

)
for all x, y ∈ A,(5)

µ (y) > µ (x) ∧ µ (x∼ · y) for all x, y ∈ A.(6)

Proposition 3.6 (Jun and Walendziak [6]) For a fuzzy set µ in A, the follow-
ing are equivalent:
(a) µ ∈ FI (A),
(b) µ satisfies the conditions (d3) and (5),
(c) µ satisfies the conditions (d3) and (6).

Proposition 3.7 (Jun and Walendziak [6]) Let µ be a fuzzy set in A. Then
µ ∈ FI (A) if and only if its nonempty level subset

U (µ;α) = {x ∈ A : µ (x) > α}

is an ideal of A for all α ∈ [0, 1].

Example 3.8 Let A and µ be as in Example 3.2. One can easily check that for all
α ∈ [0, 1] we have:

U (µ;α) =





∅ if α > α1,
{0} if α2 < α 6 α1,
A1 ∪ {0} if α3 < α 6 α2,
A if α 6 α3.

It is not difficult to see that {0} , A1∪{0} and A are all ideals of A. This is an another
proof (by Proposition 3.7) that µ is a fuzzy ideal of A.
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Now, we consider two special fuzzy sets in A. Let I be a subset of A. Define
a fuzzy set µI in A by

µI (x) =
{
α if x ∈ I,
β otherwise,

where α, β ∈ [0, 1] with α > β. In particular, we have a fuzzy set χI which is
the characteristic function of I:

χI (x) =
{

1 if x ∈ I,
0 otherwise.

We have the simple proposition.

Proposition 3.9 I ∈ I (A) iff µI ∈ FI (A).

Corollary 3.10 I ∈ I (A) iff χI ∈ FI (A).

For an arbitrary fuzzy set µ in A, consider the set Aµ = {x ∈ A : µ (x) = µ (0)}.
We have the following simple proposition.

Proposition 3.11 If µ ∈ FI (A), then Aµ ∈ I (A).

The following example shows that the converse of Proposition 3.11 does not hold.

Example 3.12 Let A be as in Example 3.2. Define a fuzzy set µ in A by

µ (x) =
{

1
2 if x = 0,
2
3 if x 6= 0.

Then Aµ = {0} ∈ I (A) but µ /∈ FI (A).

Since AµI
= I, we have the simple proposition.

Proposition 3.13 µI ∈ FI (A) iff AµI
∈ I (A).

The following two theorems give the homomorphic properties of fuzzy ideals.

Theorem 3.14 Let f : A → B be a surjective homomorphism and ν ∈ FI (B).
Then f−1 (ν) ∈ FI (A).

Proof Let x ∈ A. Since f (x) ∈ B and ν is a fuzzy ideal of B, we have ν (0) >
ν (f (x)) =

(
f−1 (ν)

)
(x), but ν (0) = ν (f (0)) =

(
f−1 (ν)

)
(0). Thus

(
f−1 (ν)

)
(0) >(

f−1 (ν)
)
(x) for any x ∈ A, i.e., f−1 (ν) satisfies (d3).
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Now, let yA ∈ A. Then, since ν satisfies (5),
(
f−1 (ν)

)
(yA) = ν (f (yA)) >

ν (xB) ∧ ν
(
f (yA) · x−B

)
for any xB ∈ B. Let xA be an arbitrary preimage of xB

under f , i.e., f (xA) = xB . Then
(
f−1 (ν)

)
(yA) > ν (xB) ∧ ν

(
f (yA) · x−B

)

= ν (f (xA)) ∧ ν
(
f (yA) · (f (xA))−

)

= ν (f (xA)) ∧ ν
(
f
(
yA · x−A

))

=
(
f−1 (ν)

)
(xA) ∧

(
f−1 (ν)

) (
yA · x−A

)
.

Since xB is an arbitrary element of B, the above inequality holds for any xA ∈ A,
i.e., f−1 (ν) satisfies (5). Hence, by Proposition 3.6, f−1 (ν) is a fuzzy ideal of A. �

Lemma 3.15 Let f : A → B be a homomorphism, µ ∈ FI (A) and ν ∈ FI (B).
Then:
(a) if µ is constant on Kerf , then f−1 (f (µ)) = µ,
(b) if f is surjective, then f

(
f−1 (ν)

)
= ν.

Proof (a) Let x ∈ A, and f (x) = y. Hence
(
f−1 (f (µ))

)
(x) = (f (µ)) (f (x)) = (f (µ)) (y) = supt∈f−1(y)µ (t) .

For all t ∈ f−1 (y), we have f (t) = f (x). Hence f (t · x−) = f (t) · (f (x))− =
f (x) · (f (x))− = 0 and, similarly, f (x · t−) = 0. Thus t · x− ∈ Kerf and x · t− ∈
Kerf . Since µ is constant on Kerf , µ (t · x−) = µ (x · t−) = µ (0). Hence, by (5),
µ (t) > µ (x) ∧ µ (t · x−) = µ (x) ∧ µ (0) = µ (x) and, similarly, µ (x) > µ (t). Hence
µ (x) = µ (t). Thus

(
f−1 (f (µ))

)
(x) = supt∈f−1(y)µ (t) = µ (x) ,

i.e., f−1 (f (µ)) = µ.
(b) Since f is surjective, for any y ∈ B there is x ∈ A such that f (x) = y. Next,

f−1 (ν) is a fuzzy ideal of A which is constant on Kerf . Thus, by (a), we have
(
f
(
f−1 (ν)

))
(y) =

(
f
(
f−1 (ν)

))
(f (x)) =

(
f−1

(
f
(
f−1 (ν)

)))
(x)

=
(
f−1 (ν)

)
(x) = ν (f (x)) = ν (y) .

Therefore f
(
f−1 (ν)

)
= ν. �

Theorem 3.16 Let f : A → B be a surjective homomorphism and µ ∈ FI (A) be
such that Aµ ⊇ Kerf . Then f (µ) ∈ FI (B).

Proof Since µ is a fuzzy ideal of A and 0 ∈ f−1 (0), we have

(f (µ)) (0) = supt∈f−1(0)µ (t) = µ (0) > µ (x)
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for any x ∈ A. Hence

(f (µ)) (0) > supx∈f−1(y)µ (x) = (f (µ)) (y)

for any y ∈ B. Thus f (µ) satisfies (d3).
Now, assume that

(f (µ)) (yB) < (f (µ)) (xB) ∧ (f (µ))
(
yB · x−B

)

for some xB , yB ∈ B. Since f is surjective, there are xA, yA ∈ A such that f (xA) =
xB and f (yA) = yB . Thus

(
f−1 (f (µ))

)
(yA) <

(
f−1 (f (µ))

)
(xA) ∧

(
f−1 (f (µ))

) (
yA · x−A

)
.

Since Aµ ⊇ Kerf , µ is constant on Kerf . Hence, by Lemma 3.15(a), we get

µ (yA) < µ (xA) ∧ µ
(
yA · x−A

)

which is a contradiction with a fact that µ is a fuzzy ideal. Thus f (µ) satisfies (5)
and hence, by Proposition 3.6, it is a fuzzy ideal of B. �

Now, we investigate fuzzy implicative ideals of a pseudo MV -algebra. First, we
give the definition and some characterizations of a fuzzy implicative ideal (see [6]).

Definition 3.17 Let µ be a fuzzy ideal of A. We say that µ is fuzzy implicative if
it satisfies:
for all x, y, z ∈ A, µ (x · y) > µ (x · y · z−) ∧ µ (z · y) or equivalently
for all x, y, z ∈ A, µ (x · y) > µ (x · y · z) ∧ µ (z∼ · y).

Proposition 3.18 (Jun and Walendziak [6]) Let µ be a fuzzy ideal of A. Then
the following are equivalent:
(a) µ is a fuzzy implicative ideal of A,
(b) for all x ∈ A, if x2 = 0, then µ (x) = µ (0),
(c) for all x ∈ A, µ (x ∧ x−) = µ (0),
(d) for all x ∈ A, µ (x ∧ x∼) = µ (0).

Example 3.19 Let A and α1, α3 ∈ [0, 1] be as in Example 3.2. Let ν be a fuzzy set
in A defined by

ν (x) =
{
α1 if x ∈ A1 ∪ {0} ,
α3 if x ∈ A2 ∪ {1} .

Then it is easy to show that ν is a fuzzy ideal of A. In fact, it is a fuzzy implicative
ideal of A. Indeed, observe that for all x ∈ A, x ∧ x− ∈ A1 ∪ {0}. So ν (x ∧ x−) =
α1 = ν (0) and, by Proposition 3.18, ν is a fuzzy implicative ideal of A.
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Theorem 3.20 (Implicative extension property for fuzzy ideals) Let µ be
a fuzzy implicative ideal of A and ν any fuzzy ideal of A such that µ 6 ν and
µ (0) = ν (0). Then ν is a fuzzy implicative ideal of A.

Proof Let x ∈ A be such that x2 = 0. Then, by Proposition 3.18, ν (x) > µ (x) =
µ (0) = ν (0). Hence ν (x) = ν (0) and, again by Proposition 3.18, ν is a fuzzy
implicative ideal of A. �

Let 0 6 t < 1 be a real number. If α ∈ [0, 1], then αt shall mean the positive root.
Let µ : A→ [0, 1] be a fuzzy set in A. We define µt : A→ [0, 1] by µt (x) = (µ (x))t

for all x ∈ A. It is easily verified that if µ is a fuzzy ideal of A, then so is µt, and if
µ (0) = 1, then Aµt = Aµ.

Theorem 3.21 Let µ be a fuzzy implicative ideal of A such that µ (0) = 1. Then
for every 0 6 t < 1, µt is a fuzzy implicative ideal of A.

Proof We have that µt (0) = (µ (0))t = 1 = µ (0) and µ 6 µt. This means, by
Theorem 3.20, that µt is a fuzzy implicative ideal of A. �

Next two theorems express the homomorphic properties of fuzzy implicative
ideals.

Theorem 3.22 Let f : A → B be a surjective homomorphism and ν be a fuzzy
implicative ideal of B. Then f−1 (ν) is a fuzzy implicative ideal of A.

Proof By Theorem 3.14, f−1 (ν) ∈ FI (A). Let x ∈ A. Then
(
f−1 (ν)

) (
x ∧ x−

)
= ν

(
f
(
x ∧ x−

))
= ν

(
f (x) ∧ (f (x))−

)
=

ν (0) = ν (f (0)) =
(
f−1 (ν)

)
(0) .

From Proposition 3.18 it follows that f−1 (ν) is a fuzzy implicative ideal of A. �

Theorem 3.23 Let f : A → B be a surjective homomorphism and µ be a fuzzy
implicative ideal of A such that Aµ ⊇ Kerf . Then f (µ) is a fuzzy implicative
ideal of B.

Proof By Theorem 3.16, f (µ) ∈ FI (B). Let y ∈ B. Since f is surjective, there is
x ∈ A such that f (x) = y. Since µ is a fuzzy implicative ideal of A, µ(x∧x−) = µ(0)
by Proposition 3.18. Then

(f(µ))(y ∧ y−) = µ(0) = (f(µ))(f(0))

and applying again Proposition 3.18, f(µ) is a fuzzy implicative ideal of B. �
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Definition 3.24 A fuzzy ideal µ of A is said to be fuzzy normal if it satisfies:

µ(x · y−) = µ(0) ⇐⇒ µ(y∼ · x) = µ(0)

for all x, y ∈ A.

We immediately have the following proposition.

Proposition 3.25 Let µ ∈ FI(A). Then µ is a fuzzy normal ideal of A if and only
if Aµ is a normal ideal of A.

To the end of this section we give the definition and some facts concerning fuzzy
prime ideals of pseudo MV -algebras (see [2] for details).

Definition 3.26 A fuzzy ideal µ of A is said to be fuzzy prime if it is non-constant
and satisfies:

µ (x ∧ y) = µ (x) ∨ µ (y)

for all x, y ∈ A.

Proposition 3.27 (Dymek [2]) Let µ be a non-constant fuzzy ideal of A. Then
the following are equivalent:
(a) µ is a fuzzy prime ideal of A,
(b) for all x, y ∈ A, if µ (x ∧ y) = µ (0), then µ (x) = µ (0) or µ (y) = µ (0),
(c) for all x, y ∈ A, µ (x · y−) = µ (0) or µ (y · x−) = µ (0),
(d) for all x, y ∈ A, µ (x∼ · y) = µ (0) or µ (y∼ · x) = µ (0).

Proposition 3.28 (Dymek [2]) Let µ ∈ FI (A). Then µ is a fuzzy prime ideal of
A if and only if Aµ is a prime ideal of A.

4. Fuzzy maximal ideals. In this section we define the notion of a fuzzy
maximal ideal of a pseudo MV -algebra and investigate its properties.

Definition 4.1 A fuzzy ideal µ of A is called fuzzy maximal iff Aµ is a maximal
ideal of A.

Example 4.2 Let A and µ be as in Example 3.2 and ν be as in Example 3.19.
Then, since Aν = A1 ∪ {0} is a maximal ideal of A and Aµ = {0} is not the one,
we obtain that ν is a fuzzy maximal ideal of A and µ is not the one.

By Proposition 3.13, we have the following theorem.

Theorem 4.3 An ideal I of A is maximal if and only if µI is fuzzy maximal.
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Corollary 4.4 An ideal I of A is maximal if and only if χI is fuzzy maximal.

Theorem 4.5 If µ is a fuzzy maximal ideal of A, then µ has exactly two values.

Proof Assume that µ is a fuzzy maximal ideal of A. Then Aµ is a maximal ideal
of A. Since Aµ is proper, |Imµ| > 1. If |Imµ| > 2, then there are α1, α2, α3 ∈ Imµ,
where 0 6 α1 < α2 < α3 = µ (0). Hence Aµ = U (µ;α3) ⊂ U (µ;α2) ⊂ U (µ;α1) ⊆
A. But an ideal U (µ;α2) 6= Aµ and U (µ;α2) 6= A. This is a contradiction. There-
fore µ has exactly two values. �

Theorem 4.6 Let µ be a non-constant fuzzy set in A. Then µ is a fuzzy maximal
ideal of A if and only if for each a ∈ [0, 1], U (µ;α) = ∅ or U (µ;α) is a maximal
ideal of A if it is proper.

Proof Let µ be a fuzzy maximal ideal of A and U (µ;α) 6= ∅ for some α ∈ [0, 1].
Then, by Theorem 4.5, µ has exactly two values. Hence U (µ;α) = A or U (µ;α) =
Aµ. Assume that U (µ;α) 6= A. Then U (µ;α) = Aµ is a maximal ideal of A.
Conversely, we know that Aµ is nonempty. Since µ is non-constant, Aµ is proper.

Thus Aµ = U (µ;µ (0)) is a maximal ideal of A. Therefore µ is a fuzzy maximal
ideal of A. �

Now, recall that a pseudo MV -algebra A is locally finite if and only if for any
x 6= 0 there exists n ∈ N such that nx = 1. Recall also that a pseudo MV -algebra
A is simple if and only if there is no non-trivial proper ideal of A.

Proposition 4.7 (Dymek and Walendziak [3]) A pseudo MV-algebra A is lo-
cally finite if and only if it is simple.

Proposition 4.8 (Dvurečenskij [1]) A normal ideal I of a pseudo MV-algebra
A is maximal if and only if A/I is a simple pseudo MV-algebra.

Theorem 4.9 Let µ be a fuzzy normal ideal of A. Then the following are equivalent:
(a) µ is fuzzy maximal,
(b) for all x ∈ A, if µ(x) < µ(0), then there is n ∈ N such that µ((x−)n) = µ(0),
(c) for all x ∈ A, if µ(x) < µ(0), then there is n ∈ N such that µ((x∼)n) = µ(0),
(d) A/Aµ is a locally finite pseudo MV-algebra,
(e) A/Aµ is a simple pseudo MV-algebra.

Proof (a) ⇒ (b): Assume that µ is a fuzzy maximal ideal of A. Let x ∈ A and
µ(x) < µ(0). Then x /∈ Aµ. Take I = (Aµ ∪ {x}]. From Proposition 3.25 we have
that Aµ is a normal ideal of A. Hence, by Proposition 2.10, I = {t ∈ A : t 6
y ⊕ nx for some y ∈ Aµ and n ∈ N}. Since x ∈ I − Aµ and Aµ is a maximal ideal
of A, we obtain I = A. Thus 1 ∈ I, i.e.,

1 = y ⊕ nx for some y ∈ Aµ and n ∈ N.
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From Axiom (A8) we have y ⊕ ((nx)−)∼ = 1 and hence (nx)− 6 y by (1) and
Proposition 2.2. Therefore (x−)n 6 y by Proposition 2.1(f). Since y ∈ Aµ and
(x−)n 6 y, we have (x−)n ∈ Aµ. Thus µ((x−)n) = µ(0).
(b)⇒ (c): Let x ∈ A and µ(x) < µ(0). Then (x−)n ∈ Aµ. Hence, by Proposition

2.9, ((x−)n)≈ ∈ Aµ. Now, applying Proposition 2.1(e,f) we get

(x∼)n = (nx)∼ = ((nx)−)≈ = ((x−)n)≈.

Thus (x∼)n ∈ Aµ. Therefore µ((x∼)n) = µ(0).
(c) ⇒ (d): Let x/Aµ 6= 0/Aµ. From (3) it follows that x /∈ Aµ. Then, by

(c), µ((x∼)n) = µ(0) for some n ∈ N, i.e., (x∼)n ∈ Aµ for some n ∈ N. Hence
0/Aµ = (x∼)n/Aµ = (x∼/Aµ)n = ((x/Aµ)∼)n. Thus

1/Aµ = (0−/Aµ) = (0/Aµ)− = [((x/Aµ)∼)n]− = n(x/Aµ)

by Proposition 2.1(g). Therefore A/Aµ is locally finite.
(d) ⇒ (e): See Proposition 4.7.
(e) ⇒ (a): See Proposition 4.8. �

Remark 4.10 Theorem 4.9 implies Theorem 3.28 of [5].

The following two theorems give the homomorphic properties of fuzzy maximal
ideals.

Theorem 4.11 Let f : A → B be a surjective homomorphism and ν be a fuzzy
maximal ideal of B. Then f−1 (ν) is a fuzzy maximal ideal of A.

Proof By Theorem 3.14, f−1 (ν) is a fuzzy ideal of A. Now, we prove that f−1 (ν)
is fuzzy maximal. Observe that Af−1(ν) is proper. Indeed, if Af−1(ν) = A, then
f−1 (ν) is constant. Since f is surjective, for any y ∈ B there is x ∈ A such that
f (x) = y. Thus ν (y) = ν (f (x)) =

(
f−1 (ν)

)
(x) and so ν is constant. This is

a contradiction, because ν is fuzzy maximal. Therefore Af−1(ν) is proper.
Now, let J be an ideal of A such that Af−1(ν) ⊆ J ⊆ A. We prove that J =

Af−1(ν) or J = A.
First, it is not difficult to see that if f is surjective and J ⊇ Kerf , then f (J) is
an ideal of B.
Next, we prove that Bν ⊆ f (J). Let y ∈ Bν . Then ν (y) = ν (0) = ν (f (0)). Since
f is surjective, there exists x ∈ A such that f (x) = y. Hence ν (f (x)) = ν (f (0)),
i.e.,

(
f−1 (ν)

)
(x) =

(
f−1 (ν)

)
(0). Thus x ∈ Af−1(ν) ⊆ J and so y = f (x) ∈ f (J).

It follows Bν ⊆ f (J).
Since Bν is maximal, we have f (J) = Bν or f (J) = B. Suppose, first, that
f (J) = Bν . Let x ∈ J . Then f (x) ∈ f (J) = Bν and so ν (f (x)) = ν (0) = ν (f (0)).
Thus

(
f−1 (ν)

)
(x) =

(
f−1 (ν)

)
(0), i.e., x ∈ Af−1(ν). Hence J ⊆ Af−1(ν) and so

J = Af−1(ν). Suppose, now, that f (J) = B. Let x ∈ A. Then f (x) ∈ B = f (J).
Hence f (x) = f (x1), where x1 ∈ J . It follows f

(
x · x−1

)
= f (x) · (f (x1))

− = 0 and
so x · x−1 ∈ Kerf ⊆ J . We have x 6 x ∨ x1 = x · x−1 ⊕ x1 ∈ J . Hence x ∈ J , i.e.,
A ⊆ J . So J = A. Therefore f−1 (ν) is a fuzzy maximal ideal of A. �
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Theorem 4.12 Let f : A → B be a surjective homomorphism and µ be a fuzzy
maximal ideal of A such that Aµ ⊇ Kerf . Then f (µ) is a fuzzy maximal ideal of B.

Proof First, we prove that Bf(µ) is proper. Suppose that Bf(µ) = B. Let x ∈ A.
Then f (x) ∈ B = Bf(µ). Thus (f (µ)) (f (x)) = (f (µ)) (0) = (f (µ)) (f (0)) and so(
f−1 (f (µ))

)
(x) =

(
f−1 (f (µ))

)
(0). Since Aµ ⊇ Kerf , µ is constant on Kerf . So,

by Lemma 3.15(a), µ (x) = µ (0). This means x ∈ Aµ. Hence Aµ = A, which is
a contradiction, because µ is a fuzzy maximal ideal of A. Therefore Bf(µ) is proper.
Now, take an ideal J of B such that Bf(µ) ⊆ J ⊆ B. We prove that J = Bf(µ)

or J = B.
Note that Aµ ⊆ f−1 (J). Indeed, let x ∈ Aµ. Then µ (x) = µ (0) and, by Lemma

3.15(a), (f (µ)) (f (x)) =
(
f−1 (f (µ))

)
(x) =

(
f−1 (f (µ))

)
(0) = (f (µ)) (f (0)) =

(f (µ)) (0). Thus f (x) ∈ Bf(µ) ⊆ J and so x ∈ f−1 (J). Hence Aµ ⊆ f−1 (J).
Since Aµ is a maximal ideal of A and f−1 (J) is an ideal of A, we have f−1 (J) =
Aµ or f−1 (J) = A. Suppose that f−1 (J) = Aµ. Let y ∈ J . Then y = f (x),
where x ∈ f−1 (J) = Aµ. Hence µ (x) = µ (0) and so, again by Lemma 3.15(a),(
f−1 (f (µ))

)
(x) =

(
f−1 (f (µ))

)
(0), i.e., (f (µ)) (y) = (f (µ)) (0). Thus y ∈ Bf(µ).

It means that J ⊆ Bf(µ), i.e., J = Bf(µ). Suppose, now, that f−1 (J) = A. Let
y ∈ B. Since f is surjective, y = f (x), where x ∈ A = f−1 (J). Hence y = f (x) ∈ J .
It means that B ⊆ J , i.e., J = B. Thus Bf(µ) is a maximal ideal of B. Therefore
f (µ) is a fuzzy maximal ideal of B. �

Theorem 4.13 If µ is a fuzzy maximal ideal of A, then µ is a fuzzy prime ideal
of A.

Proof Assume that µ is a fuzzy maximal ideal of A. Then Aµ is a maximal ideal
of A. By Proposition 2.7, Aµ is a prime ideal of A. Therefore, by Proposition 3.28,
µ is a fuzzy prime ideal of A. �

Next example shows that the converse of the Theorem 4.13 does not hold.

Example 4.14 Let A and µ be as in Example 3.2. Then Aµ = {0} is a prime ideal
of A and is not maximal. Therefore µ is a fuzzy prime ideal of A and is not fuzzy
maximal.

Theorem 4.15 Let µ be a non-constant fuzzy ideal of A. Then the following are
equivalent:
(a) µ is fuzzy maximal and fuzzy implicative,
(b) µ is fuzzy prime and fuzzy implicative,
(c) for all x ∈ A, µ (x) = µ (0) or µ (x−) = µ (0),
(d) for all x ∈ A, µ (x) = µ (0) or µ (x∼) = µ (0),
(e) for all x ∈ A, µ (x) = µ (0) or µ (x−) = µ (0) or µ (x∼) = µ (0).

Proof (a) ⇒ (b): Follows from Theorem 4.13.
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(b) ⇒ (c): Let x ∈ A. Since µ is fuzzy implicative, we have, by Proposition
3.18, µ (x ∧ x−) = µ (0). Since µ is fuzzy prime, we obtain, by Proposition 3.27,
µ (x) = µ(0) or µ (x−) = µ (0).

(c) ⇒ (d): Let x ∈ A and suppose that µ (x) 6= µ (0). Then µ
(
(x∼)−

)
= µ (x) 6=

µ (0). Thus, by (c), µ (x∼) = µ (0).
(d) ⇒ (e): Obvious.
(e) ⇒ (a): Let x ∈ A. Suppose that µ (x ∧ x−) 6= µ (0). Since x ∧ x− 6 x

and x ∧ x− 6 x−, we have µ (x ∧ x−) > µ (x) and µ (x ∧ x−) > µ (x−). It follows
that µ (x) 6= µ (0) and µ (x−) 6= µ (0). Thus, by (e), µ (x∼) = µ (0) and since
µ (x ∧ x∼) > µ (x∼), we conclude µ (x ∧ x∼) = µ (0). Therefore, by Proposition
3.18, µ is a fuzzy implicative ideal of A.
Note that µ is also a fuzzy maximal ideal of A, i.e., Aµ is a maximal ideal of

A. Let J be an ideal of A such that Aµ ⊂ J . For every y ∈ J − Aµ, we have that
µ (y) 6= µ (0). Hence, by (e), µ (y−) = µ (0) or µ (y∼) = µ (0), i.e., y− ∈ Aµ ⊂ J or
y∼ ∈ Aµ ⊂ J . It follows that y− ⊕ y ∈ J or y ⊕ y∼ ∈ J . But y− ⊕ y = y ⊕ y∼ = 1.
Thus 1 ∈ J and so J = A. �

Corollary 4.16 Let µ be a non-constant fuzzy implicative ideal of A. Then µ is
fuzzy prime if and only if µ is fuzzy maximal.
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