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Special schurian vector space categories
and [-hereditary right QF-2 rings

Let F be a division ring. We recall from [11], [13] that a vector space
category K is an additive category K together with a faithful additive
functor |‘|: K — mod(F) from K to the category of finite dimensional right
vector spaces over F. The subspace category % (Kp) of K is defined as
follows. The objects of % (Ky) are triples (U, X, ¢), where U is a finite
dimensional right vector space over F, X is an object in K and ¢: U —|X|¢
is an F-linear map. The map from (U, X, ¢) into (U’, X', ¢') is a pair (u, h),
where ue Hom(U, U’) and h: X — X' is a map in K such that }hj¢ = ¢'u.

The concepts of a vector space category over an algebraically closed field
and a subspace category were introduced by Nazarova and Rojter [11], and
were applied in the proof of the second Brauer—Thrall conjecture. An
important role in these investigations play the vector space categories with
only one-dimensional indecomposable objects because their subspace cate-
gories are close to categories of representations of partially ordered sets and
therefore their representation type is known. They are also successfully
applied by C. M. Ringel [14] in the investigation of one-relation finite
dimensional algebras of tame type.

In the present paper we study special schurian vector space categories.
We call Kp special schurian if K is a Krull-Schmidt category, K has only a
finite number of pairwise non-isomorphic indecomposable objects and
dim|X|r =1 as well as End(X) is a division ring for any indecomposable
object X in K.

Following an idea of Drozd [5] we give a useful interpretation of the
category % (Kg), with K special schurian, in terms of /-hereditary modules
over an [-hereditary right QF-2 ring.

We recall from [8] that a ring R is [-hereditary if every local one-sided
ideal of R is projective. R is said to be right QF-2 ring if every indecompos-
able projective right ideal in R has a simple socle. A module M is said to be
l-hereditary if every local submodule of M is projective (see [2], [3]). It is
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easy to see that if R is an Il-hereditary right QF-2 artinian ring, then a right
R-module N is [-hereditary if and only if soc(N) is projective.

In Section 1 we associate to any special schurian vector space category
K; and [-hereditary right QF-2 semiperfect ring Rx and a full additive
functor

®: U(Kp) — | her(Ry)

which establishes a representation equivalence between a cofinite subcategory
of %(K;) and a cofinite subcategory of the category I her(Ry) of finitely
generated Il-hereditary right Rg-modules.

In Section 2 we give an interpretation of the subspace category % (Ky) in
terms of Kleisli categories and we discuss its possible applications.

A part of results presented in Section 1 was announced in [17].

Let R be an l-hereditary artinian ring and let P,, ..., P, be a complete
set of pairwise non-isomorphic indecomposable projective right ideals in R. If -
the ring F; = End(P)) is a division ring for any i, then we associate with R a
valued poset (Ig, d), where Iz = {1, ..., n}, i <j<;M; = Homg(P;, P) #0
and d = (d;;) is the matrix with

dij = dim(,MJ)pJ, dji = dimpi (,M}) fOI' i ¢j.

We will write

i (d;j>d i!')j

if i <j and there is no k in Iy such that i <k <j. If d;; =d; =1 we write
simply i —j (see [8]).

It is easy to prove that an indecomposable I-hereditary artinian ring R is
a right QF-2 ring if and only if the valued poset of R has a unique maximal
element m and d,; =1 for any j.

1. Main results. Let K be a special schurian vector space category with
a faithful functor |-|: K-> mod(F). We fix a complete set X,,..., X, of
pairwise non-isomorphic indecomposable objects in K and we put

F,.,=F and F;=End(X;) fori=1,..., n.
For any i, j < n the abelian group
is an F;—F;-bimodule in a natural way. Since dim|X;|, =1 for all i and

Fy, ..., F, are division rings then ;N; # 0 implies ;N; = 0. Therefore without
loss of generality we can suppose that i <j whenever ;N; # 0.
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We associate with Kp the triangular matrix ring
{/i- Nz oo Ny N

'L; oo ZNn 2Nn~‘|

B aNaa

Fan

L 4

where ;N,., = p|X;|r and the multiplication is given by F;— F-bilinear maps
Cij: iNj®iNy =N, ® = OF)»
defined by the formula

i (f®g) =fg for k <n,
=|fl(g) for k=n+1.

Since dim|X|p =1 for i =1, ..., n then ¢;3(f®g) =0 if and only if either
f=0 or g=0. Then by [8], Lemma 1, the ring Ry is [-hereditary.
Moreover, it follows that the ring Ry is a right QF-2 semiperfect ring. We
note that the ith row P; of the matrix form of Ry is an indecomposable
projective right ideal in Ry,

RK=P1@...@P,,®P"+1

and every simple projective right ideal in Ry is isomorphic to P,, ;.

We denote by %, (Ky) (resp. by [ her,(R)) the full subcategory of % (Ky)
(resp. of I her(R)) consisting of objects having no direct summands of the
form (F, 0, 0) (resp. P,. ;).

Now we are able to formulate the main result of this paper:

THEOREM 1.1. Let K be a special schurian vector space category such
that the ring Ry associated to Ky is artinian. Then Ry is an l-hereditary right
QF-2 ring and there exists a full and dense additive functor

®: % (Kp) - | hery(Rg)

with the following properties:
(a) If A is an indecomposable object in U (Ky), then ®(A) =0 if and only if
A has one of the following forms (F, 0, 0), X; = (X, X;,id), i=1, ..., n.
Ab) If A and B are objects in U (K) having no summands of the form
Xy, ..., X,, then every isomorphism form ®(A) into ®(B) has the form & (h),
where h: A — B is an isomorphism.
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We will define the functor @ as a composition of two functors

U (Ky) > ¥ (Kp) > 1 hero (Ry).

To do this, we need some preliminary results. First, given finite dimensional
vector spaces V; and V; over F; and F; respectively we define a map

0: HomFi(V;, V;®;N;) = Homg (V;®| X[, V;®|Xl)

as follows. Fix a basis e;,...,e, in V; and e€j,...,e, in V. If
ue Homg (V, V;®;N;) and - u(e) = e ®ky;+ ... +€,®k,; with kg e;N,
then we define 0(u) by formula

0 () (e;®x)) = e, ®lkyjf (xi)+ ... + €kl (x).

It is easy to see that the definition of 6 does not depend on the choice of
bases ey, ..., e, and €}, ..., e,,. Moreover, 0 is natural with respect to linear
maps V; -V and V; - V].

Now given a vector space Vp over F we define F;-linear maps

bji: Homg (;Nys (, VI®;N; > Homg (;N, 14, V)

by formula b;;(f®g) x; = f gl (x;), where x;€;N,.; =|X}|. Since dim|X;|p = 1
then there are an embedding of rings F, c F and an F;—F-bimodule
isomorphism ;N,,; = . Fp for any i =1, ..., n. Hence we derive an isomor-
phism Hom,(;N,,,, V) =V, where V; is the vector space V considered as
an F;-space via the embedding F; = F. Then b;; together with the isomor-
phism above defines an F;-linear map

Eji: I/I"®|Nj g ‘/l.j.
The proof of the following simple lemma is left to the reader.
Lemma 1.2. (1) b;(v®x) = 0 if and only if either v =0 or x = 0.
(2) Ekj(l;j,-@l) = 5“(1®c,-jk) whenever i <j <k in (Ig, d).
(3) For every F-linear map g: V = V' the diagram

gel

VeiNj V’@le

¢

bji bji

’
Vi m——  »V,
G f

is commutative.
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(4) Let V be a vector space over F. If t;: V, >V is an F-linear map and
t;: ViQ;N,y1 =V is the map adjoint to t;, then the diagram

t®1 bii
Vi @ N; : > Ve N - ‘VF,

Hom(1,#)
Homg (and Ve le‘l) —— Hom,_- (/qu,\/ )

is commutative, where s(v;®f)x; = v;®|f|(x;).

Let ¥ (K;) be the category whose objects are systems (V, t;);i=y.. n+1,
where ¥, is a finite dimensional vector space over F; and

it Vio Ve =V

is an F;-linear map. Here we consider V,,; = V; as a vector space over F;
via the embeddings F; = F which we fix throughout this section. A map from
V', t) to (V,, t;) is a system of F-linear maps g;;: V/ - V,®;N;, i <j, such
that for every j the following diagram is commutative

~

®(f®1) by
& N——— ®Ve,; M—————»V
i%j

(%) {g;) g

I ‘V'

where we put g = g,, 1,+1. If we have two maps (g;): (V{", t) = (V/, t}) and
(9:): (V/,t) =V, t;) in ¥ (Kg), then we define their composition by the
composed maps

@(g,,@ )

v @ e, 2 @ K@ ®N,; —

i<j k<i<j

6! ®ku)

— W®qN;
It is easy to see that 7" (Ky) is an additive category.

Now we define a functor §: %(KF)—>V(KF) as follows. Given an
object (U, X, ¢) in % (K;) we put Vy = Coker (U —»leF) Let X = X}'®..

..®X.", where Xj»’ denotes the direct sum of s; copies of X;. Then we have
the isomorphisms

IXlp = X e ® ... ®IXF
= I/1®|X1IF®@V;:®|X71|F = I/1®1Nn+1@~-®l/;l®nNn+l’
where V; = F;'. Hence ¢ determines an epimorhism

t=(): @V®Nyyy —V,
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where each map f; is adjoint to a uniquely determined F;-linear map t;:
Vi— Vi,. We put

8(U9 X’ QO) = (Vu ti)'

It is easy to check that an object (V, t;) of #"(Kj) is in the image of & if and
only if the corresponding map 7 =(f;}) is surjective. But this is the case
if (¥, t;) has no direct summands of the form (W, 0) with W, , = F and
Wy=...=W,=0.

It is also clear that a map (U’, X', ¢') > (U, X, ¢) in % (K) is uniquely
determined by a system of maps g;;: V;/®;N,.; = V;®;N,,, such that the
following diagram is commutative

®VI ®i"’nﬂ v

Q

(gy)

® W’®iNno1 ——L——) 4

or equivalently, for every j the diagram

(#)
@V, ® Ny ————=V
i€

(**) (i) g

W'ean.1j—>V'
is commutative. In view of the map
0: Homg (V;, V;®;N;) = Homg (V;®;N,+ 1, ,®iNy+1)

there are Fj-linear maps g;;: V- V,®;N; such that 0(g;) =(gi))-
Furthermore, diagram (#*) is commutative if and only if diagram (=) is
commutative (use Lemma 1.2 and the fact that @ is natural). We put ¢, ;,+1
=g and §(g;;) = (g9;;). A simple computation shows that & is an additive
functor which is full and faithful. Then we have proved the following result.

ProposITION 1.3. The functor §:. U,(Kr) — ¥ (Kg) is full and faithful.
Every indecomposable object in ¥ (Ky) except the simple object (W, 0) with
Wy=...=W,=0 and W,,., = F belongs to the image of §.

For every i=1,...,n we denote by F; the simple object (V}?, 0) in
¥ (Kp) with ¥} =F; and V? =0 for j #i. The following lemma will be
useful.

LemMma 14. If (V, t;) is an indecomposable object in ¥ (Kg), then either
(V;, t;) is isomorphic to some F; or every map t;: V, =V, = V is injective and
(Imt)n Y b;(Imt;@Q;N)=0 for i=1,2,...,n

j<i
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Proof. It is clear that the object (K;, 0) with K,,, =0 and K; = Ker ¢,
i < n, is a direct summand of (¥}, t;). Hence t,, ..., t, are injective provided
(V;, t;) is indecomposable but not isomorphic to some F;, j=1,
Without loss of generality we can suppose that the t; are mclus1ons

Assume that L, =V,n Y b;(V;®;N;)) # 0 for a certain i and consider

J<i

the object L= (L, 0) in V(K;) with L, =0 for k # i. By our assumptlon we
have a commutative diagram

oye,N, o(te1) 202 gy e,
T(rﬁ) j(&,)
L,’ R V
L

Vi

which yields the commutative diagram

® @(tj Y% ®lN { l/) v
Jsi
L; — 0
with r; = —w. Then we have defined a split embedding L—(V}, t;) and we

get a contradiction. The lemma is proved.

Now we are going to define the functor &: ¥ (Kg) — ! her (Ry). First
we recall from [3], and [15] (Sec. 3) that modules M in [ her(Rg) can be
identified with families of F;-modules M;, i =1, ..., n+1, together with F;-
linear maps j®i: M;®;N; > M; satisfying the following conditions:

: M;®F; > M; defines the structure of F;-module on M,

k¢.(l®c’.,k) @ ;i ®1) for i<j <k,

3 ;0;(—®x): M; > M; is injective for any non-zero x in ;N;.
The relationship between M and (M, ;) is the following. We consider the
module M in [ her (Ry) as a contravariant additive functor from the category
consisting of finitely generated projective right Rx-modules to the category of
abelian groups. Obviously every such functor is uniquely determined by its
values on the modules P, ..., P,,P,,,. We take for M, the value of M on P,
and given a map xe;N; = Homg, (P;, P;) we take for jp;(x): M; > M; the
map M(x) induced by x.

Now given an object (¥, ;) in ¥" (Kg) we define & (V}, ;) = (M,, ;) as
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follows. We take for M; the image of the composed map

® veN 0 @ v N, Ly,

Ji<i Jjsi
where V =V, . It follows from Lemma 1.2 that for i < k we have a unique
factorization

M, ® N, ————>V®N,
k9i Bki

M ——V

such that conditions 1°-3° are satisfied. We recall that M,,, =V,., = V.

Now suppose (g;;): (V/, t)) = (V;, ;) is a map in ¥ (Kg) and let G(V/, 1))
= (M}, ;o)) with M, ., =V, =V'. We denote by g the map g, p+,: V'
— V. By Lemma 1.2 the commutative diagram (=) yields the following
commutative diagram

D VN, ,
[ @(f,,eo”
®(1ec;)

@(f, ®1) ®{1®cyji,
(© v, o N o, 2L @ Ve Nen SNl @ VN,

ksj
| -
l(sjkg‘” l(bik)

by
(g 8 V®jNi 4 v
gel . 19
t/®1 by
le®le J V’®}‘N" / VI

It follows that g(M;) = M; and therefore we get a family of F;-linear
maps g;: M;— M, such that g;; ¢} = ;¢;(9:®1). We put &(g;;) =(g,). It is
clear the we have defined an additive functor ®.

Now we are able to prove an important result which together with
Proposition 1.3 yields our Theorem 1.1. A special case of it was announced
in [17], Theorem 24.

Tueorem 1.5. (1) The functor &: ¥ (Kgp) — 1 her(Ry) is full and dense.

(2) If A and B are indecomposable objects in ¥ (Kg) having no direct
summands isomorphic to the simple objects F, ..., F,, then every isomorphism
from &(A) to &(B) has the form &(g), where g: A — B is an isomorphism.

(3) If A is an indecomposable object in ¥ (Ky), then ®(A) = 0 if and only
if A is isomorphic with some F;, i=1, ..., n.
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"Proof. In order to prove that & is dense take a module M = (M, ;¢;)
in [ her(Ry) and define an object (V, ;) in ¥"(Kg) such that G(V,, 1) =M
We put V,., =M,,,. For any i we denote by s; the composed mono-

. n+ 19 _.
morphism M; Homg(;N,iy, M,y) 2 My, where ,.,® is the

map adjoint to ,,;¢; and the right-hand map is the isomorphism induced
by our fixed bimodule isomorphism ;N,, ; = r,Fr- A simple calculation shows

that the equality ,,+1<p,(1®c,1,,+1)—,,H(pj(q),@l) yields the commutative
diagram

sjel
M e INj —M,, vN/
# 5,

Sj
M M,

Since sy, ..., s, are injective then without loss of generality we can suppose
they are inclusions.

If i is a minimal element in the poset (Ig,, d), then we put V; = M,. If i
is arbitrary and V; are defined for j < i (with respect to the order in I,,K) we
take for ¥, an F;-subspace of M, such that

M;=V.® Z Eij(Vj®jNi)~
Jj<i
Then we have defined V, for any i=1,...,n+1 and we take for ¢;:
V; - V,,, the inclusions. From the definition of ® immediately follows that
®(V,, ;) = M and therefore ® is dense.

Now let (g,): (M}, ;) = (M;, jo;) be a map in [ her(Ry) and suppose
G, ) =M}, ;0), OV, t)=(M, ;p). We will define Fj-linear maps
gij: Vj’ — V,®;N; for any i<j < n+1 in a such a way that for any j diagram
(*) is commutative. By the definition of & we know that M,., =V, ,,
M,y =Vt

We put g,,1n+1 =9gn+1- For any j we consider the following diagram

®(t; ®1) b
@V, 8 Nj——=V, & N———=M

9j
(9,', )

- -

We know from the definition of the functor & that the horizontal
composed map in the diagram is surjective. Hence there exists a map (g;;)
making the diagram commutative. It follows that the linear maps g;; are such



144 D. Simson

that for any j diagram (=) is commutative. Therefore (g;;) is a morphism in
¥"(K). Since obviously ®(g;;) =(g;) then the functor & is full.

In order to prove (2) we put A =(V, t;), B=(V/, t;)) and we keep the
notation above. We define an Fj;-subspace M; of M; by formula

M;=Y Im;p, j=1,...,n+1.
i<j
From our assumptions and Lemma 1.4 we easily conclude that
(1) gj(M}) < Mja '
(i) M; =Y b;(Im t;®;N)),
i<j

(i) M; =1Im ;®M; and M; =Im ;@ M;.

Assume that (g;) is an isomorphism. Then every map g; is an isomor-
phism and it follows from (i)—(iii) that the map g;tj: V; = Im t;®M; has the
form (g}, g;), where gj: V/ —Im ¢; is an isomorphism. Hence the map g;; in
the diagram above is an isomorphism. Therefore the map (g;;) is an isomor-
phism and (2) follows. :

Since the statement (3) follows immediately from the definition of ® the
proof of the theorem is complete.

Remark. The method we use in the proof of Theorem 1.1 is similar to
that used by Drozd [5].

As an immediate consequence of Theorem 1.1 we have the following

CoroOLLARY 1.6. If K is a special schurian vector space category, then the
category U (Ky) is of finite representation type if and only if | her(Ry) is of
finite representation type.

Remark 1. Theorem 1.1 can be used for computations of inde-
composable modules over artinian rings in a way similar to that one the
representations of partially ordered sets are used in [11], [14]. In [18] we
use Theorem 1.1 for the description of indecomposable modules over I-
hereditary artinian Pl-rings of finite representation type. A detailed dis-
cussion of the use of Theorem 1.1 can be found in [18], Remark 4.

Remark 2. The factorization of the functor @ through the category
v (Kg) allows us to interprete any object F(A) = (V}, t;) with Ae % (Kf) as
a block matrix of the form

with coefficients in the field F =F,,,, where m=dim(V,;)r and s;
=dim(Vj)Fj for j=1,2,...,n In the particular case when F=F, =F,
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=...=F, and every non-zero bimodule ;N; is equal to pF; we are in the
position of Nazarova and Rojter [10] with the partially ordered set N
=Ig, \\n+1}. In this case the category [ her(Ry) is equivalent with the
category N-sp of all finite dimensional N-spaces over F in the sense of
Gabriel [6] and therefore the functor ® establishes a well-known connection
between the category of the matrix representations of the partially ordered
set N (in the sense of Nazarova and Rojter [10]) and the category N-sp.

2. A connection of subspace categories and Kleisli categories. Now we are
going to show that the results in Section 1 allow us to relate the study of
subspace category of any special schurian category with Kleisli categories
and with the theory of BOCS’ [12].

We recall from [8] that given a monad T: ¥ — # in a category &4 the
Kleisli category ABr of # with respect to T is the category having the same
objects as # has whereas the set of maps (X, Y); from X into Y in 4, is the
set A(X, TY) of all maps from X into TY in #. The composition of
fe(X, Y)y and ge(Y, Z); in Ay is the composed map

xLryILrz™8 vz

where m: T? — T is the multiplication of the monad T. It is easy to see that
Ay is an additive category if so is 4.

Now suppose that Kj is a special schurian vector space category and we
keep other notation introduced in Section 1. Let Ry be the [-hereditary right
QF-2 ring associated with K and let us consider the hereditary ring

F O 0O <o 0 N,y
FZ 0 ° O 2Nnv1
Sk = LU
,7_1 nNn~‘l
0 o
I |

The ring embedding Sx = Rk induces a monad T: mod (Sk) — mod(Sy) given
by the formula T(-) = — ®s, Rk and we have the following useful result:
PropositioN 2.1. There is an equivalence of categories ¥ (Ky)
= mod(Sg)r.
Proof. Given an object 4 = (V,, t;) in ¥ (K;) we denote by H(A) the Sk-
module (¥, t;), where 7;: V,®;N,,; = V,., corresponds to t; via the com-
posed isomorphism

HomF"+l(I/i®iN;1+l’ Vary) = HomF,-(Vi, Homg  (iNp+1, Var 1)
= Homr,-(V;: (Var 1)1-“-)-

10 — Roczniki PTM ~ Prace Matematyczne XXV
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Moreover, if (g;)): A"— A is a map in ¥ (K;) and we denote by (H;, w;) the

right Sx-module H(A)®s, Ry, then obviously H; = @ V,®;N; and in view
i<j

of diagram () we have defined an Sg-homomorphism H(g;): H(A’)

— H(A)®s, Rx which defines a map H(g)e(H(4), H(A))r. It is easy to

check that we have defined an additive functor

H: 1/‘(KF) i mOd(SK)T

which is an equivalence of categories. The details are left to the reader.
We note that Proposition 2.1 together with results in [1], [7] allows
us to apply the methods developed in [12] for the representations of BOCS’
to the study of subspace categories # (K;), where K is special schurian. In
particular, the categorical interpretation of the Rojter’s classification al-
gorithm given in [1], [7] allows us to define a similar algorithm for our
Kleisli category mod(S); and therefore we can use it in the study of #(K,).
Note also that Proposition 2.1 allows us to define a sequence of partial
Coxeter functors for the category mod(Sg)r provided Ry is an artinian PI-
ring. In this case there is a sequence of partial Coxeter functors (see [4],

[16])

So S{ $3
...emod(4_;) 2 mod(Sy) 2 mod(4,)=2...,
Sa S; S;

where A; are hereditary Pl-rings. Then in order to define a sequence of
partial Coxeter functors for the Kleisli category mod(Sg)y it is enough to
define monads T;: mod(A4;) - mod(4,) and natural transformations S;" T,_,
- TS}, ST T - T_,S” having appropriate “good” properties. Then the
sequence above will induce a sequence

154 §t 55
c.emod(A_ )y_, 2mod(Sy)r 2mod(Ay)r, 2 ...

5> ST 57

0 1 2

which can be used for the study of the category mod(Sg); in a similar way
to that one the partial Coxeter {unctors are used in the study of hereditary
-artinian rings [16]. We will discuss the problem in a subsequent paper.
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