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Locally nonconical unit balls in Orlicz spaces

Abstract. The aim of this paper1 is to investigate the local nonconicality of unit
ball in Orlicz spaces, endowed with the Luxemburg norm. A closed convex set Q in
a locally convex topological Hausdorff space X is called locally nonconical (LNC), if
for every x, y ∈ Q there exists an open neighbourhood U of x such that (U ∩ Q) +
(y − x)/2 ⊂ Q. The following theorem is established: An Orlicz space Lϕ(µ) has an
LNC unit ball if and only if either Lϕ(µ) is finite dimensional or the measure µ is
atomic with a positive greatest lower bound and ϕ satisfies the condition ∆0

r(µ) and
is strictly convex on the interval [0, b], or c(ϕ) = +∞ and ϕ satisfies the condition
∆2(µ) and is strictly convex on R. A similar result is obtained for the space Eϕ(µ).
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1. Introduction. A convex set Q of a real Hausdorff topological vector space
X is called locally nonconical (LNC), if for every x, y ∈ Q there exists an open
neighbourhood U of x, such that (U ∩Q) + (y − x)/2 ⊂ Q, cf. [1], [3], [19], [20].
LNC sets are new class of convex sets first considered by N. Weaver, who showed
that the range of finite, nonatomic vector measure taking values in Rn has the LNC
property (cf. Theorem 2.7, [19]). It is proved, that intersection and product LNC
sets are LNC sets in [1]. Convex sets on the plane, stricly convex or open convex
sets, polytypes, cylinders, zonoides (images of vector measures),the unit ball in c0,
(but not the unit ball in l∞) belong to the class of LNC sets. The classical cone is
an example of a convex closed set which is not LNC. It is proved in [20], that any
LNC set is stable, (i. e. the midpoint map Φ: Q×Q,Φ(x, y) = (x+ y)/2 is open
with respect to the inherited topology in Q).
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The aim of this paper is to investigate the local nonconicality of the unit ball
B(Lϕ(µ)) (and B(Eϕ(µ))) of Orlicz spaces Lϕ(µ) (and Eϕ(µ)) of functions defined
on an arbitrary σ–finite measure space, endowed with the Luxemburg norm.

2. Basic definitions and auxiliary results. Let (Ω,Σ, µ) be a measure
space with a nonnegative, σ–finite and complete measure µ (µ(Ω) > 0) and ϕ : R →
[0,+∞] be a convex, even function which is non-identically equal to 0 and left-
continuous for t > 0, such that ϕ(0) = 0, c(ϕ) := sup{ t > 0 : ϕ(t) < ∞} > 0.
Such functions are called Young functions. This definition is somewhat stronger
than the one used in [17]. We use the notation a(ϕ) := sup{ t : ϕ(t) = 0 }. By an
Orlicz space Lϕ(µ) ( [14], [15], [17]), we mean the set of all measurable functions
x : Ω → R, such that Iϕ(λx) <∞ for some λ > 0, where the modular Iϕ is defined
by

Iϕ(x) :=
∫

Ω

ϕ (x(ω)) dµ.

Lϕ(µ) is equipped with the Luxemburg norm [13]

‖x‖ϕ := inf {λ > 0 : Iϕ (x/λ) ≤ 1 } .

(Note that ‖x‖ϕ ≤ 1 iff Iϕ(x) ≤ 1; Iϕ(x) = 1 implies ‖x‖ϕ = 1; Iϕ(x) < 1 ⇒
(‖x‖ϕ = 1 iff Iϕ(λx) = +∞ for every λ > 1); ‖xn − x‖ϕ → 0 iff Iϕ(λ(xn − x)) → 0
for every λ > 0). If atomless part of µ is positive, then the subspace

Eϕ(µ) := {x ∈ M : ∀λ > 0 Iϕ(λx) < +∞} .

is called the space of finite elements, where M is the set of all measurable
functions x : Ω → R. If µ is purely atomic then definition of the finite elements is

Eϕ(µ) :=

{
(xn) : ∀λ > 0∃nλ ∈ N

∞∑

n=nλ

ϕ(λxn) < +∞
}
.

Note, that for c(ϕ) = ∞ both definitions are equivalents, but for Lϕ(µ) = l∞ we
have Eϕ(µ) = c0 (cf.[22], p. 489).
Let r > 1. The function ϕ is said to satisfy the condition ∆r(µ), cf. [21], [23]

(denoted ϕ ∈ ∆r(µ)) if one of the following three conditions is satisfied:

(a) µ is atomless and there exist constants c > 1 and a0 ≥ 0 such that ϕ(a0) < +∞,
(or in the case µ(Ω) = +∞ then a0 = 0), such that for every t ≥ a0, we have
ϕ(rt) ≤ cϕ(t);

b) when µ is purely atomic measure with { en : n ∈ N }, N ⊂ N, being the set of
all atoms of Ω and there exist b > 0, c > 1 and a nonnegative sequence (dn)
such that

∑
n dn < +∞, and ϕ(rt)µ(en) ≤ cϕ(t)µ(en) + dn for every t with

ϕ(t)µ(en) ≤ b and every n ∈ N;

c) a combination of a) and b) when Ω has both an atomless part Ω1 and purely
atomic part Ω2 of positive measure, such that ϕ ∈ ∆r(µ|Ω1) and ϕ ∈ ∆r(µ|Ω2).
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If c(ϕ) = ∞, then ϕ ∈ ∆r(µ) for some r > 1 ⇐⇒ ϕ ∈ ∆r(µ) for every
r > 1 ⇐⇒ ϕ ∈ ∆2(µ).
These equivalences remain true if µ is atomless (in this case ϕ ∈ ∆r(µ) for some

r > 1 implies that c(ϕ) = ∞). If µ is purely atomic measure with∑n µ(en) = ∞ and
ϕ ∈ ∆r(µ) for some r > 1, then ϕ(x) = 0 ⇔ x = 0 (indeed, dn ≥ ϕ(ra(ϕ))µ(en) for
every n ∈ N). Thus these equivalences hold in the case of a purely atomic measure
µ with an infinite number of atoms provided 0 < infn µ(en) ≤ supµ(en) < ∞ —
no matter whether ϕ takes only finite values or not (if ϕ ∈ ∆r0(µ), then evidently
ϕ ∈ ∆r(µ) for every 1 < r ≤ r0; for r > r0, consider br = ϕ(a′r0/r) · infn µ(en) > 0,
where a′ = sup{ a > 0 : ϕ(a) ≤ br0/ supn µ(en) } > 0). If dimLϕ(µ) < ∞ (i. e. , Ω
consists of a finite number of atoms), then ϕ ∈ ∆r(µ) for some r > 1 if and only if
Lϕ(µ) is not isometric to L∞(µ) (take any a0 ∈ (a(ϕ), c(ϕ)), 1 < r < c(ϕ)/a0 and
set b = ϕ(a0)·infn µ(en) > 0, dn = ϕ(ra0)·supn µ(en) <∞). However, if 0 < a(ϕ) ≤
c(ϕ) <∞, then ϕ does not satisfy the condition ∆r(µ) for any r > c(ϕ)/a(ϕ).
Note that if c(ϕ) = ∞ and Lϕ(µ) is finite dimensional, then Lϕ(µ) = Eϕ(µ).

If c(ϕ) = ∞ and dimLϕ(µ) = ∞, the equality Lϕ(µ) = Eϕ(µ) holds if and only if
ϕ ∈ ∆2(µ) (cf. [14, Theorem 8. 13, p. 52]). Thus, applying the Lebesgue dominated
convergence theorem, we obtain

(Iϕ(x) = 1 ⇐⇒ ‖x‖ϕ = 1) if and only if ϕ ∈ ∆2(µ).

In fact, we can replace the condition ∆2(µ) by ∆r(µ) for some r > 1 in the last
equivalence. The assumption c(ϕ) = ∞ is used only in the ”if” part of the proof.
Hence, in any case, it follows that if ϕ /∈ ∆r(µ) for any r > 1, then there exists
x ∈ Lϕ(µ) such that ‖x‖ = 1, but Iϕ < 1 and this is what we need in the sequel.
Let { en : n ∈ N }, N ⊂ N, be the set of all atoms of Ω and let r > 1. We say

that a function ϕ satisfies the condition ∆0
r(µ)(on Ω) — denoted ϕ ∈ ∆0

r(µ) — if
one of the following conditions is satisfied

(a) when the atomless part of Ω is of positive measure there exist a0 > 0 and c > 1
such that 0 < ϕ(a0) <∞ and ϕ(rt) ≤ cϕ(t) for every |t| ≤ a0:

(b) when µ is purely atomic there exist a0 > 0, b > 0, c > 1 and a nonnegative
sequence (dn) such that

∑
n dn < +∞, 0 < ϕ(a0) <∞ and

ϕ(rt)µ(en) ≤ cϕ(t)µ(en) + dn for every |t| ≤ a0 with ϕ(t)µ(en) ≤ b and every
n ∈ N .

If ϕ ∈ ∆0
r(µ) for some r > 1 on the atomless part of Ω which is of positive

measure, then evidently, ϕ ∈ ∆0
r(µ) on the whole set Ω. Furthermore, if the measure

of the atomless part of Ω is either infinite or equal to zero and ϕ ∈ ∆r(µ) for some
r > 1, then ϕ ∈ ∆0

r(µ). Thus ϕ ∈ ∆0
r(µ) for some r > 1 when dimLϕ(µ) < ∞ and

Lϕ(µ) is not isometric to L∞(µ).
If ϕ ∈ ∆0

r(µ) for some r > 1 and ‖x‖∞ < c(ϕ), then

Iϕ(x) = 1 ⇐⇒ ‖x‖ϕ = 1.

(see [23, p. 509]). Note that when ϕ takes only finite values, ϕ ∈ ∆0
r(µ) for some

r > 1 iff ϕ ∈ ∆0
2(µ). Also, analogously to ∆r(µ), if µ is purely atomic measure with∑

n µ(en) = ∞ and ϕ ∈ ∆r(µ) for some r > 1, then a(ϕ) = 0.
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We will use the following characterization of stability in Orlicz spaces with the
Luxemburg norm.

Theorem 2.1 [23, Theorem 5, p. 511] B(Lϕ(µ)) is stable if and only if at least
one of the following conditions is satisfied:

(i) dimLϕ(µ) < +∞;
(ii) Lϕ(µ) is isometric to L∞(µ);

(iii) ϕ satisfies the condition ∆r(µ) for some r > 1;

(iv) ϕ satisfies the condition ∆0
r(µ) for some r > 1 provided c(ϕ) < +∞ and

ϕ(c(ϕ)) < +∞;
(v) ϕ satisfies ∆0

r(µ) for some r > 1 on the purely atomic part of Ω whenever
c(ϕ) < +∞, ϕ(c(ϕ)) < +∞ and the measure of the atomless part of Ω is finite;

(vi) c(ϕ) < +∞, ϕ(c(ϕ)) < +∞ and µ(Ω) < +∞.

We need the following six technical Lemmas.

Lemma 2.2 Let ϕ : R → [0,+∞] be any Young function. Set N := N or N :=
{ 1, 2, . . . , N }. Let (xi)i∈N, (yi)i∈N, (εi)i∈N, (ci)i∈N be sequences of real numbers
satisfying the following conditions:

1. ci > 0 for i ∈ N,

2.
∑
i∈N

ϕ(λxi + (1− λ)yi)ci = 1 for every 0 ≤ λ ≤ 1,

3. the set J := { i ∈ N : xi 6= yi ∧ (|xi| > a(ϕ)/2 ∨ |yi| > a(ϕ)/2) } is finite and
for each i ∈ J the following conditions are satisfied:
(a) if xi 6= 0, then |εi| ≤ |xi| and if yi 6= 0, then |εi| ≤ |yi|
(b) |εi| < |yi − xi|/2
(c) |εi| < min{ |(xi + yi)/2|, a(ϕ) − |(xi + yi)/2| }, as long as the right-hand
side is positive

(d) |εi| < a(ϕ)/2, as long as a(ϕ) > 0.

Let
F (t) :=

∑

i∈N

ϕ (xi + t(yi − xi)/2 + εi) ci.

Then the function F is nonincreasing on the interval [0, 1].

Proof Note that for λ = 0 and λ = 1 from Condition 2 we obtain:
∑
i∈N

ϕ(xi)ci =
∑
i∈N

ϕ(yi)ci = 1. Furthermore, for 0 < λ < 1,

1 =
∑

i∈N

ϕ (λxi + (1− λ)yi) ci ≤ λ
∑

i∈N

ϕ(xi)ci + (1− λ)
∑

i∈N

ϕ(yi)ci = 1,
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which means that for xi 6= yi the function ϕ is affine on [xi, yi]. The numbers xi,
yi may be of opposite signs only if ϕ(xi) = ϕ(yi) = 0, i.e. when |xi|, |yi| ≤ a(ϕ).
Hence, we can assume the following

either xi, yi ≥ a(ϕ) ≥ 0 or xi, yi ∈ [−a(ϕ), a(ϕ)], or xi, yi ≤ −a(ϕ) ≤ 0

for all i ∈ N. Let ki be the gradient of ϕ on the segment [xi, yi] for i ∈ J . Then

ϕ ((xi + yi)/2 + εi) = ϕ ((xi + yi)/2) + kiεi for i ∈ J .

Let ki(t) ≡ 0 if εi = 0, ki(t) ≡ +∞ if ϕ (xi + t(yi − xi)/2 + εi) = +∞ and

ki(t) =
ϕ (xi + t(yi − xi)/2 + εi)− ϕ (xi + t(yi − xi)/2)

εi
.

in all other cases for i ∈ J , 0 ≤ t ≤ 1 . So ki(t) satisfy

ϕ (xi + t(yi − xi)/2 + εi) = ϕ (xi + t(yi − xi)/2) + ki(t)εi.

Note that if |xi|, |yi| ≤ a(ϕ)/2, then ki(t) = 0 and both sides of the above equality
are equal to zero. Consider two cases A) xi < yi, B) yi < xi:
A) If εi > 0, then xi ≤ xi + t(yi − xi)/2 + εi ≤ (xi + yi)/2 + εi ≤ (xi + yi)/2 +

(yi − xi)/2 = yi, so ki(t) ≡ ki.
If εi < 0, then

ki(t) =
ϕ (xi + t(yi − xi)/2)− ϕ (xi + t(yi − xi)/2− (−εi))

−εi
.

It is easy to see, that for any convex function ψ and positive constant c the function
ψ(t+ c)− ψ(t) is nondecreasing. Hence, the function ki(t) is nondecreasing

B) If εi < 0, then yi = (xi + yi)/2− (xi − yi)/2 ≤ (xi + yi)/2 + εi ≤ xi + t(yi −
xi)/2 + εi < xi + t(yi − xi)/2 ≤ xi, so ki(t) ≡ ki.
If εi > 0, then

ki(t) =
ϕ (xi − t(xi − yi)/2 + εi)− ϕ (xi − t(xi − yi)/2)

εi
.

As above, the function ki(t) is nonincreasing.
In all cases the function:

gi(t) := ki(t)εici

is nonincreasing. Let:

I := { i : xi = yi }, K := { i : xi 6= yi ∧ |xi|, |yi| ≤ a(ϕ)/2 }.

Obviously, N = I∪̇J∪̇K. Let λ := λ(t) = 1− t/2. Note that
∑

i∈K

ϕ (xi + t(yi − xi)/2 + εi) ci =
∑

i∈K

ϕ (xi + t(yi − xi)/2) ci = 0,
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since the arguments of the function ϕ are contained in [−a(ϕ), a(ϕ)]. Hence,

F (t) =
∑

i∈I

ϕ(xi + εi)ci +
∑

i∈J

ϕ (xi + t(yi − xi)/2 + εi) ci =

=
∑

i∈I

ϕ(xi + εi)ci +
∑

i∈J

ϕ (xi + t(yi − xi)/2) ci +
∑

i∈J

ki(t)εici =

=
∑

i∈I

ϕ(xi + εi)ci +
∑

i∈N

ϕ (λxi + (1− λ)yi) ci +

−
∑

i∈I

ϕ (λxi + (1− λ)yi) ci +
∑

i∈K

ϕ (xi + t(yi − xi)/2) ci +

+
∑

i∈J

gi(t)

=
∑

i∈I

(ϕ(xi + εi)− ϕ(xi)) ci + 1 +
∑

i∈J

gi(t).

Thus F (t) is nonincreasing on [0, 1]. �

Lemma 2.3 Let a(ϕ) = 0. If the Young function ϕ is not strictly convex in any
neighbourhood of 0, and (cn)n∈N is a sequence of real numbers satisfying inf{ cn :
n ∈ N } > 0, then there exist two sequences of real numbers (xn), (yn) such that
yk < xk for infinitely many k ∈ N, lim

n
xn = lim

n
yn = 0, ϕ � [xn ∧ yn, xn ∨ yn] is

affine for every n ∈ N and
∑

n∈N
ϕ(xn)cn =

∑
n∈N

ϕ(yn)cn = 1.

Additionally, if we assume c(ϕ) = +∞ or ϕ(c(ϕ)) ·∑∞n=1 cn > 1 instead of
inf{ cn : n ∈ N } > 0 we obtain

(∀λ > 0)(∃nλ ∈ N)

( ∞∑

n=nλ

ϕ(λxn)cn < +∞ and
∞∑

n=nλ

ϕ(λyn)cn < +∞
)
.

Proof First we prove the Lemma with an additional assumption. Fix N ∈ N such
that ϕ(c(ϕ)) ·∑2N−1

n=1 cn > 1 if c(ϕ) < +∞ and N = 1 if c(ϕ) = +∞. Let U =
.⋃
Ui

be the sum of disjoint open intervals Ui of (0, c(ϕ)) such that the restricted function
ϕ � Ui is affine. U 6= ∅ and inf U = 0 by assumption. Now we define two sequences
(xn),(yn), such that for n ≥ 2N , xn, yn ∈ U , ϕ � [xn, yn] (respectively ϕ � [yn, xn] )
is affine, ϕ(nxn) < 1/(cn2n), xn < 1/n, ϕ(nyn) < 1/(cn2n), yn < 1/n and

∞∑

n=2N

ϕ(xn)cn =
∞∑

n=2N

ϕ(yn)cn.

The construction will be inductive. Suppose that we have constructed sequences
(xi)2N≤i≤2k−1, (yi)2N≤i≤2k−1 for some k ∈ N satisfying the assumptions, y2i < x2i

for i < k and:
2k−1∑

n=2N

ϕ(xn)cn =
2k−1∑

n=2N

ϕ(yn)cn.
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For i ∈ { 2k, 2k+1 } we choose xi ∈ U satisfying ϕ(ixi) < 1/(ci2i), xi < 1/i and take
y2k < x2k sufficiently close to x2k that the appropriate assumptions hold. Moreover,
x2k and x2k+1 may be such small, that

((ϕ(x2k)− ϕ(y2k))
c2k

c2k+1
+ ϕ(x2k+1) < ϕ(1/2k + 1)

and

(2k + 1)ϕ−1

(
(ϕ(x2k)− ϕ(y2k))

c2k

c2k+1
+ ϕ(x2k+1)

)
< ϕ−11/(c2k+122k+1).

Then y2k+1 defined by the formula:

y2k+1 := ϕ−1

(
(ϕ(x2k)− ϕ(y2k))

c2k

c2k+1
+ ϕ(x2k+1)

)

satisfies the appropriate assumptions, too. We may assume that ϕ is a continuous
and increasing function on [0, c(ϕ)) and U is an open set. The following formula

ϕ(x2k)c2k + ϕ(x2k+1)c2k+1 = ϕ(y2k)c2k + ϕ(y2k+1)c2k+1,

holds by construction. Hence,
2k+1∑
n=2N

ϕ(xn)cn =
2k+1∑
n=2N

ϕ(yn)cn and the inductive step

is complete. The following inequality

∞∑

n=2N

ϕ(xn)cn =
∞∑

n=2N

ϕ(yn)cn ≤
∞∑

n=2N

ϕ(nyn)cn ≤
∞∑

n=2N

1
2n

≤ 1
2
< 1

holds by construction. By the condition put on N at the begining of the proof, there
are xn for 1 ≤ n ≤ 2N − 1 such that:

2N−1∑

n=1

ϕ(xn)cn = 1−
∞∑

n=2N

ϕ(xn)cn.

Let yn = xn for n ≤ 2N − 1 Hence,
∑

n∈N
ϕ(xn)cn =

∑

n∈N
ϕ(yn)cn = 1

Now consider λ > 0. Fix nλ ∈ N, n ≥ 2N such that λ < nλ. Thus

∞∑

i=nλ

ϕ(λxi)ci ≤
∞∑

i=nλ

ϕ(ixi)ci ≤
∞∑

i=nλ

1
2i
< +∞,

what ends the proof.

It remains to prove the Lemma without this additional assumption. We construct
sequences (x2k−1)k∈N, (y2k−1)k∈N contained in U satisfying

0 < 1− c :=
∑

k∈N
ϕ(x2k−1)c2k−1 =

∑

k∈N
ϕ(y2k−1)c2k−1 < 1
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and y2k−1 < x2k−1 for infinitely many k ∈ N using the methods from the previous
case. To complete the proof it suffices to construct a sequence (x2k) converging to
zero such that

∑
k∈N

ϕ(x2k)c2k = c and set y2k := x2k. This sequence is constructed

by induction in the following way:
Let x2 ∈ U be any real number satisfying ϕ(x2)c2 < c and x2(k+1) = x2k, as long

as
k+1∑
i=1

ϕ(x2i)c2i < c. If
k+1∑
i=1

ϕ(x2i)c2i ≥ c we set x2(k+1) to be any x ∈ U , such that
k∑

i=1

ϕ(x2i)c2i + ϕ(x)c2(k+1) < c. Observe

0 <
∑

i∈N
ϕ(x2i) ≤

1
inf{ ci : i ∈ N }

∑

i∈N
ϕ(x2i)c2i < +∞.

Thus lim
n
x2n = 0. Hence, there exists infinitely many k ∈ N such that x2(k+1) < x2k

it follows that:

c ≥
k∑

i=1

ϕ(x2i)c2i > c− ϕ(x2k)c2k

Letting k tend to infinity, it follows that
∑
i∈N

ϕ(x2i)c2i = c, what completes the

proof. �

Lemma 2.4 If 0 < c(ϕ) < +∞, ϕ(c(ϕ)) < +∞ and if there exists an infinite
sequence of disjoint sets of finite positive measure (An) such that

ϕ(c(ϕ)) ·
∞∑

n=1

µ(An) ≤ 1,

then B(Lϕ(µ)) is not LNC. In particular, B(L∞(µ)) is not LNC when dimL∞(µ) =
∞.

Proof Let n0 ∈ N, n0 > 1/c(ϕ). Set

x :=
∞∑

n=n0

(c(ϕ)− 1/n)χAn
and y :=

∞∑

n=n0

c(ϕ)χAn

By assumption Iϕ(y) =
∫
Ω

ϕ(y) dµ =
∞∑

n=n0

ϕ(c(ϕ))µ(An) ≤ 1. It follows that Iϕ(x) ≤
1. Moreover, for λ > 1 and m > max{n0, λ/((λ− 1)c(ϕ)) } the following holds:

Iϕ(λx) =
∞∑

n=n0

ϕ (λ (c(ϕ)− 1/n))µ(An) ≥ ϕ ((λ− λ/(mc(ϕ))) c(ϕ))µ(Am) = +∞

and Iϕ(λy) = +∞. Thus ‖x‖ϕ = ‖y‖ϕ = 1. Set xn := x + (1/n)χAn
for n ≥ n0.

Then Iϕ(xn) ≤ Iϕ(y) ≤ 1, so ‖xn‖ϕ ≤ 1. Moreover, the following holds for λ > 0:
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limn→∞ Iϕ(λ(xn−x)) = limn→∞ ϕ(λ/n)µ(An) = 0. Hence, limn→∞ ‖xn−x‖ϕ = 0.
However,

Iϕ (xn + (y − x)/2) = Iϕ (xn − x+ (x+ y)/2) =

=
∫

Ω

ϕ

(
(1/n)χAn

+
∞∑

k=n0

(c(ϕ)− 1/2k)χAk

)
dµ ≥

≥
∫

Ω

ϕ ((1/n)χAn
+ (c(ϕ)− 1/2n)χAn

) dµ =

=
∫

An

ϕ (c(ϕ) + 1/2n) dµ = ϕ (c(ϕ) + 1/2n)µ(An) = +∞.

Thus xn + 1
2 (y − x) 6∈ B(Lϕ(µ)), which means B(Lϕ(µ)) is not LNC. �

Note that the assumptions of the above Lemma are satisfied provided c(ϕ) <
+∞, ϕ(c(ϕ)) < +∞ and either the atomless part of Ω has positive measure or
inf{µ(en) : n ∈ N } = 0.
In the next Lemma we assume that µ has infinitely many disjoint atoms { en :

n ∈ N } and set
cn := µ(en)

Lemma 2.5 Let (xn), (yn) be sequences of nonnegative real numbers, such that
either xk = yk or ϕ is affine and increasing on [xk ∧ yk, xk ∨ yk] for k ∈ N.

Assume∑
i∈N ϕ(xi)ci =

∑
i∈N ϕ(yi)ci = 1. Then Iϕ(uk) = 1 and Iϕ(un + 1

2 (y − x)) > 1
for any n ∈ N satisfying yn < xn, where uk := x − 2xkχek

, x :=
∑

i∈N xiχei
, and

y :=
∑

i∈N yiχei
.

Proof Note Iϕ(un) =
∑

i∈N\{n} ϕ(xi)ci + ϕ(−xn)cn =
∑

i∈N ϕ(xi)ci = 1 what
completes the proof of the first part. Set δi := (yi − xi)/2. Let n ∈ N be such that
yn < xn. Thus ϕ(xn + δn) < ϕ(xn − δn). Hence,

Iϕ

(
un +

1
2
(y − x)

)
= Iϕ

(
x− 2xnχen +

1
2
(y − x)

)
=

=
∑

i∈N\{n}
ϕ(xi + δi)ci + ϕ(−xn + δn)cn =

=
∑

i∈N
ϕ(xi + δi)ci − ϕ(xn + δn)cn + ϕ(xn − δn)cn >

>
∑

i∈N
ϕ(xi + δi)ci =

∑

i∈N
ϕ

(
xi + yi

2

)
ci =

=
∑

i∈N

(
1
2
ϕ(xi)ci +

1
2
ϕ(yi)ci

)
= 1,

what ends the proof of the Lemma. �
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Lemma 2.6 Let (An)n∈N be a sequence of disjoint sets with positive measure such
that limn→∞ µ(An) = 0 and let a, b be real numbers such that 0 < a < b and the
function ϕ is affine and increasing on [a, b]. Assume that µ(A) < (ϕ((a + b)/2))−1

for A :=
⋃

n∈N An. Let B ⊂ Ω \ A be a set of finite positive measure. Fix d > 0
satisfing ϕ(d)µ(B) = 1− µ(A)ϕ((a+ b)/2). Let

0 < δ < min
{
b− a

2
,

µ(A \A1)
µ(A1)

· b− a

2

}
and let η :=

δµ(A1)
µ(A \A1)

Put x :=
a+ b

2
χA + dχB , y :=

(
a+ b

2
− η

)
χA\A1 +

(
a+ b

2
+ δ

)
χA1 + dχB ,

xn := x (1− 2χAn
) for n ∈ N.

Then Iϕ(x) = Iϕ(y) = Iϕ(xn) = 1 and Iϕ

(
xn +

y − x

2

)
> 1 for n ≥ 2.

Proof Observe that 0 < δ, η < (b − a)/2. Thus x(A) ∪ y(A) ⊂ [a, b]. Let k > 0
be the slope of the function ϕ on [a, b]. We have Iϕ(x) = ϕ ((a+ b)/2))µ(A) +
ϕ(d)µ(B) = 1 and

Iϕ(y) = ϕ ((a+ b)/2− η)µ(A \A1) + ϕ ((a+ b)/2 + δ)µ(A1) + ϕ(d)µ(B) =
= (ϕ ((a+ b)/2)− kη)µ(A \A1) + (ϕ ((a+ b)/2) + kδ)µ(A1) + ϕ(d)µ(B) =
= ϕ ((a+ b)/2) (µ(A \A1) + µ(A1)) + k (δµ(A1)− ηµ(A \A1)) + ϕ(d)µ(B) =
= ϕ ((a+ b)/2)µ(A) + 0 + ϕ(d)µ(B) = 1.

Hence,

Iϕ(xn) =
∫

Ω\An

ϕ(x) dµ+
∫

An

ϕ(−x) dµ =
∫

Ω

ϕ(x) dµ = 1.
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Moreover, for all n ≥ 2, the following equalities hold:

Iϕ

“
xn +

y − x

2

”
=

Z
Ω

ϕ
“
xn − x +

x + y

2

”
dµ =

Z
Ω

ϕ
“
−(a + b)χAn +

x + y

2

”
dµ =

=

Z
An

ϕ
“
−(a + b) +

x + y

2

”
dµ +

Z
A\An

ϕ
“x + y

2

”
dµ +

Z
Ω\A

ϕ(x) dµ =

=

Z
An

ϕ
“
a + b − x + y

2

”
dµ +

Z
A

ϕ
“x + y

2

”
dµ −

Z
An

ϕ
“x + y

2

”
dµ +

+
1

2

Z
Ω\A

ϕ(x) dµ +
1

2

Z
Ω\A

ϕ(y) dµ =

=

Z
An

ϕ
“
a + b − x + y

2

”
dµ −

Z
An

ϕ
“x + y

2

”
dµ +

Z
A

ϕ(x) + ϕ(y)

2
dµ +

+

Z
Ω\A

ϕ(x) + ϕ(y)

2
dµ =

Z
An

“
ϕ
“
a + b − x + y

2

”
− ϕ

“x + y

2

””
dµ +

+
1

2

Z
Ω

ϕ(x) dµ +
1

2

Z
Ω

ϕ(y) dµ =

=

Z
An

„
ϕ

„
a + b − a + b − η

2

«
− ϕ

„
a + b − η

2

««
dµ + 1 =

= 1 +

„
ϕ

„
a + b

2
+

η

2

«
− ϕ

„
a + b

2
− η

2

««
µ(An) > 1,

what ends the proof of the Lemma. �

Lemma 2.7 If X ⊂ Lϕ(µ) is a linear subspace of Lϕ(µ) with the norm inherited
from Lϕ(µ), such that the equivalence

‖x‖ϕ = 1 ⇔ Iϕ(x) = 1,

holds for any x ∈ X and ϕ is strictly convex, then B(X) is strictly convex.

Proof Suppose there exist x, y ∈ X, x 6= y, ‖x‖ϕ, ‖y‖ϕ ≤ 1, 0 < α < 1 such that
‖αx+ (1− α)y‖ = 1. Since ϕ is strictly convex, we have

ϕ(αx(ω) + (1− α)y(ω)) < αϕ(x(ω)) + (1− α)ϕ(y(ω))

on the set {ω : x(ω) 6= y(ω)} wich is of positive measure. Thus

1 = ‖αx+ (1− α)y‖ϕ = Iϕ(αx+ (1− α)y) =
∫

Ω

ϕ(αx+ (1− α)y) dµ <

<

∫

Ω

(αϕ(x) + (1− α)ϕ(y)) dµ = αIϕ(x) + (1− α)Iϕ(y) ≤ α+ (1− α) = 1

and we get a contradiction. �
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3. Main results. Now we characterize the LNC properties of unit balls in
Orlicz spaces Lϕ(µ) and the space of finite elements Eϕ(µ) respectively equipped
with the Luxemburg norm assuming that ϕ is a Young function and µ is a σ–finite
measure. In the cases of a purely atomic measure µ, we fix a partition of Ω on
disjoint atoms { en : n ∈ N }, where N denotes N if the set of atoms is infinite (i. e.
if dimLϕ(µ) = ∞) or is equal to the number of atoms if the cardinality of this set
is finite (i. e. if dimLϕ(µ) <∞).

Theorem 3.1 The unit ball B(Lϕ(µ)) is LNC if and only if at least one of the
following conditions is satisfied:

(i) dimLϕ(µ) <∞

(ii) µ is purely atomic measure with inf{µ(en) : n ∈ N } > 0, ϕ ∈ ∆0
r(µ) for some

r > 1 and ϕ is strictly convex on the interval [0, b] for some b > 0.

(iii) c(ϕ) = +∞, ϕ ∈ ∆2(µ) and ϕ is strictly convex on R.

Proof (⇒) Assume that B(Lϕ(µ)) is LNC and Lϕ(µ) is infinite dimensional. It
is necessary to prove that (ii) or (iii) are satisfied. We consider two cases:

A) Suppose µ is purely atomic and inf{µ(en) : n ∈ N } > 0. Because B(Lϕ(µ))
is LNC, it follows from [20, Theorem 3.1, p. 196] that it is stable. From Wisła’s
Theorem one of the six conditions from Theorem 2.1 hold, ( [23], Theorem 5).
Obviously, (i) is excluded by asumption and (ii) is excluded by Lemma 2.4, (vi) is
excluded by assumption A). Thus one of conditions (iii)—(v) is satisfied. Either
ϕ ∈ ∆0

r(µ) for some r > 1 when c(ϕ) < +∞ and ϕ(c(ϕ)) < +∞, or ϕ ∈ ∆r(µ).
Hence, ϕ ∈ ∆0

r(µ) for some r > 1 in both cases. Thus a(ϕ) = 0.
Suppose that (ii) is not satisfied. Thus the assumptions of Lemma 2.3 are satis-

fied. Let sequences (xn) and (yn) satisfy the conditions given in Lemma 2. Let x,
y and un (n ∈ N) satisfy the conditions given in Lemma 2.5. In order to show that
B(Lϕ(µ)) is not LNC, it suffices to prove that limn→∞ ‖un − x‖ = 0.
Because ϕ(xn)cn → 0 we have limn Iϕ( 1

2 (x − un)) = limnIϕ(xnχen) = 0. By
condition ∆0

r(µ) we have ‖x− un‖ → 0. This completes the proof for case A).
B) It remains to consider the case when either the measure µ is not purely

atomic or inf{µ(en) : n ∈ N } = 0. In other words, we may assume that there
exists a sequence of mutually disjoint sets of positive finite measures (An), such that
limn µ(An) = 0. Fix such a sequence. We will show that condition (iii) of Theorem
1 is satisfied.
Because B(Lϕ(µ)) is LNC and thus stable, at least one of the conditions (i)—

(vi) of Theorem 2.1 is satisfied. Conditions (i) and (ii) are excluded, as in case A).
We claim that the case where both c(ϕ) < +∞ and ϕ(c(ϕ)) < +∞ is excluded, i.e.
conditions (iv)—(vi). are excluded, too. Suppose c(ϕ) < +∞ and ϕ(c(ϕ)) < +∞.
Then there exists an increasing sequence of positive integers (nk) such that

ϕ(c(ϕ)) ·
∑

k∈N
µ (Ank

) ≤ 1.
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Hence, by Lemma 2.4, the unit ball B(Lϕ(µ)) is not LNC — a contradiction. Thus
condition (iii) of Theorem 2.1 is satisfied, so ϕ ∈ ∆r(µ) for some r > 1.
We claim c(ϕ) = +∞. If µ has positive atomless part Ω1, then ϕ ∈ ∆r(µ � Ω1).

Hence, c(ϕ) = +∞.
If µ is purely atomic and inf{µ(en) : n ∈ N } = 0, then there exists n ∈ N such

that

µ(en) ≤ b

/
ϕ

(
c(ϕ)
r′

)

for all r′ ∈ (1, r) (the constant b is choosen according to the definition of ∆r(µ)).
Thus ϕ

(
c(ϕ)/r′

)
µ(en) ≤ b. Hence,

+∞ = ϕ

(
r
c(ϕ)
r′

)
µ(en) ≤ cϕ

(
c(ϕ)
r′

)
µ(en) + dn < +∞

and we obtain a contradiction, which proves our claim. Hence, ϕ ∈ ∆r(µ) for any
r > 1, in particular ϕ ∈ ∆2(µ).
Now we show a(ϕ) = 0. Assume a(ϕ) > 0. Let x1 be a positive real number

such that ϕ(x1)µ(A1) = 1. Set

x := x1χA1 , y := x1χA1 + a(ϕ) ·
+∞∑

i=2

χAi
.

and
un := x+ a(ϕ)χAn

for n = 2, 3, . . . .

Then
Iϕ(x) = Iϕ(y) = ϕ(x1)µ(A1) = 1, Iϕ(un) = 1.

Thus x, y, un ∈ B(Lϕ(µ)). Let λ > 0. Then:

Iϕ (λ(un − x)) = Iϕ (λa(ϕ)χAn) = ϕ(λa(ϕ))µ(An).

Hence, limn Iϕ(λ(un − x)) = 0 and we have lim
n
‖un − x‖ = 0. Moreover,

Iϕ

(
un +

1
2
(y − x)

)
= Iϕ

(
un − x+

1
2
(x+ y)

)

= Iϕ

(
a(ϕ)χAn + x1χA1 +

∞∑

i=2

a(ϕ)
2

χAi

)
=

= Iϕ


x1χA1 +

3
2
a(ϕ)χAn

+
∑

i∈N\{ 1,n }

a(ϕ)
2

χAi


 =

= ϕ(x1)µ(A1) + ϕ

(
3
2
a(ϕ)

)
µ(An) = 1 + ϕ

(
3
2
a(ϕ)

)
µ(An)

> 1.

Thus un + 1
2 (y − x) 6∈ B(Lϕ(µ)), which contradicts the assumption that B(Lϕ(µ))

is LNC. It follows that a(ϕ) = 0.
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To prove (iii) suppose that ϕ is not strictly convex. Let x, y, xn, n ∈ N be defined
as in Lemma 2.6. We have x, y, xn ∈ B(Lϕ(µ)) and xn + (y − x)/2 6∈ B(Lϕ(µ)) for
n ≥ 2. Moreover,

Iϕ (λ(x− xn)) =
∫

An

ϕ(2λx) dµ =
∫

An

ϕ(λ(a+ b)) dµ = ϕ(λ(a+ b))µ(An)

for λ > 0. It follows that ϕ(λ(a+b)) < +∞, since c(ϕ) = +∞. Also, limn→∞ Iϕ(λ(x−
xn)) = 0, since limn→∞ µ(An) = 0. Therefore, limn→∞ ‖x − xn‖ = 0. Hence, we
obtain a contradiction.

(⇐) We divide the proof into three parts.

a) Suppose that condition (i) holds, so µ is purely atomic and has a finte number
of atoms { ei : 1 ≤ i ≤ N }. Set ci = µ(ei) for i = 1, 2, . . . , N . Let x, y ∈ B(Lϕ(µ)),
un ∈ B(Lϕ(µ)) for n ∈ N, limn ‖un−x‖ϕ = 0. It is necessary to prove that for some
n0 ∈ N, un + 1

2 (y − x) ∈ B(Lϕ(µ)) for n ≥ n0. Without loss of generality we can
assume that ‖λx+ (1− λ)y‖ϕ = 1 for any 0 ≤ λ ≤ 1. Set

x =
N∑

i=1

xiχei , y =
N∑

i=1

yiχei , un =
N∑

i=1

un
i χen

for i = 1, 2, . . . , N , n ∈ N, where xi, yi, un
i are real numbers. We consider two cases:

1. There exists λ0 ∈ [0, 1] such that Iϕ(λ0x + (1 − λ0)y) < 1. It is easy to
see that the function g(λ) := Iϕ(y + λ(x − y)) is convex. From g(0) ≤ 1, g(1) ≤
1 and g(λ0) < 1 we have

N∑
i=1

ϕ(λxi + (1 − λ)yi)ci < 1 for any λ ∈ (0, 1). In

particular,
N∑

i=1

ϕ((xi + yi)/2)ci < 1. We have Iϕ(α(x+ y)/2) = +∞ for α > 1, since

‖(x + y)/2‖ϕ = 1. Hence
∑N

i=1 ϕ(α(xi + yi)/2)ci = +∞. This is possible only if
there exists k, 1 ≤ k ≤ N , such that |(xk +yk)/2| = c(ϕ) < +∞. If xk 6= yk then the
expression |λxk + (1−λ)yk| for λ ∈ [0, 1] attains its supremum at one of the ends of
the interval. Hence, either |xk| > c(ϕ) or |yk| > c(ϕ). But then either Iϕ(x) = +∞
or Iϕ(y) = +∞, what contradicts to x, y ∈ B(Lϕ(µ)). Hence, xk = yk = ±c(ϕ)
for some fixed k, 1 ≤ k ≤ N . Thus limn→∞ Iϕ(α(x − un)) = 0 holds for α > 0.
So limn→∞

∑N
i=1 ϕ(α(xi − un

i ))ci = 0. Hence, lim
n
un

i = xi for every 1 ≤ i ≤ N .

Otherwise, there exists a natural number 1 ≤ i ≤ N , increasing sequence nk of
natural numbers and ε > 0, such that |unk

i − xi| > ε. Setting a := max{ a(ϕ), 1 }
and α := 2a

ε we obtain
∑N

j=1 ϕ(α(xj − unk
j ))cj ≥ ϕ(2a)ci > 0 for k ∈ N, which is

contradiction. Set

I := { i : xi = yi = ±c(ϕ) }, J := {1, 2, . . . , N } \ I.
For any i ∈ J there exists n(i) ∈ N, such

∣∣∣∣ϕ
(
un

i − xi +
xi + yi

2

)
− ϕ

(
xi + yi

2

)∣∣∣∣ ci <
1
N

(
1− Iϕ

(
x+ y

2

))
,
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for all n ≥ n(i), because |(xi + yi)/2| < c(ϕ) and ϕ is continuous on (−c(ϕ), c(ϕ)).
Hence,

Iϕ

(
un +

1
2
(y − x)

)
=
∑

i∈I

ϕ(un
i )ci +

∑

i∈J

ϕ

(
un

i − xi +
xi + yi

2

)
ci ≤

≤
∑

i∈I

ϕ

(
xi + yi

2

)
ci +

∑

i∈J

(
ϕ

(
un

i − xi +
xi + yi

2

)
− ϕ

(
xi + yi

2

))
+

+
∑

i∈J

ϕ

(
xi + yi

2

)
ci ≤

≤ Iϕ

(
x+ y

2

)
+
∑

i∈J

∣∣∣∣ϕ
(
un

i − xi +
xi + yi

2

)
− ϕ

(
xi + yi

2

)∣∣∣∣ ci ≤

≤ Iϕ

(
x+ y

2

)
+N · 1

N

(
1− Iϕ

(
x+ y

2

))
= 1.

Thus, there exists an n0 such that un + 1
2 (y − x) ∈ B(Lϕ(µ)) for n ≥ n0. Thus,

B(Lϕ(µ)) is LNC.

2. We have Iϕ(λx+ (1− λ)y) = 1 for every 0 ≤ λ ≤ 1.
Let n0 be large enough that for n ≥ n0 and for εi := un

i − xi the conditions
(a)—(d) in item 3 of Lemma 2.2 are satisfied. It follows from this lemma that

Iϕ

(
un +

1
2
(y − x)

)
=

N∑

i=1

ϕ

(
εi +

xi + yi

2

)
ci = F (1) ≤ F (0) =

=
N∑

i=1

ϕ(xi + εi)ci =
N∑

i=1

ϕ(un
i )ci = Iϕ(un) ≤ 1,

for fixed n ≥ n0, such that un + (y − x)/2 ∈ B(Lϕ(µ)) for n ≥ n0. Thus B(Lϕ(µ))
is LNC, which finishes the proof of part a).

b) Now we assume that condition (ii) is satisfied.
Fix x, y ∈ B(Lϕ(µ)), x 6= y, un ∈ B(Lϕ(µ)) for n ∈ N, limn ‖un − x‖ϕ = 0.

We can assume that ‖λx + (1 − λ)y‖ϕ = 1 for every λ ∈ [0, 1]. It is necessary to
prove that there exists n0, such that for n ≥ n0, un + 1

2 (y − x) ∈ B(Lϕ(µ)). Anal-
ogously to part a), set x =

∑
i∈N xiχei

, y =
∑

i∈N yiχei
, un =

∑
i∈N u

n
i χei

n ∈ N.
By assumption inf{ ci : i ∈ N } > 0. In particular,

∑
i∈N µ(ei) = +∞ and hence,

a(ϕ) = 0. As in part a) we consider two cases:

1. There exists λ0 ∈ [0, 1] such that Iϕ(λ0x+ (1− λ0)y) < 1.
Analogously to part a,), Iϕ(λx+(1−λ)y) < 1 for every λ ∈ (0, 1). In particular,∑∞

i=1 ϕ((xi + yi)/2)ci < 1. We obtain limn→∞ un
i = xi for i ∈ N, because a(ϕ) = 0.

From the following obvious inequality 0 ≤ ϕ(xi) ≤ (1/inf{ cj : j ∈ N }) · ϕ(xi)ci,
together with

∑∞
i=1 ϕ(xi)ci ≤ 1 we obtain limi ϕ(xi) = 0. Hence, limi xi = 0.
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Analogously, limi yi = 0 and limi u
n
i = 0 for n ∈ N. Set

J := { k ∈ N : |xk| = c(ϕ) or |yk| = c(ϕ) }.

Obviously J is finite. Define the following two complementary subspaces of Lϕ(µ):

X1 := span {χek
: k 6∈ J } X2 := span {χek

: k ∈ J }

Set
x′ := PrX1 x, x′′ := PrX2 x, y′ := PrX1 y, y′′ := PrX2 y

and
u′n := PrX1 un, u′′n := PrX2 un for n ∈ N,

where Pr denotes the natural projection. Obviously, x = x′ + x′′, y = y′ + y′′,
un = u′n +u′′n, and ‖x′‖∞ < c(ϕ), ‖y′‖∞ < c(ϕ). Thus ‖(x′+ y′)/2‖∞ < c(ϕ). From
this we obtain ‖(x′ + y′)/2‖ϕ < 1, since Iϕ((x′ + y′)/2) < 1 (see the remarks after
the definition of ∆0

r(µ)). Moreover,

0 ≤ Iϕ (λ(x′ − u′n)) =
∑

k 6∈J

ϕ (λ(xk − un
k )) ck ≤ Iϕ(λ(x− un)) −→ 0

for λ > 0. Therefore, limn→∞ ‖x′ − u′n‖ϕ = 0. Since
∥∥∥∥u′n +

1
2
(y′ − x′)

∥∥∥∥
ϕ

=
∥∥∥∥u′n − x′ +

x′ + y′

2

∥∥∥∥
ϕ

≤ ‖u′n − x′‖ϕ +
∥∥∥∥
x′ + y′

2

∥∥∥∥
ϕ

,

we obtain

∃ε > 0 ∃n0 ∈ N ∀n ≥ n0

∥∥∥∥u′n +
1
2
(y′ − x′)

∥∥∥∥
ϕ

< 1− ε

and Iϕ(u′n + (y′ − x′)/2) < 1− ε.
We can find n1 ≥ n0 such that

Iϕ

(
u′′n +

1
2
(y′′ − x′′)

)
=
∑

k∈J

ϕ

(
un

k +
1
2
(yk − xk)

)
ck < ε

for any n ≥ n1, because limk u
k
n = xn for k ∈ J and J is finite. Hence,

Iϕ

(
un +

1
2
(y − x)

)
=

∑

k 6∈J

Iϕ

(
un

k +
1
2
(yk − xk)

)
+
∑

k∈J

Iϕ

(
un

k +
1
2
(yk − xk)

)
=

= Iϕ

(
u′n +

1
2
(y′ − x′)

)
+ Iϕ

(
u′′n +

1
2
(y′′ − x′′)

)

< 1− ε+ ε = 1

for n ≥ n1, so un + (y − x)/2 ∈ B(Lϕ(µ)).

2. We have Iϕ(λx + (1 − λ)y) = 1 for every 0 ≤ λ ≤ 1. Obviously, there exists
n0 ∈ N such that xi, yi ∈ [−b, b] for i > n0. Set

I := { i ∈ N : xi = yi }, J := { i ∈ N : xi 6= yi }.
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Since

1 =
∑

i∈N
ϕ (λxi + (1− λ)yi) ci ≤ λ

∑

i∈N
ϕ(xi)ci + (1− λ)

∑

i∈N
ϕ(yi)ci = 1,

it follows that ϕ is affine on every interval [xi, yi] (or [yi, xi]) for i ∈ J . Because ϕ
is strictly convex on [−b, b], we obtain i 6∈ J for i > n0. Hence, J ⊆ { 1, 2, . . . , n0 }.
In particular, xi = yi for i > n0. Therefore, setting εi = un

i − xi for sufficently large
n, the conditions given in Lemma 2.2 for the case N = +∞ are satisfied. Therefore,
from Lemma 2.2

Iϕ

(
un +

1
2
(y − x)

)
= F (1) ≤ F (0) = Iϕ(un) ≤ 1.

c) Suppose that (iii) is satisfied. From ∆2(µ) and c(ϕ) = ∞ it is known that
Lϕ(µ) satisfies the following condition:

‖x‖ϕ = 1 ⇔ Iϕ(x) = 1 x ∈ Lϕ(µ).

From Lemma 2.7 B(Lϕ(µ)) is strictly convex and so LNC. The proof of the Theorem
is complete. �

Corollary 3.2 If µ is an atomless measure, then the following conditions are
equivalent:

(i) B(Lϕ(µ)) is LNC.

(ii) ϕ is strictly convex, c(ϕ) = +∞ and ϕ satisfies either ∆2 globally when µ(Ω) =
+∞ or for sufficently large t when µ(Ω) < +∞.

(iii) B(Lϕ(µ)) is strictly convex.

Proof (i) ⇒ (ii) Since µ is atomless, conditions (i) and (ii) from Theorem 3.1 are
not satisfied. Therefore, condition (iii) of this theorem must hold. The result follows
from the fact that for atomless measures the condition ∆2(µ) is equivalent to the
classic condition for ∆2 based on µ(Ω).
(ii) ⇒ (iii) Follows from the last part of c) in the proof of Theorem 3.1.
(iii) ⇒ (i) Obvious. �

Corollary 3.3 If µ is purely atomic measure with an infinite number of atoms
and
0 < inf{µ(en) : n ∈ N } ≤ sup{µ(en) : n ∈ N } < +∞
then the following conditions are equivalent:

(i) B(Lϕ(µ)) is LNC.

(ii) ϕ satisfies the condition δ2 and is strictly convex on [0, b] for some b > 0.
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Proof (i) ⇒ (ii) Condition (ii) holds because conditions (ii) and (iii) of Theorem
3.1 are satisfied. From the remark given after the definition of ∆0

r(µ) we see that ϕ
satisfies the condition δ2.
(ii) ⇒ (i) follows from Theorem 3.1 and from the remark mentioned above. �

From the last corollary it follows that B(lϕ) is LNC iff the condition (ii) of
Corollary 3.3 is satisfied. Obviously, B(lp) is LNC for 1 < p < +∞. Note that
B(l1) and B(l∞) are stable, but not LNC (see also [1], [20]).

Example 3.4 A ball B(lϕ) satisfying LNC need not be strictly convex.

Indeed, for

ϕ(t) =
{

t2, for|t| ≤ 1
2

|t| − 1
4 , for|t| ≥ 1

2

the unit ball B(lϕ) is LNC from Corollary 3.3, but

Iϕ(λx+ (1− λ)y) = Iϕ

((
3
4

+
1
4
λ,

3
4
− 1

4
λ, 0, 0, . . .

))
=

1
2

+
1
4
λ+

1
2
− 1

4
λ = 1,

for x = (1, 1/2, 0, 0, . . .), y = (3/4, 3/4, 0, 0, . . .) and λ ∈ [0, 1]. Hence, ‖z‖ϕ = 1 for
any z ∈ [x, y], i.e. B(lϕ) is not strictly convex.

Now we present a characterization of the LNC property for the unit ballB(Eϕ(µ)).

Theorem 3.5 B(Eϕ(µ)) is LNC iff at least one of the following conditions is sat-
isfied:

(i) µ is purely atomic measure with a finite number of atoms (equivalently dimEϕ(µ) <
∞).

(ii) c(ϕ) = +∞, µ is purely atomic measure with an infinite number of atoms,
inf{µ(en) : n ∈ N } > 0 and either a(ϕ) > 0 or ϕ is strictly convex on [0, b]
for some b > 0.

(iii) c(ϕ) = +∞, ϕ is strictly convex on R and µ either has a positive atomless part
or inf{µ(en) : n ∈ N } = 0.

(iv) c(ϕ) < +∞ and a(ϕ) > 0.

(v) c(ϕ) < +∞ and ϕ is strictly convex on [0, b] for some b > 0.

(vi) c(ϕ) < +∞, µ(Ω)ϕ(c(ϕ)) ≤ 1.

(vii) c(ϕ) < +∞ and µ has a positive atomless part.

Proof (⇒) Assume that B(Eϕ(µ)) is LNC. Suppose dimEϕ(µ) = ∞. We con-
sider three cases:
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1. c(ϕ) = +∞ and µ is purely atomic measure with an infinite number of atoms,
such that inf{µ(en) : n ∈ N } > 0. We prove that in this case (ii) is satisfied.
Consider the case a(ϕ) = 0. Suppose that ϕ is not strictly convex on any interval
of the form [0, b] where b > 0. Let x, y be defined as in Lemma 2.3 and un as in
Lemma 2.5. Then x, y, un ∈ B(Eϕ(µ)). Moreover, for each λ > 0 and n > 2λ we
have

Iϕ(λ(x− un)) = ϕ(2λxn)µ(en) = ϕ(nxn)µ(en) <
1
2n

→ 0

holds. Hence, limn→∞ Iϕ(λ(x − un)) = 0 and limn→∞ un = x in the space Eϕ(µ).
This contradicts the fact that B(Eϕ(µ)) is LNC.

2. c(ϕ) = +∞, µ either has a positive atomless part or inf{µ(en) : n ∈ N } = 0.
To start, we prove that a(ϕ) = 0. By assumption there exists an infinite sequence

of mutually disjoint sets with positive measures (An), such that
∑

n∈N µ(An) < +∞.
Suppose that a := a(ϕ) > 0. Set

x := dχA1 + aχ ∞S
i=2

An

, y := dχA1 − aχ ∞S
i=2

An

,

where d is a positive number, such that ϕ(d)µ(A1) = 1.
Set un := x− 2aχAn

. Then

Iϕ(λx) = ϕ(λd)µ(A1) + ϕ(λa)µ

( ∞⋃

i=2

An

)
< +∞

for λ > 0. Hence, x ∈ Eϕ(µ) and similarly y, un ∈ Eϕ(µ). Moreover,

lim
n
Iϕ(x− un) = lim

n
ϕ(2a)µ(An) = 0, Thus lim

n
‖un − x‖ = 0

Also,

Iϕ(x) = ϕ(d)µ(A1) + ϕ(a)µ

( ∞⋃

i=2

An

)
= 1

and analogously Iϕ(y) = 1 and Iϕ(un) = 1 for n ∈ N. Hence, x, y, un ∈ B(Eϕ(µ)).
But

un +
1
2
(y − x) = un − x+

x+ y

2
= −2aχAn

+ dχA1

and

Iϕ

(
un +

1
2
(y − x)

)
= ϕ(2a)µ(An) + ϕ(d)µ(A1) = 1 + ϕ(2a)µ(An) > 1.

Therefore, un + 1
2 (y − x) 6∈ B(Eϕ(µ)), which means that B(Eϕ(µ)) is not LNC.

Thus a(ϕ) = 0.
Now we prove that the function ϕ is strictly convex.
To obtain a contradiction, suppose that ϕ is not strictly convex. Note that x, y,

xn ∈ Eϕ(µ) for n ∈ N (defined in Lemma 2.6), since they are linear combinations
of characteristic functions of sets of finite positive measures which, by c(ϕ) = +∞,
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belong to Eϕ(µ). From Lemma 2.6 it follows that B(Eϕ(µ)) is not LNC. Thus we
obtain a contradiction.

3. Remaining cases. Then c(ϕ) < +∞. If µ has positive atomless part then (vii)
is satisfied. Let µ be purely atomic measure with an infinite numbers of atoms. If
a(ϕ) > 0 or ϕ is strictly convex on [0, b] for some b > 0 then (iv) or (v) is satisfied.
Let a(ϕ) = 0 and let ϕ be not strictly convex in any neighbourhood of 0. We need to
prove that µ(Ω)ϕ(c(ϕ)) ≤ 1. Suppose ϕ(c(ϕ))

∑∞
n=1 µ(en) > 1. Let x, y be defined

as in Lemma 2.3 and un as in Lemma 2.5. In an analogous way as in the step 1 we
prove that B(Eϕ(µ)) is LNC.

(⇐) We divide the proof into six parts.

a) Assume that condition (i) holds. But then Eϕ(µ) = Lϕ(µ) is of finite dimen-
sion and the thesis follows from Theorem 3.1.

b) Assume that condition (ii) holds. Let x, y ∈ B(Eϕ(µ)), un ∈ B(Eϕ(µ)) for
n ∈ N. Let limn→∞ ‖un−x‖ϕ = 1 for every 0 ≤ λλ ≤ 1. It is necessary to prove that
there exists n0, such that for n ≥ n0, un + (y − x)/2 ∈ B(Eϕ(µ)). Without loss of
generality we assume ‖λx+(1−λ)y‖ = 1 for 0 ≤ λ ≤ 1. Hence Iϕ(λx+(1−λ)y) = 1
for 0 ≤ λ ≤ 1. If not then Iϕ(α(λx+(1−λ)y)) = +∞ every α > 1, what contradicts
λx+ (1− λ)y ∈ Eϕ(µ) in case c(ϕ) = +∞. We set

x =
∑

i∈N
xiχei , y =

∑

i∈N
yiχei

, un =
∑

i∈N
un

i χei

for n ∈ N, where xi, yi, un
i are real numbers. We prove that limn xn = limn yn = 0.

Suppose for instance that lim
n
xn 6= 0. Then there exists ε > 0 and a subsequence

(xnk
) such that |xnk

| > ε. Let λ > 0 satisfy ϕ(ελ) = 1. Then

Iϕ(λx) =
∑

n∈N
ϕ(λxn)µ(en) ≥

∑

k∈N
ϕ(λxnk

)µ(enk
) ≥

≥
∑

k∈N
ϕ(λε)µ(enk

) ≥
∑

k∈N
inf{µ(en) : n ∈ N } = +∞,

which is impossible for x ∈ Eϕ(µ). Thus limn→∞ xn = limn→∞ yn = 0. Hence,
there exists n0 ∈ N such that for i > n0, either xi, yi ∈ [−a(ϕ)/2, a(ϕ)/2] in the
case a(ϕ) > 0, or xi, yi ∈ [−b, b] in the case a(ϕ) = 0 and ϕ is strictly convex on
[0, b]. Denote

I := { i ∈ N : xi = yi } , J :=
{
i ∈ N : xi 6= yi and

(
|xi| >

a(ϕ)
2
or |yi| >

a(ϕ)
2

)}
.

Analogously to the proof of Theorem 3.1, we observe that the function ϕ is affine
on every interval of the form [xi, yi] or [yi, xi] for i ∈ I such that xi 6= yi. Moreover,
i 6∈ J for i > n0, because either i ∈ I in the case a(ϕ) = 0 (from the strict convexity
of ϕ on [−b, b]), or |xi|, |yi| ≤ a(ϕ)/2 in the case a(ϕ) > 0. Thus J is finite and
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the assumptions of Lemma 2.2 are satisfied for εi := un
i − xi, where n is a fixed,

sufficently large natural number. Hence, there exists n0, such that for n ≥ n0

Iϕ

(
un +

1
2
(y − x)

)
= F (1) ≤ F (0) = Iϕ(un) ≤ 1.

It follows that B(Eϕ(µ)) is LNC.

c) Assume that condition (iii) holds. Note that Eϕ(µ) satisfies the assumption
of Lemma 2.7, so B(Eϕ(µ)) is strictly convex. Hence, it is also LNC.
d) Assume that condition (iv) or (v) holds. Put x, y, un as in case b). We prove

that limn xn = limn yn = 0. Suppose that there exists ε > 0 and subsequence xnk

such that |xnk
| > ε. Let λ > 0 satisfy λ > c(ϕ). Then for any n ∈ N

∞∑

i=n

ϕ(λxn)µ(en) = +∞

holds. This cotradicts x ∈ Eϕ(µ). Without loss of generality we assume ‖λx+ (1−
λ)y‖ = 1 for 0 ≤ λ ≤ 1. If Iϕ(λx + (1 − λ)y) = 1 for 0 ≤ λ ≤ 1, then proof is
analogous to prooff of case b). If not then Iϕ(α(λx + (1 − λ)y)) = +∞ for every
α > 1. It is possible if finite set {n ∈ N : xi = yi = ±c(ϕ)} is nonempty. Proof in
this case is analogous to proof respectively case of Theorem 3.1 and we omit details.
e) Assume that condition (vi) holds. In this case for every x ∈ Eϕ(µ) we have

Iϕ(x) ≤ 1 or Iϕ(x) = +∞. Let x, y, un ∈ B(Eϕ(µ)) and limun = x. Let N ∈ N be
such that

∑∞
k=N+1 ϕ(xk + yk)µ(en) < +∞. Then

Iϕ

(
un +

1
2
(y − x)

)
= Iϕ

(
1
2
(2(un − x)) +

1
2
(x+ y)

)
≤

≤
N∑

k=1

ϕ

(
un

k +
1
2
(yk − xk)

)
µ(ek) +

1
2
Iϕ(2(un − x)) +

∞∑

k=N+1

ϕ(xk + yk)µ(ek)

< +∞

for n large enough. So un + 1
2 (y − x) ∈ B(Eϕ(µ)) and B(Eϕ(µ)) is LNC.

f) Assume that condition (vii) holds. In this case Eϕ(µ) = {0} and the thesis is
trivial.
This completes the proof. �

4. The positive part of the unit ball. Now we consider the following
question: under what assumptions do the positive parts of balls B+(Lϕ(µ)) and
B+(Eϕ(µ)) satisfy LNC.

Theorem 4.1 The positive part of the unit ball B+(Lϕ(µ)) is LNC iff dimLϕ(µ) <
∞. We can replace Lϕ(µ) by Eϕ(µ).
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Proof (⇒) Suppose that dimLϕ(µ) = ∞. Let x :=
∑

n∈N
xnχAn , where the xn are

positive and chosen in such a way that ϕ(nxn)µ(An) < 1/2n. Hence, for each λ > 0
and n > λ, we have

∞∑

k=n

ϕ(λxk)µ(Ak) ≤
∞∑

k=n

ϕ(kxk)µ(Ak) ≤
∞∑

k=n

2−k <∞.

Hence x ∈ Eϕ(µ). Let y ≡ 0. Set un := x − χAn
· xn. If x ∈ Eϕ(µ), then

un ∈ Eϕ(µ) for n ∈ N. Moreover, Iϕ(un) =
∑

k∈N\{n}
ϕ(xk)µ(Ak) ≤ 1. Thus x, y,

un ∈ B+(Lϕ(µ)). Moreover,

Iϕ (λ(x− un)) = Iϕ (λxnχAn
) = ϕ(λxn)µ(An) ≤ ϕ(nxn)µ(An) ≤ 1

2n

for λ > 0 and n > λ. Therefore, limn→∞ ‖un − x‖ϕ = 0. But we have

(
un +

1
2
(y − x)

)
(ω) =

(1
2
x− xnχBn

)
(ω) = −1

2
xn < 0,

for ω ∈ An. Hence, un + (y − x)/2 6∈ B+(Lϕ(µ)) (respectively B+(Eϕ(µ))). It
follows that B+(Lϕ(µ)) is not LNC.

(⇐) Let dimLϕ(µ) <∞. Then Lϕ(µ)+ is a finite cartesian product of halflines
which are LNC, so it is also LNC. It follows from either Theorem 3.1 or 3.5 that
the unit ball B(Lϕ(µ)) is LNC. Hence, B+(Lϕ(µ)) is LNC as it is the intersection
of LNC sets. �

The following can be derived using a similar argument to the one used in the
above proof (compare with [1]):

Corollary 4.2 The positive cone of Lϕ(µ) (or Eϕ(µ)) is LNC iff dimLϕ(µ) <∞
(respectively dimEϕ(µ) <∞).
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(2000), 13–15.

[4] S. Chen, Geometry of Orlicz Spaces, Dissertationes Mathematicae CCCLVI, Warszawa 1996.

[5] A. Clausing and S. Papadopoulou, Stable convex sets and extremal operators, Math. Ann. 231
(1978), 193–203.



R. Grząślewicz, W. Seredyński 107

[6] N. Dunford and J. T. Schwartz, Linear Operators I, General Theory, Pure Appl. Math. vol.
—bf 7, Interscience, New York 1958.

[7] A.S. Granero, A full characterization of stable unit balls in Orlicz spaces, Proc. Amer. Math.
Soc. 116(1992), 675–681.

[8] A.S. Granero, Stable unit balls in Orlicz spaces Proc. Amer. Math. Soc. 109 (1990), 97–104.

[9] A.S. Granero and M. Wisła, Closedness of the set of extreme points in Orlicz spaces, Math.
Nachr. 157 (1992), 319–394.

[10] R. Grza̧ślewicz,Extreme continous function property, Acta Math. Hungar. 74 (1997), 93–99.

[11] R. Grza̧ślewicz, Finite dimensional Orlicz spaces, Bull. Polish Acad. Sci. Math. 33(5-6)
(1985), 277–283.

[12] M.A. Krasnosel’skii and Y.B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff,
Grooningen, 1961.

[13] W. A. J. Luxemburg, Banach function spaces, Thesis, Delft, 1955.

[14] J. Musielak,J.Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 Springer Ver-
lag, 1983.
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