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On two-modular spaces

1. Let A be a real or complex vector space and let two inodulars g 
and g' in the sense of [5] be given in X. We are going to develop a theory 
of two-modular spaces, in analogy to the theories of Saks spaces due to 
W. Orlicz [7], [8] and of two-norm spaces due to A. Alexiewicz [1 ] and 
further investigations by A. Alexiewicz and Z. Semadeni [2], and by 
A. Wiweger [9].

Let X e and X g, be the modular spaces defined by modulars g and g', 
respectively. By |-|e and J*|e- we denote the respective .F-norms generated 
by these modulars. If g or g is convex, ||-||e or ||-||e, will denote the respective 
homogeneous norm. Modular convergence xn —> x in X Q- (or xn —> x in X g) 
means that g' [k(xn — a?))->0 (or g{k{xn — #))->0) as ?»->oo for a k > 0  
depending on the sequence (xn) (see [5] and [6]).

A sequence (xn) of elements of X  will be called g-bounded if for any se­
quence of numbers en-^0 there holds enxn —> 0 .

1 .1 . Let g be convex. A sequence (xn) o f elements o f X Q is g-bounded i f  
and only i f  there exist positive constants к and M such that g{kxn) <  M for

1 , 2 , . . .
Proof. Supposing the above .condition to be satisfied and 0 <  en <  1, 

we get g{ksnxn) <  eng{kxn) <  en3 I ->0 as п->оо,йяА{хп) is ^-bounded. 
Conversely, let us suppose that {xn) is ^-bounded with a convex g and for 
any к >  0, M >  0 there exists an index n for which g(kxn) >  M. Taking 
k ~ m ~ 2,M  = 1, we may choose nm such that д(т~2 -хПт) > 1  for m 
=  1, 2 , . . .  Since xn e X Q, no natural number may appear in the sequence 
(nm) infinitely many times. Thus we may extract an increasing subsequence 
of indices {n ), obtaining g{m f2 -yt) >  1 for i =  1 , 2 , . . . ,  where y{ =  xn .I
Since (yfj is also ^-bounded, so g {k -m fl -yf)-^ 0 as oo for a к >  0 . Taking 
i  so large that km{ >  1 and applying the convexity of g, we obtain

a contradiction.
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1 .2 . Now we shall introduce the notion of y-convergence in the triple 
SC — (X , q, Qfy. A sequence (xn) of elements of X  is called y-convergent 
to x e X  if xn -̂> æ as n-> oo and (xn) is p-bounded. We denote this by xn >̂ x.

I t  is evident that if x'f, x f, x', x" e l ,  x'n^>x', x"^>x”, a and Ъ are 
scalars, then axn-\-bx” >̂ ax'+  Ъх".

I f  SCX =  <Xj, Qlf gx)  and SC2 =  (X 2, q2, &>, then an operator T : X x
У1 y2

-> X 2 is called (yx, у f)-continuous if x, xn e X x and xn-̂ - dimply T(xn)-+ T(x).
Obviously, there exists in SC also the notion of y-convergence with 

respect to norms |*|e and |*|e,, as defined in [1], p. 49.
1.3. I f  xn, x g X en  X e> and (xn) is y-convergent to x in the sense o f the 

norms |*|e, |*|e», then x j-^ x .
Proof. We may take x =  0. Since |a?Jg/->0, so xn -̂> 0. Moreover, taking 

£n->0, we have |en#n|e->0, by assumption. Thus, if 0 <  e <  1 is arbitrary, 
then one can choose an N  such that £>(£- 1£пжи) <  e for n >  N. Hence, 
д{епхп) <  e for n >  N  and we obtain enxn >̂ 0 .

2. In the following we shall consider a special case of the space SC. 
Let [л be a measure in a-algebra X of subsets of a non-empty set Q and 
let X  be a vector subspace of the space S of all 27-measurable, real or com­
plex functions on Q with equality / -̂almost everywhere. Let <p and ip be 
ç>-functions, i.e. 9o(u) >  0 for и >  0 , g?(0) = 0 , 9? non-decreasing and con­
tinuous for 0, (p{u)->oo as u->oo, and the same about ip (see [4]). 
Then q and q' may be defined by the formulae

(*) q(x) =  J  (p(\x{t)\)dp, q'{x) =  J  ip(\x{t)\)dia.
q a

Let us remark that taking in this example Q =  <0,1), pi =  Lebesgue 
measure, q>(u) =  \u\p (p  >  1 ), ip(u) =  eu — u — 1 , we easily observe that the 
converse statement to 1.3 does not hold. I t  is sufficient to choose

=
0

г 12

x(t) =  lima?M(tf). Then

if 0 <  <  2 ~n or 2 ~ 1 <  £ <  1 , 
if 2 - i- 1 ^ t < 2 ~i, г = 1 , 2 , . . . , n - l ,  

д'{2(х — хп)) =  oo b u t  q'(x — жп)- > 0  a n d  q{xh)

2P+1 tti 2

*  {P
2 j —T <  001 and so xn^ x ,  but this relation does not hold in

the sense of the norms.
Let us remark that the following lemma is true:
2.1. L e m m a . I f  ip is a ср-function, q' is of the form  (*) and xĤ -+ 0, then
(a) xn(t)-+ 0 in measure pi in Q,
(b) i f  n(Q) <  00 and ip is convex, then j  \xn(t)\dpi->0 .
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In order to prove (a) let us choose arbitrary e, r\ >  0 and let us write 

Wn = j*  G Q: \xn{t)\

the number Тс >  0 being given by the condition

( +) J  ip(k\oon(t)\}d{/,-^-0 as n-^-oo.
a

Taking N  so large that f  ip(]c\ocn(t)\}dju <  etj for n > N  we obtain
q

srj >  Jif(k\æn(t)\)d/Lc^rjjLi(E )̂ for .n > N ,
Enn

whence /л(Е^)->0 as n->oo. In order to show (b) we take an arbitrary 
ту >  0 and we choose Mn >  0 such that ip(u)/u >  Mn for и >  r\. Taking 
Ti >  0 from condition ( + ) and writing An =  {t e Q: \xn(t)\ >  г)1Щ, we get

Tc J  w {Q )+  J _  j  y(k\a>n{4)\)dft,
Q Q

and this shows the required property.

3. Supposing the measure ц to be atomless, we are going to prove 
some embedding theorems for two-modular spaces Ж =  (IA, g, q'} and 
Ж' =  <(XV, gf g'yf with various functions cp and ip.

3.1. Let <px, ç>2, ipx and ip2 be ep-functions and let

e»(®) =  J 4 > i ( Qi i æ)  =  J  ip i ( \æ{t) \ )df i ,
a q

=  (J?\  e„ eù , sc’i =  <v*', &, e;> fo r  » =  1, 2 ,

Let us still recall the relations ip2 < lf x and ip2 < aipx for pairs of ^-func­
tions and ip2 (see [4], p. 123). The relation ip2 < l ipx means that there 
exist positive numbers A ,B ,u 0 such that ip2 (Au) <  Bipx(u) for u ^ u 0. 
Moreover, ip2 < a ipx means that there are positive numbers A, В  for which 
Wi{Au) <  Bipx(u) for all и >  0 . Q'

уi-convergence of (ccn) to zero will mean that xn—> 0 and (xn) is ^-bounded, 
"where i = 1 , 2 .

First, we shall give necessary and sufficient conditions in order that 
c  Ж2, this being understood in the sense of a (yx, y2)-continuous embed­

ding. The same problem will be solved also for the case Жх <=. Ж2. First, 
"we show that

5 — R oczniki P TM  — P ra ce  M atem atyczne t. X X I I I
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3.2. I f  L n (ü) c  l7~(ù) (as sets), then xn e l 7 x(ü), #л-> 0 implies 
eô

Xn-^ 0.
Indeed, the supposed inclusion implies y 2 < 1 щ  in the case of p ( Q) <  oo 

and -ц)2 < а Wiin the case of p(Q) =  oo (see [4], p. 131). Let us limit our­
selves to the case ju(Q) <  oo. From y2 -<1 W\ wo conclude in the well-known 
manner that for every ux >  0 there exists а B x >  0 such that y 2(Au) 
<  B m (u) for и >  ux. By assumption, there is a constant к >  0 such that

0. Let us put Qn =  {t e Q: k\xn(t)\ >  ux). Then

o'2(Akxn) ^ B x f  y)1 (k\xn(tj\)dp +  j  y)2(Ak\xn(t)\)dp
-*n

<  B xg[(kxn ) +  y2(Aux) p(Q ),

4and the condition xn-^ 0 follows by continuity of y2 at 0 .
3.3. The following conditions are equivalent for p(Q) <  oo and for p  

atomless :
Yl У2

(a) 3CX c= ЗС'г and xn—> 0 implies xn-+0,
(b) ip2 Vi and there are constants A ,B ,u 0 >  0 such that

(i) (p2(Au) <  Втах^^ад), Vii’11)) f or
v

Proof. Let us suppose that (b) holds. I t  is known that I ? 1 ( Ü) <= 17 2 ( Q) 

is equivalent to. ip2 < l ifx (see [4]). Let xn eI7 x(Q), xn-> 0, (xn) is ^-bounded.
e'0

By 3.2, xn-> 0. I t  remains to show that (xn) is ^-bounded. Let e№̂-0; 
then writing yn — enxn, we obtain yn e i f 1 ( Q)r\ L'n ( Q) for sufficiently 
large n, g[(kyn)~>0 and gx(kyn) -> 0  for some I  >  0 .

Let us remark that from (b) it follows that for any ux >  0 there 
exists a B x >  0 such that <p2(Au) <  B xmax (<px(u), щ(и)) for u ^ u x. 
Hence, writing E n =  {t e Q: k\yn(t)\ >  tix} and arguing as in the proof 
of 3.2, we obtain

Qi(Atyn) <  B xgx(kyn) +  B xgx(kyn) +  (p2(Aux)p(Q ),
e2

which shows that yn-+ 0. Thus, (xn) is ^-bounded.
ISTow, let us suppose (a). Then l 7 l (Q) <z i f 2(Q) and so щ < l f x. 

I t  remains to prove the second condition in (b). We show now L 4>x(Q)r\ 
n l7 x(Q) <= L V'2(Q). Let x e i f 1 (ü )n L Vx(ü ); then xn — x/n tends to zero

/ yiwith respect to any of the modulars gx and gx. Consequently, xn -> 0 .
y 2

By (a), Hence (xn) is g2-bounded, and so g2(k-n 2 -x)-+0 as n ^ oo
for some к >  0. Thus, x e l 7 2 (Q). Applying the above proved inclusion
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and modified Theorem 2.21 from [4], p. 131, we immediately conclude the 
second condition from (b).

3.4. Let us remark that the Theorem 3.3 remains valid also for an 
atomless infinite measure y if we replace (b) by the following condition

(c) ip2 -<a \px and there are constants А, В  >  0 such that (i) holds for  
all и ^  0.

Since it is evident that <y2 < l (px implies (i) from 3.3 (b), so it is easily 
observed that in the case of 3CX and 3C% the following theorem is obtained 
analogously :

3.6. I f  pt(D) <  oo and p is atomless, then the following conditions are 
equivalent :

УХ Yo
(a') 3CX cz 3C2 and <cn-^ 0 implies xn-> 0,
(b') (р2 < 1 (рг.
3.6. As in the previous case we may remark that Theorem 3.5 remains 

valid also in the case where p is atomless and infinite if we replace (V) by
(c') cp2 <  a <Pi-

4. We start with the definition of y-completeness in the general case 
of (X , q, {/>, where q is convex. A sequence (xn) of elements of X  satisfies 
the q-Cauchy condition if there exists a constant к >  0 with the property 
that for every £ >  0 there is an A such that o' (k(xn — xm)) <  e for m, n >  N. 
A set {x e X Q : д(к0х) <  M0} with fixed k0, M0 >  0 will be termed a g-ball 
in X Q. (X , n, g') will be called у-complete if for every fixed g-ball K  nvXQ, 
and sequence (xn) of elements of К  satisfying the {/-Cauchy condition, 
is у-convergent to an element of K.

4.1. 97 — (17, q, o 'y  with q, q' given by (*), cp convex, is y-complete.
Let (xn) be ^-bounded with constants k0, M0 >  0 and let it satisfy

the {/-Cauchy condition with a constant к >  0 . Since 1 7 (Q) is complete 
with respect to {/-convergence, there is an xu e L V{Q) such that 
{?' [k(œn — #o))“*“0, with the same constant k. Hence xn->x0 in measure 
(see [2], Lemma (a)), and so <p(k0\xni{t)\)-xp(k0\x0{t)\) for a subsequence 
(xn.) of (xn). Applying Fatou’s lemma, we observe that o(k0x0) <  3f0. Thus,

is y-complete.
Arguing as in the above proof, we easily get that
4.2. ÇL7г\17, q, g'y with o, o' given by (*), cp convex, is y-complete.
From 4.2 it immediately follows:
4.3. Let (p be convex and let ^-<*9? in the case of p(Q) <  oo, ip -<a <y 

in the case o f p{Q) — oo. ThenSI — (17, q, {/> with q, q' given by (*) is y-com­
plete.

Rem ark. The results above remain valid if we replace the space 
under consideration by the Saks spaces <17, j|-||e, ||*||e.) , <1/, |H|e, IH|e'>,
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(L rpn L v, ||-||e, ||-||e,> , because, for convex g, ^-boundedness is equivalent 
to boundedness in norm ||-||e, and completeness in norm |j-[̂  means ^'-com­
pleteness with every к >  0 .

5. We shall say that a set X 0 a  X  is y-dense in <X, g, g") if for every 
x e X  there exists a sequence (xn) of elements of X 0 such that xn^>x. 
<X, g, g'} will be called y-separable if there exists a countable, y-dense 
subset X 0 of X. First, we prove the following lemma.

5.1. I f  cp is a cp-function, then the set o f simple functions integrable in Q' 
is g-dense in the Orlicz space IX (Ü).

Proof. Let oo e L <P{Q), oo{t) >  0 in Ü. Taking a sequence {xn) of simple 
functions such that 0 <  xn{t)/x {t)  in Q, we observe that xn are integrable. 
Taking к >  0 such that q(Tcx) =  j  cp(kx{t))dp <  oo and applying the Lebes-

£3
gue dominated convergence theorem, we easily get g [k (x -x n))->0, i.e. 
oon >̂ x. In the general case the proof is obtained writing x (t) as the difference 
of its positive and negative part.

5.2. Let cp and ip be cp-functions. Then the set of simple functions integrable 
in Q is у-dense in (JX riLv, g, g'}, where q and g' are given by (*).

Proof. Let x e I ?(i3 )n F (û ), x(t) >  0 in Û. Let {xn) be the sequence 
of simple functions from the proof of 5.1. Then, by 5.1, xn -̂>x. ISTow, let
0 <  en <  1, ew->0. Then cp{kenxn(t))->0 and cp(kenxn{t)) <  q)[kx(t)) almost 
everywhere in Ü. By the Lebesgue dominated convergence theorem, 
g(kenxn)-+ 0 as n-^oo for sufficiently small к >  0. Hence (xn) is ^-bounded. 
If we drop the assumption x(t) >  0, we obtain the result splitting x(t) into 
positive and negative part.

From the above result it follows at once that:
5.3. Ijet cp -<z ip in case o f p(Q) <  oo, cp -<a ip in case of p(Q) — oo. 

Then the set o f simple function integrable in Q is у-dense in (JX, o, g'}.
5.4. Let'ip -<f cp in case o f p(Q) <  oo, ip -< a cp in case of p{Q) =  oo. 

Then the set o f simple functions integrable in Q is у-dense in (IX, g, g').
5.5. Let cp and ip be cp-functions and let g and g' are given by (*). I f  the 

measure p is separable, then ■ÇL4’n L w, g, g'y is y-separable.
Proof. First, let us suppose that p(Q) <  oo. Let 270 be a countable 

family of sets from 27 such that for any A e 27 there is a sequence of sets 
An e 270 for which p(A n — AL)-»0 as w->oo. Let x e L <p{ü )n L w(ü), x (t)^  0 
in Q and let (xn) be a sequence of simple functions such that 0 <  xn(t)/  x(t)

Pn
in Q. By 5.2, xn^>x. Lét xn =  ^  с{%А., where A{ e 27 are pairwise disjoint

г— 1 1
and %A is the characteristic function of the set At. We choose sets A f e 270,
1 = 1 , 2 , . . . , p n, pairwise disjoint, for which

p (A7} —At) <  [n •p n • max max [cp (сг), ip (ct-))]-1 .
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Let us take positive rational numbers c\ such that \ei — c{\ < l/n  for
Pn

i =  1 ,-2 ,..., p n1 and let us put yn — У с{% n. Let 0 <  en <  1, en->0, and
i = l  A i

let 0 <  Tc <  1/2 be so small that (>(kenxn)-> 0 and q' [k(xn — x))-^0. We shall 
prove that yn^ x .  First, we show that (yn) is ^-bounded. We have

Q (  Я^^нУи)  ^  Q {j^^n {Уп  * ® и ) )  ~T~ Q *

But
Pn

9[кеп{ У п -х п)) <  f  <P f e n  £  l\c i  - e i\XA n +
Q i = l  i i

Pn P n

=  f  <P fe n  \Ci -  Ci\XAn +fo„ £  CiXAn̂ A .) à/Л
£3 i= X  i  i=  1 { 1

Pn Pn

<  f<P f e Sn £  \G’i  ~  d P  +  J  ?  ( 2 h e n £  CiXA n ^ A  •) diUа г=i i a i=l * i
P n

(p{27cen 'n ~ l )ix{Q) +  J T 1 <р{21сепъ)/л{А? —A {)<
i = l
Pn

<р{2кеп'П +  <  <p(2Jcen-n 1)/i{Q)-\-n \
г= 1

and so

Q{l~kenyn) <  <p{2 ken-n l)/i{Q )+ n  1 +  д{кепхп)-+0 ' as n-+ cc .

Hence (yn) is ^-bounded. Similar calculation shows that 

9'[ЧУп-Хп)) <  у ф к -п г ^ /л ^  +  п ' 1-
Consequently,

e '(P (y » -a 0) <  +
<  y{2 Tc-n~1)ii{Q) +  n~l q'[k{xn — x ))-> 0  as %->•oo,

and thus, yJ-> x. Hence we conclude that yn >̂ x.
If we omit the assumption x(t) ^  0 in Ü, we obtain the proof by split­

ting x into positive and negative parts.
This shows that the countable set of simple functions which are ra­

tional linear combinations of characteristic functions of sets from 270 is 
y-dense in I fn lt * .

Now, let y{Q) — oo and let U0 be defined as before, where A e £  
18 °f finite measure ц. Let us choose an arbitrary г >  0 and let us take 
for a given x e IP  ( Ü) n L v ( Q), x (t) >  0 in Q, а к >  0 so small that q (kx) <  oo 
and q'(Icx) <  oo. Then there exists a set Qq e Z  of finite measure /л for
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which q'(l^ xo\ n 0) <  e/2. ISTow, let ns define the sequences (xn) and (yn) 
as in the previous part of the proof, replacing Ü by Û0. Of course, {yn) 
remains ^-bounded. Moreover, we have

б'(жк(Уп-®)) < б '(Щ У п -я Х о 0))+9'(ЬкхХа\о0)
<  y { 2 J c +  n ~ l +  Q (к (х п - х ) х а о) +  e /2 .

This shows that yn -̂> x. Thus we may conclude the proof.
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