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On two-modular spaces

1. Let X be a real or complex vector space and let two modulars ¢
and g’ in the sense of [5] be given in X. We are going to develop a theory
of two-modular spaces, in analogy to the theories of Saks spaces due to
W. Orlicz {77, [8] and of two-norm spaces due to A. Alexiewicz [1] and
further investigations by A. Alexiewicz and Z. Semadeni [2], and by
A. Wiweger [9].

Let X, and X, be the modular spaces defined by modulars ¢ and ¢,
respectively. By ||, and ||, we denote the respective F-norms generated
by these modulars. If g or o’ is convex, |||, or lI-ll, will denote the respective
homogeneous norm. Modular convergence mng—’>a; in X, (or @, ~> x in X,)
means that o' (k(w, —«))—0 (or e(k(s,—x))->0) as n—occ for a k>0
depending on the sequence (x,) (see [5] and [6]).

A sequence (z,) of elements of X will be called p-bounded if for any se-
quence of numbers ¢,—0 there holds £, 0.

1.1. Let o be convex. A sequence (»,) of elements of X, is g-’bounded if

and only if there exist positive constants k and M such that o(k=z,) < M for
n=1,2,...

Proof. Supposing the above condition to be satisfied and 0 < ¢, < 1,
- &,—>0, we get g(ke,x,) < g,0(k2,) < &, M —0 a8 n—oo,and (z,) is p-bounded.
Conversely, let us suppose that (z,) is e-bounded with a convex o and for
any k> 0, M > 0 there exists an index » for which g¢(kz,) > M. Taking
k=m™, M =1, we may choose n,, such that ¢(m*-s, )>1 for m
=1, 2, ... Since x, € X,, no natural number may appear in the sequence
(n,,) infinitely many times. Thus we may extract an increasing subsequence
of indices (m,, ), obtaining o(m;*-y,) >1for ¢ =1,2,..., wherey;= B
Sinee (y,) is also g-bounded, so g(k-m; ' -y;)—0 asi—oo for a k > 0. Taking
% 80 large that km; > 1 and applying the convexity of g, we obtain

Y: 1 ku; U
1<Q(’m;l:)< kmi'g(mi)_—>0 , as z——>oo,‘

a contradiction.
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1.2. Now we shall introduce the notfion of y-convergence in the triple
T = (X, o, 0'>. A sequence (x,) of elements of X is called y-convergent
toxe X it mni x as n—oo and (,) is p-bounded. We denote this by », 2> x.

It is evident that if #, #., o', "’ ¢ X, #, 5> o', 2, %> 2", a and b are
scalars, then aax, b, 2> av’ -+ ba". v

It &, = (X4, 01, 01> and &, = (X, 05, 0>, then an operator T: X,
— X, is called (y4,y.)-continuous if @, x, € X, and wng ximply T (azn)g T ().

Obwiously, there exists in & also the notion of y-convergence with
respect to norms ||, and |-|,, as defined in [1], p. 49.

1.3. If x,, v € X,nX, and (x,) i8 y-convergent to » in the sense of the
norms |-, |1y, then x, %> .

Proof. We may take # = 0. Since |x,],,—0, s0 wng; 0. Moreover, taking
g,—0, we have |¢,2,[,—0, by assumption. Thus, if 0 < ¢ < 1 is arbitrary,
then one can choose an N such that o(e7'¢,x,) < ¢ for n > N. Hence,
o(e,@,) < & for n > N and we obtain &,x,2> 0.

2. In the following we shall consider a special case of the space Z.
Let ¢ be a measure in ¢-algebra 2 of subsets of a non-empty set £ and
let X be a vector subspace of the space § of all Z-measurable, real or com-
plex functions on £ with equality u-almost everywhere. Let ¢ and » be
g@-functions, i.e. ¢(u) > 0 for v > 0, ¢(0) = 0, ¢ non-decreasing and con-
tinuous for # > 0, ¢(u)—>co ag u—o0, and the same about y (see [4]).
Then p and ¢’ may be defined by the formulae

() o@) = [e(a@)dp, o @) = [v(a@))dp.
fe] Q

Let us remark that mkin;'g in this example 2 = <0, 1>, 4 = Lebesgue
measure, g(u) = |[u|® (p > 1), y{u) = e“—u —1, we easily observe that the
converse statement to 1.3 does not hold. It is sufficient to choose

0 if 0<t<2"or271<t«1,

®,(t) = e o—i »
(" 2 i 27IE<27hi=1,2,..., 01,

2(t) =lima,(t). Then o (2(x—m,)) = co but o (v—w=,)—~0 and p(z,)

n—>00

1. awi? . . .
< 75471_2_27< oo, and so &,~>®, but this relation does not hold in

the sense of the norms.
Let us remark that the following lemma is true:
2.1. LEMMA. If v is a p-funciion, o’ is of the form (x) and wn"—; 0, then
(a) @,(t)—>0 in measure u in £,
(b) if u(R) < oo and y is convex, then [ |, (t)|du—>0.
Q9

i=1
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In order to prove (a) let us choose arbitrary e, » > 0 and let us write

1
E7 ={t € 2: |z, (1)] >%w"(n)}r

the number k > 0 being given ~by the condition
(+) [ v (e, )))du—>0  as  n—soo.
Q
Taking N so large that [ y(kla,(?)|)du < en for m > N we obtain
2 .

en > [y(klo,(0))du>nu(B]) for .n>N,
" whence u{B)—~0 as n—oo. In order to show (b) we take an arbitrary

7> 0 and we choose JM, >0 such that y(u)/w> M, for w> 5. Taking
k> 0 from condition (+) and writing 4, = {t € 2: |z,(t)| > n/k}, we get

f (ol )1) dp,

119

k flwn(t | < 7 (2) +

and this shows the required property.

3. Supposing the measure y to be atomless, we are going to prove
some embedding thegrems for two-modular spaces Z = (L%, o, g) and
&' = (L% o, o'y, with various functions ¢ and w

3.1. Let @1y @2y Y1 aMd w, be @-functions and Zet

0i(@) = f o (lm®))dg, oj(@) = [w(lw@®))dp,

= <L¢i3 Qs 9;’>7 '%‘; = <LW? Qi Q;> fori =1,2.

Let us still recall the relations y, <y, and y, < %y, for pairs of ¢-func-
tions y, and y, (see [4], p. 123). The relation y, <y, means that there
exist positive numbers A, B, u, such that w,(Au) < By,(u) for u > u,.
Moreover, y, <y, means that there are positive numbers A, B for which
v (Au) < By, (u) for all u > 0. .

¥i-convergence of (x,) to zero will mean that =, it ()and( ,.) 18 o;-bounded,
Where ¢ =1, 2.

First, we shall give necessary and sufficient conditions in order that

% < %, 5, this being understood in the sense of a (1, ¥2)-continuous embed-

ding. The same problem will be solved also for the case &, = &,. First,
we show that
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. o
3.2. If I'™(0) < L™(0) (as sets), then z, e L™ (2), z,— 0 implies

wni 0. .
Tndeed, the supposed inclusion implies , <y, in the case of u(2) < oo
and y, <* v, in the case of u(Q) = oo (see [4], p. 131). Let us limit our-
selves to the case u(R) < co. Irom y, <' y, we conclude in the well-known
manner that for every w; > 0 there exists a B, >0 such that y,(Au}
< By, (u) for # > u,. By assumption, there is a constant I >0 such that
o1 (kx,)—0. Let us put 2, = = {t € Q: klz,(t)] > u,}. Then

0y (Akw,) < By f ikl () dp+ [ pe(ARle, (0)]) dp
: AN,

Blé’l (75 @)+ pa (Au) u(2),

and the condition 2, 20 follows by continuity of ¢, at 0.
3.3. The following conditions are equivalent for u( .Q) < oo and for p
atomless: '

(a) ) c &, and mn—i() implies mng 0,

(b) v, <'v, and there are constanis A, B, u, >0 such that

(i) Py (Au) < Bmax (@, (u), wi(v)) for w=u

~

Proof. Let us suppose that (b) holds. It is known that L' (Q) = L"(Q)
is equivalent to p, < 'y, (see [4]). Let 2, e L (Q), wnf» 0, (z,) is o;-bounded.

By 3.2, #,->0. It remains to show that (z,) is gy-bounded. Let e,—>0;
then writing y, = 2, We obtain y, e L' (Q)nL"(2) for sufficiently
large n, o,(ky,)—>0 and o,(ky,)—0 for some % > 0.

Let us remark that from (b) it follows that for any w, > 0 there
exists a B, >0 such that ¢,(4u)< Bmax (<p1(u), pi(u)) for > u,.
Hence, writing E, = {t € 2: kly, ()] > %,} and arguing as in the proof
of 3.2, we obtam

0:(4ky,) < BlQi(k:’/n) + Bio1(ky,) + s (Au,) u(92),

which shows that 1n—gf> 0. Thus, (x,) is .- bounded

Now, let us suppose (a). Then L"(2) < L**(2) and so ve <!y,
It remains to prove the second condition in (b). We show now L*'(2)n
NL(Q) « L7 (Q). Let # e L™ (Q)NL" (2); then &, = x/n tends to zero
with respect to any of the modulars p, and p;. Consequently, w,,,y—l> 0.
By (a), mng 0. Hence (z,) is gy-bounded, and so g,(k-n~%-2)—>0 a8 n—o0
tor some k > 0. Thus, # € L'*(2). Applying the above proved inclusion
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and modified Theorem 2.21 from [4], p. 131, we immediately conclude the
second condition from (b). '

3.4. Let us remark that the Theorem 3.3 remains valid also for an
atomless infinite measure u if we replace (b) by the following condition

(e) v, <%y, and there are constants A, B > 0 such that ( ) holds for
all v > 0.

Since it is evident that ¢, <’ ¢, implies (i) from 3.3 (b), so it is easily
observed that in the case of 2, and %, the following theorem is obtained

analogously:

3.5. If u(0) < oo and u is atomless, then the following conditions are
equivalent: :

(') 1= Z, and xnio implies avnf—i 0,

(b') @2 <" gy _

3. 6 As in the previous case we may remark that Theorem 3.5 remainsg
valid 8lso in the case where u is atomless and infinite if we replace (b") b

(€) @2 < ¢y

4. We start with the definition of y-completeness in the general case
of (X, o, ¢'>, where g is convex. A sequence (x,) of elements of X satisfies
the o'-Cauchy condition if there exists a constant & > 0 with the property
that for every ¢ > 0 there is an N such that o (k(wn —&,)) < eform,n > N.
A set {w e X,: o(kx) < M,} with fixed %,, M, > 0 will be termed a o-ball
in X,. <X, g, o> will be called y-complete if for every fixed g-ball K in'X,,
and sequence (z,) of elements of K satisfying the o’-Cauchy condmon,
is y-convergent to an element of K.

41. &' = (L?, 0, 0'> with g, o' given by (%), ¢ conves, is y-complete.

Let (x,) be p-bounded with constants k,, M, > 0 and let it satisfy
the p’-Cauchy condition with a constant & > 0. Since L¥(f) is complete
with respect to p’-convergence, there is an x, € L¥(2) such that
9' (k(xn—wo))—w, with the same constant k. Hence x,—>x, in measure
(see [2], Lemma (a)), and s0 @(ko|®,,(t)])—>@(kola,(?)]) for a subsequence
(w, ;) of (z,). Applying Fatou’s lemma, "we Observe that o (k) < M,. Thus,
Z 'is y-complete.

Arguing as in the above proof, we easily get that

4.2. LI, o, 0'> with o, o' given by (x), 9 convex, is y-complete.

From 4.2 it immediately follows:

43, Let ¢ be convex and let p<'e in the case of u(N) < oo, p <%g
W the case of u(2) = co. Then & = {I?, o, o'> with g, o’ given by () is y-com-
plete. :

Remark. The results above remain valid if we replace the space
under consideration by the Saks spaces <(L¥, |l II'lly>y <% Illgs Il
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LPALY, |l Illy>, because, for convex g, g-boundedness is equivalent
to boundedness in norm |-[l,, and completeness in norm |-[,, means g’-com-
pleteness with every &k > 0.

5. We shall say that a set X, = X is y-dense in (X, g, o’> if for every
2 € X there exists a sequence (z,) of elements of X, such that x,”» .
(X, 0, 0'> will be called y-separable if there exists a countable, y-dense
subset X, of X. First, we prove the following lemma.

5.1. If ¢ is a p-function, then the set of simple functions integrable in Q°
18 o-dense tn the Orlicz space L¥(£2).

Proof. Let # € L?(Q), #(¢) > 0 in Q. Taking a sequence (x,,) of simple
functions such that 0 < #,(f) 7 x(t) in 2, we observe that x, are integrable.
Taking % > 0 such that o (kz) f @ k(1)) du < oo and applying the Lebes-

gue dominated convergence theorern, we easily get Q(k(a}—$n))—> 0, i.e.
%, 2> ». In the general case the proof is obtained writing » (¢) as the difference
of its positive and negative part. '

5.2. Let @ and p be p-functions. Then the set of simple functions integrable
in Qs y-dense in (L*NLY, o, 0>, where o and o' are given by ().

Proof. Let ¢ € L7 (Q2)NL¥(2), x(t) = 0 in Q. Let (2,,) be the sequence
of simple functions from the proof of 5.1. Then, by 5.1,;;5; x. Now, let
0<¢,<1, &—>0. Then ¢(ke,®,(t)—0 and ¢(ke,x,(t)) < ¢(kz(t)) almost
everywhere in (2. By the Lebesgue dominated convergence theorem, -
o(ke,®,)—~0 as n— oo for sufficiently small k¥ > 0. Hence (x,) is g-bounded.
If we drop the assumption z(t) > 0, we obtain the result splitting (¢) into
positive and negative part. :

From the above result it follows at once that:

5.3. Let ¢ <'y in case of u(0)< oo, ¢ <%y in case of u(2) = oo.
Then the set of simple function integrable in 2 is y-dense in {L*, o, 0').
5.4. Let'y < g in case of u(R)< oo, p <*¢ in case of u(Q) =
Then the set of simple functions integrable in Q is y-dense in L%, o, 0'>.

5.5. Let ¢ and p be p-functions and let o and o' are given by (x). If the
measure wu s separable, then {(L¥NLY, o, 0> is y-separable.

Proof. First, let us suppose that u(£2) < co. Let X, be a eountable
family of sets from X such that for any A e X there is a sequence of sets
A" e X, for which u(A"™ =~ A)—0 as n-—>oo. Let # € LY(2)NL¥(Q), x(t) =0
in £ and let (x,) be a sequence 0; simple functions such that 0 <, (?) 7 (%)

n
in 2. By 5.2, »,%> . Lét , = > ¢ 4 Where 4; e X' ave pairwise disjoint
i=1
and y 4, is the characteristic function of the set 4,. We choose sets A7 € X,
t=12,...,p,, pairwise disjoint, for which
p(A7 =4, < [n-p,- max max(p(e,), w(e))) ™"

I<ig<p,
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Let us take positive rational numbers ¢; such that |¢; —¢;| < 1/n for
- Py

i=1,2,...,p,, and let us put y, = c;'XA"‘ Let 0 < ¢, <1, -0, and
1=1 [

let 0 < k < 1/2 be so small that ¢ (ke,®,)—0 and ¢’ (k(x, —x))—0. We shall
prove that y,”>z. First, we show that (y,) is o-bounded. We have

o(3ke,,) < o (ke, (4, — 2,)) + o (ke,,).
But

Pn .
Q(ken(yn_wn)) < f(p (ksn Z [lc;'_cile'@‘}‘ci'xlA(L_‘XAiI])d‘u
i=1 g i

Py

f<p ke, 2|c el nthen > et . )du
K i=1 i =4

i=1

Py,
< Jolore, Siei-atz i+ [o(ote, Sear )i
Q i=1 1 Q i=1 i g

Py,
¢(2ke, ) u(R) + Y ¢(2ke,0) p(A} = 4,)
i=1

Py,

9 (2ke, -n~") u(2) +th(o (A7 A)) < p(2ke, 0 ") u(2)+n7,

and so
o(3ke,y,) < @(2ke, - n~") u(2)+n7" + o (ke,@,)—>0" as n—oo.
Hence (y,) is o-bounded. Similar calculation shows that

o' (k(W,—m,)) < p@k-n ") u(2)+n".
Consequently,

o' (3k(y, — ) < o (k (¥, —=,)) + o, (k(a, — )
<p@2k-n () +n"+ ¢ (k(x,— )0 as n—>oo,

and thus, y,% ». Hence we conclude that y,-> o.

If we omit the assumption «(t) > 0 in 2, we obtain the proof by split-
ting # into positive and negative parts.

This shows that the countable set of simple functions which are ra-
tional linear combinations of characteristic functions of sets from X, is
v-dense in L?NLv.

Now, let u(L2) = co and let X, be defined as before, where 4 € ~
18 of finite measure u. Let us choose an arbitrary ¢ > 0 and let us take
for a given » € I7(Q YNLY(2), »(t) = 01in £, a k > 0 so small that o(kz) < o
and ¢'(kz) < co. Then t'here exists a set Q, e X of finite measure u for
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which g’(%kwxg\go) < &/2. Now, let us define the sequences (x,) and (v,)
as in the previous part of the proof, replacing 2 by £,. Of course, (v,)
remains p-bounded. Moreover, we have )

3 (i*"’(yn _w)) <o (%‘k(?/n _-'”ZQO)) +Q'('21‘kx){9\90)
< p(2k-n"") () + 07+ o (k(w, —@)xe ) + /2.

This shows that yng; 2. Thus we may conclude the proof.
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