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Uniform convexity of Musielak-Orlicz spaces with
Luxemburg’s norm

Abstract. We give some sufficient conditions in order that the Cartesian product
L4(T, X) x L3(8, ¥) of Musielak —Orlicz spaces L4,(T, X) and L3(8,Y) with
Luxemburg’s norm be uniformly convex and we prove necessity of some of them.
Next, we give some corollaries and some examples of ¢-functions with parameter,
which generate uniformly convex Musielak — Orlicz spaces. These results are gener-
alizations of the respective results of Luxemburg [9] and Nakano [11].

0. Introduction. (7, X, u) and (8, Z,, ») are spaces of non-negative,
o-finite, atomless and complete measures, R = (— o0, o), B, = [0, ),
R" denotes the n-dimensional Euclidean space, C is the space of all com-
plex numbers, X and Y are complex or real Banach spaces with norms |||
and |||-[ll, respectively. We say that a map M: T X B, —~R_ is a g-function
with parameter if:

(i) M(t,0) = 0 and]M (t, u)—oo as u—>oo for u-almost every te T,

(ii) there exists a set 7, of measure zero such that M (¢, au+ Bv)
< aM(t,u)+BM(t, v) for every u,v,a, >0, at+f =1, te T\T,

(iii) M (f, w) is a u-measurable function of ¢ for every fixed u > 0.

We define the Musielak—Orlicz space L, = Li4(T, X) as the set of
all strongly p-measurable functions #(-) defined on 7' with values in X
such that I,/(4#(-)) < oo for some 4> 0 depending on (), where I,(a())
= f M(t, lln(t)l}) du. Analogously we define the space Ly (S, Y).

We say that a ¢-function M with parameter is smctly convex if there
exists a set 7, with u(7,) = 0 such that
M(t, au+ (1 —a)v) < aM (t, u)+ (1L —a) M (¢, v)

for every te T\T, and 0 <<u<v< 00, 0 < a< 1.

Recall that a ¢-function M with parameter is uniformly convex if
there exist a set T, with u(T,) = 0 and a function &(-): (0,1)—(0, 1) such
that

M(, 142rbu) < (1—8(a) M(t,u)-;M(t, bu)

for every te T\T,, 0 <a <1, 0<b<a, u>0 (see [9] and [1]).
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We say that M satisfies the condition A, if there oxist a set T, with
u(T;) = 0, a constant A > 0 and a non-negative function h(-) e L{(T, R)
such that

Mt 2u) < KM, uw)+h(t) for every te T\T;,u>0.

We say that a Banach space X = (X, [fl) is uniformly convexr if for
every ¢ > 0 there exists 6(¢) > 0 such that z,y e X, llz] = |yl =1, |lo—
—yll = ¢ imply lle+yl < 2(1—68(c)) (see e.g. [8]).

A modular g is called uniformly convex if for every ¢ > 0 there exists
q(e) > 0 such that the conditions ¢(x) = o(y) =1, g(m——y)> ¢ imply

e((@+9)/2) <1—q(e) (see [9]).
We shall consuier the Cartesian product L = L4(T, X) x Ly (S, Y)

with the norm
e ()z, = inf{u > 0: I (a(- ()/u) < 13,
where @(-) = (2,(), #,(-)) and I(6(-)) = Ly (,(-)) + Ly{z:(")).

Results

1. Uniform convexity of L. First, we shall prove some lemmas.

1.1. LEMMA. A Banach space X is uniformly conver if and only if forv
every & > 0 there exisis S,(e) > 0 such that for every z,ye X,z # 0, y #0
with |zl <1 and |yl < 1, the condition v+ yll = 2 —0, implies |z —y|| < e.

Proof. It is obvious that if the condition from the lemma is satisfied,
then X is uniformly convex. Conversely, let X be uniformly convex and
let @ £ 0,y #0, 3,y X, ol <1, [yl <1, lo+yl >2—08,(e), where 5 (e)
= 4min (6(¢/2), £/2). It follows from the assumptions that [lz]|>1—¢,
and [y} > 1—9¢;. Moreover, writing a = 1/llzll, b = 1/[lyll, we have

laz + byl — o+ yl] < (a—Da+ (b~ 1)y < (a—1) el + (b — 1)y
2—(lel+lyl) <2—2(1—06,) = 24,.
Tlence ' | ' | o
laz + byl = &4yl —20, > 2 —8, —28, = 2—38, > 2— d(e/2).

Since llaz|] = |lbyl] = 1, by uniform convexity of X we obtain |lax — by| < ¢/2.
Thus, we have : »

[l — gl — llaz — byll| < [(1— @)z + (1 =)yl < (a—)llzfl +(>— )iyl
= (el +lyl) < 2—-2(1—=8)) = 26, < ¢/2.

)

Hence :
v e yll Nlaw —byll +-¢/2 < ¢/2+¢/2 = .
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1.2.- LEMMA. If M is a uniformly convex g-function with parameter
and X is a uniformly conver Banach space, then for every & > 0 there ewists
p(&) > 0 such that the imequality

Mt e +y1/2) < (L—p (&) [H (2, lol) +IL (2, lyl)]/2
holds for every x,y € X salisfying the imequality |z —y|| = emax (|lz|, Iy,
and for every t e T\T,.

Proof. Let ¢, and &° denote moduli of convexity of M and X, respec-
tively. Let b(s) = 1/1—60(8)'. Without loss of generality it can be as-
sumed that 0<e<<1l and |yll<|wll. Thus the inequality |x—vl
= emax ([lzll, llyl) is equivalent to [lx—y| >"¢|lx]]. We consider two cases.

1. |yl < b(e)||lx||. Then, by uniform convexity of M, we have for ¢
e I'\T, .

bl
< (1—8, (b () LM (t, Nolt) + DL (1, Myl 1/2.
2. Let be b(e)|lz]] < yll < |lzll. Then, we have
l@—y)ilwl||>e and [o/iwl] =1, |/l <1.
Thus, by uniform convexity of X and by Lemma 1.1, we get
@+ 9)/20l] < 1— ).

M, o+ ylj2) < M (2, (Il +lyl)/2) = M(t,(]|m|l+ Mbllwll) /2) |

Hence,

le+yll < 2 (1—8%e)llell = (1 —6°(e)) (lholl -+ llwl)) < (L — 6%e)) (llell -+l 11/ (&)

<
< (1= 06°(2)) /b (&)](llzll+ Iyl = b(e) (Il +lyl)-

Therefore, we have for ¢ e T\T,

M, e +yll/2) < b(e) M (¢, (2l +lly)/2) < b(e) [ (2, llwll) + DL (2 Iyh)]/2.

Taking p(e) = min(d,(b(e)), 1—b(e)), we obtain our lemma.

1.3. LEMMA. If M and N are g¢-functions with parameter satisfying
the condition A,, then I(m(-)) = 1 if and only if |2(-)l; = 1.

The proof of this fact i¢ analogous to the proof of Lemma 1 from [3],
80 it is omitted here. :

1.4. LEMMA. If M and N are ¢-functions with parameter satisfying the
condition A,, then for every e > 0 there exists € (&) > 0 such that |lz(-)|; > ¢
implies I(w(+)) > ¢,.

Proof. It suffices to show that for every & > 0 there exists g(e) > 0
such that T (m(-)) < & implies [#(Y)]|; < &. This follows from the equivalence:
1 (a?n(-))-—>0 as n—>oo if and o/nly if [z, ()l;=0 as n—>oco (by the condition
4y, sec [4] and [6]). ‘
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1.5. LeMMA. If M and N are ¢-functions with parameter satisfying the
condition 4,, then for every ¢ > 0 there exists a number n(e) > 0 such that
Iw(-) < 1—e implies lo(-)lly < 1—7le).

Proof. If the statement is false there exist a number ¢ > 0 and a se-
quence {#,(-)}n_, such that I (a‘n(-)) <1—e¢ and |z,()i1. Then, for a,
= ll#,(-)MIf! we have |a,z,(-)l; = 1. Hence I{a,z,(-)) =1, by Lemma 1.3.
S0, we have

1= I(ana"n(')) = I((an - 1)2$n + (2 - a’n)wn) <’ (a’n - 1)1(2mn()) +
+ (2 —a,) I(@,(")) < (@, — 1) (KT (,() + ) + (2 — a,) I {a,("))
(by the condition 4, for M and ¥), which contradicts ¢ > 0 for sufficiently
large u.

1.6. LEMMA. If M is a g-function with parameter satisfying the con-

dition 4, and M (t, u) = 0 iff u = 0 for u-a.e. t € T, then there exists a set

- A € X of measure zero such that for every s> 0 there exist a non-negative
Junction hy(-) with [h(t)du < e and a constant K, > 0 such that for every.
T

u > 0 and for every te T\A there holds
M2, 2u) < K, M(t, u) -+ k().
Proof. Let T\A = {teT\T;: M(t,u) =0 iff v =0 and M(t, )
satisfies the condition 4,}.(') We have u(A4) = 0. Denote
h,(t) = sup [ M (L, 2u) —2" M (¢, u)].
uz=0

By continuity of M (t, -) we have for every te T\ 4
hy(t) = sup [M(t, 2u;) —2" M (¢, u,)],
ieN

where {u,}, denotes the sequence of all non-negative rational numbers
Thus, %,(-) are u-measurable functions for every n € N. It is obvious that
0 < b, 4(t) < h,(t) for every t e T\A4,n e N. So, for every ¢ e I\ A there
exists the limit ilrg h,(t). Now, we shall show that 5,(t)|0 for every ¢ € T\ A.

Let us assume, to the contrary, that this does not hold. Then, there exists
aset B « T\ A (nonempty and measurable) such that for every t e B, h,(t)+>G.
Hence, there exists a function a(-): B—(0, o) such that h,(t)-—a(t) for
every te B. Thus

h,(t) = sup[M (¢, 2u) —2"M (t, w)] > a(t) for every te B,n € N.

u=0
Hence, we have
(1) VneNViteBde du,,: M@, 2u,,)—2"M(t, u,y) > a(t)—g > 0.

(1) T, is the null-set given in the definition of M being a @-funection with par-
ameter,
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Let a(t)—¢& = b,. Applying the condition 4, for t e B\ 4, we obtain
KMty o)+ (28) —2"M (2, w,0) > by

Hence, we get .

M (1, u,,) (1~ E27") < 27"{h (1)~ b)

and
0 < lim sup M (1, u,,) < lim 27"(h(t) —b;) = 0.

n—00
Moreover, we have

0 <liminfM (¢, u,,) <limsupM(t, u,,) = 0.

n—>00

Thus
(2) lim M (¢, w,,) = M(t,limu,,) =0, VieB.

Hence it follews that lim u,, = 0 and lim M (¢, 2u,,) = 0, which contra-
Nn—-00 n—00
dicts the condition (1). Thus, lim %,(t) = 0 for every ¢ € T\ A. It follows by
n—>00
the condition A4, that there exists a natural number %, such that [ hno(t)dy
T -

< oo, Applying the Lebesgue theorem on bounded convergence, we obtain

N

n->00

lim [ h,(t)du =0,
T .

Thus, for every ¢ > 0 there exists #, € N such that | by, (t)dp < & Tt suffices
e

to put K, = 2", h, = k., and the proof is completed.
1.7. LEMMA. Let f be a convex function on R with values in K, and let
there be numbers —oo < a < b < oo, 0 < Ay < 1, such that

(3) FlAa+ (1 —2)b) = Af(a)+ (L —2)f (D).
Then for every A € [0, 1] there holds
f(Aa+ (@1 —2)b) = Af(a)+ (1 —A)f ().

Proof. Write z, = 20+ (1—2)b and assume, to the contrary, that
there exists 4, € (0, 1) such that 1; # 4, and

(4) ' flha+ 1 —4)b) < A1f(a)+ (1 —4)f(b).

Writing @, = 4,a+ (1 —4,)b, we shall consider two cases:
(i) a <@, <@, <b. There cxists a number ae(0,1) such that

T, = avy+(1—a)b = alia+ (1 —al,)d.
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Thus, we have al, = 4,, and hence’

Jl@) < af(@)+ (1 —a)f(h) < a(df (a) + (1= 2)f(2)) + (L — )1 (b)
= Jof(a)+(1—2,)f(b) = J(@),

a contradiction. 4
(ii) @ < @, < @, < b. There exists a number § e (0, 1) such that

@y =pa+(1—Ppa,. ‘
In the same way as in the first case we obtain again a contradiction.
Thus our lemma is proved. . :
1.8. LEMMA. If the assumptions of Lemma 1.7 ave satisfied, then

flac+ (@1 —2)d) = if(e) + (1 —A)f (d)
for every 0 <A<, a<e<ad<b.

Proof. We may assume that a < ¢ < d < b. There exist numbers
2, €(0,1) and 2, € (0, 1) such that

¢ = hat(1—2)b, d=deat(l—2y)b.
Hence, we get for.ie[0,1] '
Je (1 —2)@ = (Mg + Ap—Adg) @+ [L— (2hy + Ay — Ad)1b.
We have, by Lemma 1.7, _ |
(5)  flio+ (1 —=2d) = (Ay+ do— Ahy)f(a) + [L — (Mg + A — 225) 1f(0).
Moreover, we have also .
Zf(c)'= WS (@) +Af () — A2, f (B), (1 —A)f(d) = (1 —2)[Zof (@) + (1 — A2)f(B)].

Combining both last equalities and equality (5), we obtain the desired
result. »

1.9. CorOLLARY. If f: R— R is convex and f is strictly convex on [a, b],
then for every w e [a,b) and v >a, u #v or u€(a,b] and v < b, u # v,
and for every 0 < A< 1 there holds

(6) T2+ (1 —2)0) < Af(u) + (L — D) f (0).

Proof. We may assume, by assumptions, that v ¢[a,bd]. Let
u e [a,b), v > b, and let us assume for a contrary that

F(Aou+ (1 —2)9) = Af(w) +(1 —2)f(v)
for some 0 < 4, <1. Then, by Lemma 1.8, we have

flie+@—1d) = 4 (e)+ (1 — Df(d)

for every 1€ (0,1}, v <c¢<d< v, a contradiction with strict convexity
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of f on [u,b). In the samec way we can prove that (6) holds for
every Ae(0,1),ue(a,b],v<a.

1.10. THEOREM. If X and Y are uniformly convex, M and N are ¢-func-
tions with parameter from T and from 8, respectively, satisfying the condition
A, and uniformly convex, then I is uwniformly convew.

Proof. Let I(x(-)) =I(y(") =1, I(x(-)—y())>e Without loss of
generality we may assume that T,UT, = @ and S,US; = @, where the
sets Ty, Ty and 8,, S, are from definition of strict convexity and from the
condition 4, for the functions 3 and N, respectively. We may assume also
that e << 1.- Let o = ¢/4 and

E = {teT: [l5,(t) —y: (0)I| = amax (o, ()], [y, @O},
F = s e8: llay(s) — ya() = amax (flas(s)lll, llya(s)I)] -
If t e T\E, s € S\F, then, by Lemma 1.2, we have
M {27l ) < (t—pl 027 [ (1, NaO)I) + 3 {1, a0l
N (s, 27 (o) + Nya()ll]) < ( )27 [V (s, Waa(s)) + N (s, Myals))]-
Hence ‘ s
T—I((() +y())/2) = {Larles( D)) + Ly ) )32 —
— Ly[((s () + 92 (9)/2) st (O] 4+ {T oy (2 () 220 ()) + Iy (y2 () 2w () 12 —
— Iy|([@o () +92()/2) 22 ()]
= po(a) {I 5 (0 ( )7L())+IM(J1()XL())}/ ,
+po(@){ Ty (@2() 2 (- )+IN(7/2 »())}2.

If te\E aud se S\F, then |z (f)—uy.(¢ )”<a(([xl(t)li+lfJ1(t)i[) and
Nws () — w2 ()l < a (@2 ()M + 1l y2(s)ll), and hence

Mty oy (4) — 92 (1) < HL{t, 2a (o (O] + Iy (1) /2)
< a|M(t, . (ON) + M (2, ly )],
N (s, llwa(s) —yo()) < o[ N (s, 2 ()11) + N (s, My (s))] -

Thus

(1) 11[('71'1( ) =¥ (- )Xf\L ]+I [(%( Ya( ))ZS\F(')] < 20 = 8/25
But I{x(-)—y(-)) =& by hypothesis, so )

(8) Iy (1) = 91 ()) 2 )] L [(#20) = 92()) 2 ()] = /2.

We have

(9 Ty (@) =92 () 22 ()] + Iy [(@20) =92 20 0]
27! [IM (2901(‘)7{1«}(')) ,+ IM(?'?h(')XE(')) + IN@%(') 71«()) + ll\’ (2?/2(')11«*(’))]-
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Applying Lemma 1.6 with ¢/8 instead of ¢, we obtain for te E, se F
M (t, 20, (W) M (¢, 20y () < Ky [ (2, ey (0)1) -+ M (2, y2 (0)1)] +2P1(2),
N (s, 2ll@(8)ll) + N (s, 2My2 () < Ko [N (s, Mo () + N (s, Ny ())] +
L +2R,(8),
and further

T0 (22, () 22 () + Tar (292 () 2 () + I (205 () 22 () + Iy (292 () 20 ()
K[IM(%( Yxe(: ))+IM(3/1 () xz(: )+I (wz( ) 1w (: )+IN(?/2( Yar(: ))] +¢&/2.

Hence and from (9), we obtain

(10) IM[(wl(.)—yl('))xE ')]+IN[(972(')—?/2 ))ZF ]

< 27K [Tpg (2.() 12 () + Lag (41 () 2 (D) 4+ Iy (22 () 2w () + Iy () 0w ()] +
+ /4.

Hence and by (8), we get

(11) IM(%(')XE(')) + 1y (%(')XE(')) +1Iy (“’z(')l{v‘(')) +1y (?Iz(')‘ZF('))

2
> (Lo (21() = 920) 2 () + Ly ((22() = 92()) 2 (1)) — /2K > 2.

So, taking into account (6) an (11), we obtain

1—I((@(")+y()/2) > emin(p,(a), po(a)) /4K = q(e),
which is the desired result.

1.11. THEOREM. If X and Y are uniformly convexr, M and N are uni-
Jormly conver o-functions with parameter from T and from 8, respectively,
and both satisfy the condition A,, then the space (L, ||-||;) is uniformly conves.

Proof. Let ¢>0, {lz()l; = lly()ly =1 and |lv(-) —y ()i, > . Then,
by Lemma 1.3, I{2(:)) = I(y(-)) =1 and, by Lemma 1.4, I(z(-)—y(")
= g(e). Hence, by Theorem 1.10, I((w Y+y(- ))/9) <1l—gq(e) and so
() +9())/2llr <1—n(g), by Lemma 15. Putting 8(s) = 5(¢(e:(e)))
we obtain the desired result.

1.12. THEOREM. If (L, ||-|l;) ¢s uniformly convex, then M and N satisfy
the condition A, and the spaces X = (X, |I'Il), ¥ = (X, |||'|||) are uniformly
convew (?).

Proof. If M or N do not satisfy the condition 4,, then (L, ||-|;) is not
strictly convex, see [3]. Let M and N satisfy the condition 4, and let X
be not uniformly convex. First, we shall show that there exists a function
0 #w(-)elly. Let A ={tel: M(t 1)< oo}, We have u(4) = u(T).

(?) These theorems are algo true for finite Cartesian product of Orlicz’s spaces.

e
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Let Bc A, B eZX, be such that 0 < u(B) < oo. We define
B, ={teB: M(t,1)<n}, n=1,2,...
We have B, « B, for each n € N. Thus, 0 < limu(B,) = u(B). It suffices

n—oo

to put 2(t) = xBno(t) for sufficiently large n,. Further, taking into account

the condition 4, for M and choosing a sequence {a,}; ; with a, > 1, a;,—~o0
as k->oo, we get (%)

o> [ Mt é,c)dﬂ> o, [M(t,1)du—~>co as k->oco.

B"’O Bno
Thus, there exists a number a; such that I M(a,,oxgn (*)) > 1. Next, there
exists a set C = B, , 0 e X such that Inr (e 20 (") =1.

There exists ¢ > 0 such that for every ¢ > 0 there are x, ¥ € X such
that |lal| =yl =1, llo—yl =& and [(@+y)/2] >1—0. Putting ()
=y, 70(1), Y1(1) = Y 2o (1), 2(8) = Y2 (8) = 0,8() = (m(*), @3 (), ¥ (1) = (#20),
¥,(*)), we have #(-) # y(-) and

(@) —9:(0) /6] = arxo(®)y @)+ 92 ()21~ 8)]| > @y 10 (2)-
Hence, we have I((m(-)+y(-))/e}> 1, I({w(~)+y(-))/2(1—6)} >1. So
o) =y ) /elr>1 and |fo()+y())/2@—9d)|;>1, by Lemma 1.3.
The proof is completed.

2. Examples and corollaries. First, we shall prove the following
lemmas:

2.1. LEMMA. Let M, and M, be g-functions with parameter and let at
least one of them be uniformly (strictly) conves. Then the functions f = M0 M,
and g = MM, are uniformly (strictly) convexr ¢-functions with par-
ameter. ’

Proof. It suffices to prove the uniform (strict) convexity of f and g.
‘We prove only the uniform convexity of f and g¢.

(i) Uniform convexity of f. First, let M, be uniformly convex witi
modulus of convexity §,(a). Let 0 <a<1,0<b<a, v >0. We have
for u-a.e. teT, by M,(t, bu)/M,(i, u) < b,

Tty (w +du)/2) = M, [t, My (¢, (uw-+bu)/2)] < M, [t, (My(t, w)+My(t, bu))/2]

_ [t Mz(t,u)+(M2(t,bu)/Mz(t,u))Mz(t,u)]
- 1N ) 9 D

» M, [t, M1, M, [t, My(dy b
<(L—6 (@) [t, Mo ’“)]'; [t, M (4 bu)]
_ f@ w) +f (3 bu)
= (1—6,(a)) 5 .

-

() Since, by [3] Theorem 1.3, M (f, u) = 0 iff u = 0 for gy-ae.teT.
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Now, let M, be uniformiy convex with modulus of convexity d,(a); then,
by the inequality M, (¢, au) < al,(t,u) for 0<a<1, u>0, we have
for u-ae. teTl ‘ '
Flty (w-+bu)j2) = M, [t, My(t, (u-+bu)/2)]
My (t, u)+ M, (2, bu) ft, w)y-+f(¢, bu

< M, [t’ (1 — 0, (a)) 2 D) ] < (1— ‘52(“)) 5

(ii) Uniform convexity of g. Let M, be uniformly convex. M, (¢, u)
and M,(t, u) are increasing functions of # for every teT\T,, where
u(Ty) =0, so we have for a, b, w and ¢ as in the case (i)

[ My (8, w)—DM (2, bu)]- [ M, (2, bu) — M,y (t, )] < 0.
This inequality is equivalent to
Ml(t bu)M, (T, ) + M, (t, w)M,(t, bu)
< ML (8, )Myt w)+M, (4, bw)J[ (¢, bu).

Thus, we have

(t, (- bu) /2) = M, ( (u+bu)/2)Mz (t, (u+ bu) /2)

< 31— 61 (@)) {0, (8, w) DL, (8, w) -+ My (8, bu) My (2, bu) -+ M, (t, w) Mo (t, u) +

+ 3, (8, bu) My (t, bu)}
= (1—8;(a)) {g(t, w) +g(t, bu)}/2.

2.2. COROLLARY. Hach uniformly convexr @-function M with parameter
is strictly convex.

This follows immediately from definitions.

2.3. ExaMPLE. There exists a strictly convex ¢- iunctlon M, which is
not wuniformly convex. Let M(u)=wln(l-}u). We have M'(u)
=1In(1-4u)+u/(1+u). Since M’(u) is strictly increasing function on
[0,00), M is strictly convex. Now, we shall prove that M is not uniformly
convex. Uniform convexity of I is equivalent to the condition:
(21) 0< sup [sup 2M ((u-+bu)/2)/(M (u) +M (bu))] = n(a) <1

0<b<<a  u>0
for every 0 < a < 1. Let us write
‘ F(by u) = 2M (L4 b)u/2)] (M (u) + M (bu)).
Applying the L’Hospital formula, we obtain for 0 < b < a, limf(b, u) = 1.

U~>00

So, condition (2.1) holds for no number 0 < (a) <1, and hence M is
not uniformly convex.

2.4. COROLLARY. If X, ¢ = 1, 2, ..., m, are uniformly (strictly) convex
Banach spaces and M, i = 1, 2,...,n, are uniformly (strictly) convex



Unijorm convewity of Mustelak-Orlice spaces 31

@-functions without parameter, satisfying the condition A, for large u >0,
then the space X = X, x ... x X, with norm

lwlly, = inf {u > 02 gy (aju) < 1},

for © = {&;}7,, »; € X;, where

n

o0 (@) = D M (lll),

1=1
(@; are -components of @ and I-ll; are norms in X;), 18 uniformly (stricily)
CoNnvex. .

Proof. Let u, = p, = ... = pu, = Lebesgue measure in [0,1], T,
=T, =...=1T,=1[0,1]. Let F denote the space of all functions
from [0 1] into X of the form () = (xy(-), #,("), ..., #,(")), Where
() = @)y v € X, for ¢ =1,2,...,n. F is a subspace of L
= Ly (T, X)) X ... XLy} (T,, X,). We define the operator A: X—F
by fhe formula

(Adz)(t) = (‘”1%{0,1](')7 ceey xnl[o,l](’))y

where x; are components of . Ve have 1 ((Aa:)( )) = go(®) and thus
H(Az) () = ||m]|e for # e X. Since F is uniformly (strictly) convex (see
Theorem 1.10 of this paper and [3]), so X is uniformly (strictly) convex.

25, If M is a umformly convex g-function with parameter satisfying
the condition A,, then for every non-negative inieger k, the Orlicz—Sobolev
space (for definition see [1]) W4 (Q) with norm

() = inf{u > 0: o, (2(-)/u) < 1},
M
where

() = D [M(t, 1D°w(1)))dt,

lal<<k 2

18 uniformly convex. Here 2 is an open set in R" and Dx(-) denotes dis-
tributional derivatives of x(-).

“This may be deduced in the same way as strict convexity of W%, (2)
in [3].

2.6. ExamprLEs. Let us consuler the following functions:

L Mi(u) =u?1<p< oo,
My(u) = uPIn?(1+u),1 <p < oo,
M(u) = uPIn(14+4P), 1 < p < o0,
My(u) = v In(d +u), 1< p < oo,

w? for 0<u<1

s (w) = {uq for ; 1,\ ’

o w

l<p<g<oo,
A%
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6. My(t, ) = [M(u)]"?,

7. M,(t,u) = M(p(t)u).

Functions M,, ¢ =1,2,...,5, are uniformly convex. This follows
from Lemma 2.1. In the case of the function M, we have d(a)
=2'"?(1+a)? /(1 + a?). Allfunctions M;,i=1,...,5, satisfy the condition 4,
for all > 0. If M is a uniformly convex g-funetion without parameter
and 1< p(f) < oo is a w-measurable function on 7, then M, and M,(*)
are uniformly convex g-functions with parameter. Moreover, if additionally
M satisfies the condition 4, for all 4 > 0 if u4(T) = oo and for large 4 > 0
if u(T) < oo, and 1 < p(t) < K, < oo, then Mg and M, satisfy the condition
4,53, I 1< K, <p(t) < oo, then M is a uniformly convex g-function
with parameter for each gp-function M without parameter. H. Nakano [11]
considered Orlicz spaces generated by e-function M, with M(u) = » and
proved that then Lj (T, C) is uniformly convex if 1 < K, <p()< K,
< oo. W. A. Luxemburg proved uniform convexity of L, (T, C) for uniformly
convex ¢-function M without parameter satisfying the condition 4, for
every % = 0.
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(*) M, is uniformly convex under weaker assumption 0 < p(f) < oo.
(®) M; satisfies the condition 4, under weaker assumption 0 < p(f) < oo.
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