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Linear operators in modular spaces

Abstract. The problem of modular convergence in a modular space and obmodular 
continuity and boundedness of linear operators between such spaces is studied. Adjoint 
linear operators are also investigated.

§ 1. Modular convergence. Let Abe a real vector space. A pseudomodu­
lar in X  is a functional g: Х -> [0 , -f- oo] such that j>(0 ) =  0, g{ — x) =  g(x) 
and g{axJr fy) <  g{x) +  Q{y) for x_, y e X, a, /3 ^  0, a +  /? = 1. If, moreover, 
g(ax-\-(3y) <  ag(x) +  (3д{у) for such x ,y ,a ,f3 , then *q is called a convex 
pseudomodular. If (̂a?) = 0  implies x — 0, then g is called a modular. 
If q(ax) =  0 for all a >  0 implies x =  0 , we shall say that g is a semi- 
modular. If a pseudomodular g satisfies the condition Ymio(ax) — g(x) for

CL—̂ 1 "
all x e X, it is called left-continuous or normal (for this terminology, see [2 ], 
pp. 5 and 9, or [3], pp. 661-663, [5], pp. 439-440). The vector subspace 
X e =  {x e X : g{ax)->0 as a-*-0 + } of X  is called a modular space; if g is 
a pseudomodular (a semimodular), then \x\e =  inf {^ >  0 : g{xfu) <  u} 
is an F -seminorm (an F -norm) in X g, and if it is a convex pseudomodular 
(a convex semimodular), then ||ж||е =  inf {u >  0 : g(x/u) <  1} is a seminorm 
(a norm) in X e, equivalent to | |e. Moreover, if \x\Q <  1 then g(x) <  \x\Q 
and if ||a?||0 <  1 , then g{x) <  ||(»||e. If g is a left-continuous convex pseudo­
modular, then the conditions g{x) <  l  and |]&||e <  1 are equivalent for all 
x e X e (see [2], pp. 6 and 10, or [3], p. 52, [4], p. 662, and [1 ], p. 235).

Let (xn) be a sequence of elements of the modular space X e; (xn) is 
convergent in the norm | |e (or ||.||e) to an element x e X Q if and only if 
б{а (хп-х ) ) -> 0 as n^-oo for every a >  0 (see [2], p. 7, or [4], p. 662). 
There is also a notion of modular convergence (briefly g-convergence) : 
{xn) is called modular convergent (g-convergent) to x if there exists an a >  0 
such that g(a{xn-x ))-+  0 as %->oo; we write it xn^>x (see [3], pp. 50-53). 
Obviously, convergence in norm in X Q implies g-convergence to the same 
limit. The converse implication does not hold in general, as may be shown 
by easy examples of Orlicz spaces. Namely, let <p be a ^-function (i.e. 
9>(0) =  0, (p(u) >  0 for  ̂>  0, cp(u) is non-decreasing and continuous,
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(p(u)->oo as u->oc), and let T/^O,1) be the respective Orlicz space, that
1

is, the modular space X Q with the modular g(x) =  § <p[\x(t)\)dt. Then
о

g(x) <  со implies g(2x) <  oo for all x e X Q if and only if <p satisfies the fol­
lowing condition (d2) for large и : there exist positive constants h and u9 
such that <p{2u) <  Tcp(u) for all и >  u0 (see e.g. [2], pp. 13-14). If (zJ2) 
does not hold, then we may choose a function x(t) >  0 such that q (x ) <  oo 
and g(2x) =  oo. Taking xn(t) =  x(t) if x(t) <  n and xn(t) =  0 if x(t) >  n, 
one may easily check that g(xn — x)->0 , but g{2(xn — x)) =  oo for all n, 
and so xn-> x, but (xn) does not converge to x in norm. One may show more, 
namely

Proposition 1 .1 . Let X e — 7/(0, 1) be an Orliez space with cp not sat­
isfying (A2) for large и . Then there exists a, sequence (xn) of elements o f X & 
which is g-convergent, but contains no subsequence convergent in the norm o f X r

This follows immediately since in the converse case, taking xn-̂ > x in 
7/(0 ,1 ) and an arbitrary subsequence (xn ) of (xn), one could extract a norm- 
convergent sequence from (xnjJ ,  and this would imply xn->x in the norm 
of 7/(0,1 ).

!Nbw, let g be auy pseudomodular.
Definition 1.2. A set A a  X Q is called g-bounded if for any sequence 

of elements xn e A and any sequence of numbers еи->0, there holds enxn —> 0.
We shall examine the connections between the following conditions 

for a set A cz X g:
(a) A is g-bounded,
(b) there exist positive constants 31 and 1c such that g (lex) ^  31 for  

all x e A,
(c) there exists a positive constant Jc such that g (lex) <  1 for 'all x e A,
(d) there is a positive number К  such that []ж||е <  К  for all x e A,
(e) for every sequence o f elements xn e A and any sequence o f numbers 

sn—>ù, there holds g(eHxn)—>0.
P roposition 1.3. I f  g is convex, then all conditions (a)-(e) are pairwise 

equivalent. In  the case o f qeneral pseudomodular g, there hold the implications 
(e) =>(a) =>(b) =>(c).

Proof. (a)=>(b). Suppose that (a) is satisfied, but (b) does not hold; 
then there exists a sequence of elements хп е A such that g(xtln~2) > 1  
for n =  1 ,2 , . . .  Taking a >  O'in such a manner that g(axnn~1)- -̂0 as 
n~>oо and an >  1 , we get

ax„n~~ } <  g ( ax n ) -> 0 .1 <  g(xnn 2) -  g
an



Linear operators in modular spaces 35

a contradiction. The implication (e) => (a) and the equivalence (b)o(c) 
are obvions. ISTow, let q be convex. Let us suppose (c) and let en->0, xn e A ; 

s s
then q(enxn ) <  —  q(hxn) <  —>0 as n->oo, because <  1 for n suf-

1c h
ficiently large. Hence (c)=>(e). The equivalence (b)o(d) follows immedi­
ately from the definition of the pseudonorm || ||e.

Definition 1.4. A set A a  X Q will be called q-closed if x n e A, x n- ^ x ,  
imply x  e A. The smallest ^-closed set containing the set A c= X e will 
be called the q-closure of A and denoted by Ae.

Evidently, the empty set 0 , the whole space X Q and finite sets A c  X e 
are p-closed.

ч __

Proposition 1.5. (a) A set A a  X e is q-closed i f  and only i f  A — Ae.
(b) I f  A is Q-dosed, then it is dosed with respect to the F -norm 

(or norm ) in X.
(c) A c  A a  AQ, where A means the closure o f A with respect to the 

F-norm (or norm) in X Q.
Let us observe that a set A closed in norm does not need to be ^-closed. 

Indeed, let X Q =  1Е(0, 1 ) with ep not satisfying (zl2) for large u. By 1 .1 , 
there exists a sequence (xn) of elements of X g such that xn^>x e X e, but 
no subsequence (œ.n ) of (xn) is convergent in the E-norm (or norm) in X Q. 
Taking as A the set of all elements of the sequence (xn), we easily observe 
that A is closed in the .E-norm (or norm) but is not ^-closed. Consequently, 
we see also that none of the inclusions A c  A cz Ae needs to be an identity.

Proposition 1.6. I f  q is a pseudomodular and a set A c= X Q is Q-bounded, 
then its Q-closure Ae is a sum of countable family of q-bounded sets.

Proof. Let, for every fixed a >  0, AQa denote the set of all œ e XQ 
for which there exists a sequence xn e A, n =  1 ,2 , . . . ,  snch that 
д{а(ов — xnj)->0 as n->oo. We have Ae =  ( J  A ea =  [ J  А1/п and thus it

a >  0 n eN  __
suffices to prove that the sets Aea are ^-bounded for every a >  0. Let xn e Aea 
for n =  1 ,2 , . . .  and let 0 <  £и->0. There exists a sequence yn eA ,  
n ~  1, 2 , . . . ,  such that q (a(xn — yn)) <  1 jn for n = 1 , 2 , . . .  Hence and from 
the properties of q we get

Q{asnxn) <  е(2аеп(хп- у п)) +  д(2аепуп)->0 as n->oo.

Definition 1.7. A set 4  c  X Q will be called relatively q-compad if 
every sequence of elements xn e A contains a subsequence ^-convergent 
to an element x e l e; A will be called q-compad if every such sequence 
contains a subsequence ^-convergent to an x e A .

It is easily observed that a set A c  X e compact (relatively compact) 
with respect to the norm in X e is also ^-compact (relatively ^-compact).
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Moreover, a set A c  X Q is p-compact if and only if A is both relatively 
^-compact and ^-closed.

Proposition 1.8. A relatively g-eompact set A c  X e is g-bounded.
Proof. Let xn e A and and let us write an — Q(enxn). Let (nk)

be any increasing sequence of indices. There exist a number a >  0, an 
element x e X e and a subsequence {nk ) of the sequence (%) such that 
g[a(xn̂  — a?))->0 as oo. Taking l so large that 2en̂ < a ,  we obtain

\  о as
Thus an->0, and so A is ^-bounded.

§ 2. Conjugate spaces to modular spaces. We give now some remarks 
on linear continuous functionals over a modular space. If / is a linear 
functional over a modular space X e, then two notions of continuity of / 
can be considered: this of continuity in norm and that of modular conti­
nuity.

Definition 2.1. A functional f  over X e is called modular continuous 
(or briefly, g-continuous) if xn-̂ > x implies f(x n)->f(x) for any x e X Q.

If / is linear, then obviously ^-continuity of / is equivalent to conti­
nuity at 0, i.e. to the condition xn^>0 implies f{x n)->0. Let X* be the con­
jugate space to X Q with respect to the norm in X Q, and let X *e be ^-conjugate 
to i.e. is the space of ^-continuous linear functionals over X Q. 
I t  is evident that Х *в <= X*. This inclusion may be proper, as shows the 
example of an Orlicz space L 9(0f 1), where 95 is an A-function (that is, 
<p is convex 95-function satisfying the conditions <p(u)/u->0 as u-^-0, <p(u)lu 
->oo as u-+oo) not satisfying the condition (A2) for larger (see [4], p. 664). 
In the following, the elements of X* will be denoted by x*, x*, etc.

Let us remark that a linear functional x* over X Q belongs to X* if 
and only if there exists a constant К  >  0 such that |я?*(а?)| <  K[g{x) -j- l j  
for every x e  X e, in the case of convex g (this is also true for s-convex 
modulars g; see [6 ], p. 159). The right-hand side of this inequality cannot 
be changed in general to Kg(x) since taking e.g. X  =  R  and g(x) =  xz, x* 
defined by x* (æ) =  xy with arbitrary y e R  belongs to X* but does not 
satisfy the inequality \x*(x)\ <  Kx*.

H. Aqkano defined in the space X* a conjugate semimodular g* to 
9 ([5], p. 442) by means of the formula

Q*(X*) =  sup(|®*(®)|-e(®))
x e X 0

and has shown that if g is a pseudomodular in X e, then g* is a convex 
left-continuous semimodular in X*. Hence, supposing g to be convex 
semimodular, one may define two norms in the conjugate space X*. The
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first one is the norm of a linear continuous functional x* over a normed 
space <Xe, || ||e> :

II®* II* =  sup \x*(x)\,

and the second one is the norm defined in X* by means of the modular q* : 

Ца5*|[е. =  inf {u >  0 : q*(x*/u) <  1}.

The following inequalities hold.
P roposition 2.2. Let q be a convex left continuous semimodular. Then

II®* lie* <  II®* С <  2 ||a?*||e. for every x* e X * .

Proof. We have, by left-continuity of q*, that Q*(x*/\\х*\\в*) <  1 
for every x* e X*. Moreover, by our assumptions the inequalities ||a?||e <  1 
and q{x) ^  1 are equivalent. Hence

||®*/ll®*lle4 *  =  sup |a?*(a?)|< sup (e(a?) +  e*(® */ll® *lle*)) < 2
e(x)<i e(æ)<i

and the right-hand side inequality is proved. In order to prove the left-hand 
side inequality, we shall prove first that for every x* e X* with ||ж*||* <  1 , 
we have
(+ ) e*(®*) — sup (|®*(®)| — q(x)).

q(x) <  1

We have

q* (x*) =  max ( sup [\x*(x)\ — g (a?)), sup (|o?*(o?)l — j?(®)))>
e(x)<i q(x)> i

thus it suffices to prove that sup ( \x* (x) | — g (a?)) <  0., If q(x) >  1 , then
в(х)> 1

II®lie <  q{x) and thus

sup (|ж*(а?)|-еИ) <  sup (||̂ *||J|H|e- e(a?)) <  sup (||ж||е-е И ) <  o.
o(a:)>l g(x) > 1 e(x)>l

Applying equality ( + )  and the inequality q{x ) <  ||ж||е for q(x ) <  1, we get 

e*(®*/ll®*H*) =  sup (\х*(х)Ц\\х*\\*в - д ( х ) )  <  sup (||ж||е- q{x )) <  1,
е(ж)<1 е(ж)<1

and thus the inequality ||æ*||e. <  ||a?*||* holds for every x* e X*.
E xample I. Taking as X  the space of all Lebesgue measurable, almost 

everywhere finite functions in the interval [0, 1 ] and putting q(x)
i

=  j<p[\x{t)\\dt with an W-function y satisfying the condition (Af) for large щ 
о

we have X e = L <p{0,1)  and x* e X* are exactly of the form x* (x) 

~  f®{t)y{t)dt with y e L ^ i 0,1) ,  where y*{u) — sup (uv — y{v)) for и ^  0
« t’> 0
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is the function complementary to <p in the sense of Young. Moreover, 
, 1

we have then q*(x*) ~  f<p*(\y(t)\)dt and ||#*||e* =  ||a>*||*.
0

§ 3. Modularly continuous and hounded linear operators. Let X, Y be
real vector spaces, q a pseudomodular in X , a a pseudomodular in Y, and 
let X e, Ya be the respective modular spaces. Let T: X g~>Ya be a linear 
map of X g in Ya. Then

Definition 3.1. T  will be called (q, a)-continuous if xn e l 8, xn-^x, 
imply Txn-̂ > Tx, and T  will be called (o, afbounded if it maps ^-bounded 
sets in X g on cr-bounded sets in Ya. T  will be called a (q, o)-contraction if 
a(Tx) <  q{x) for all x e X g, and a restricted (q, o)-contraction if a(Tx) 
<  q(x) for all x e X g satisfying the inequality g(x) <  1 .

Obviously, there is in general no inclusion between the set of all 
(q, o)-continuous linear maps of X g in Ya and the set of all continuous 
linear maps of the normed space (X g, || ||e> in the normed space <Ya, || ||a). 
As regards bounded operators, there holds

Proposition 3.2. I f  о and a are convex pseudomodular s, then a linear 
operator T : X e->Ya is (q, a)-bounded i f  and only i f  there holds the 
following condition :

(B) There exist positive constants h and 31 such that o(kTx) <  3I\\x\\Q 
for all x e X g satisfying the inequality £>(&)< 1 .

Proof. Let A c  X g be ^-bounded and let (B) hold. Let xn e A, sn-+ 0, 
0 <  en <  1 ; then enxn)->0, by 1.3. Hence \\Venxn\\g <  1 for sufficiently 
large n, and so

a(kenTx) <  V ena{kT^ suxn) <  ^ en31\\V snxn\\g <  VenM-+Q

as r —>oo. Consequently, enTxn-̂ > 0, and so T is (g, a)-bounded. Conversely, 
let us suppose that I 1 is (q, (7)-bounded. Since the set A =  {#/|M|e: % e X g} 
is ^-bounded/so T(A) is cr-bounded. By 1.3, there are k, 31 >  0 such that 
a{kTx) <  31 for all x e A. Thus

<j{kTx) <  \\x\\Qo(kT(xl\\x\\g)) <  31\\x\\e

for all x e  X g such that ||æ||e <  1. Thus we proved (B).
P roposition 3.3. I f  q is a convex left-contimious pseudomodular and a 

is an arbitrary pseudomodular, and i f  there holds the condition
(Bj) there exist positive constants к and 31 such that a{kTx) <  31 g (x) 

for all x e  X g satisfying the inequality @ (# )< 1, 
then conditimi (B) is also satisfied.

Let us observe that in general conditions (B) and (Bj) are not equiv­
alent. To show this we take as X Q an Orlicz space 1/ (0 ,1 ) generated by
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an Ж-function (p not satisfying the condition (zl2) for large u, and as Ya
i

the space of real numbers, q(x) ~  f  ç>(|#(<)|) dt, a{y) =  \y\. Then there exists
0

a linear functional T  over X Q which is continuous with respect to the norm * 
|| ||e (and thus satisfies (B)), but is not ^-continuous (see § 2), whence it 
cannot satisfy (Bx).

We shall also deal later with a more restrictive condition than (Bx):
(B2) there exist positive constants Jc and Ж  such that a(kTx) <  Mq(x) 

fo r  all x e X Q.
Linear operators satisfying (B2) will be called strongly ( q ,  o)-bounded.

If a is convex, then the constant M in (B), (Bx) and (B2) may be 
taken equal 1.

Let us still remark that if <X, || ||> and <Z, ||[ |||> are normcd spaces 
and q(x) =  |j#||, a(y) =  |||y|||, then every one of the conditions: {q, ^-bound­
edness of T, (B), (Bj), (B2) is equivalent to continuity of T  with respect 
to the norms in X  and X. Moreover, from 3.1 and 3.2 it follows in general

P roposition 3.5. I f  о and a are left-continuous, convex pseudomodu- 
lars, then every linear restricted (o, a)-contraction T  is a contraction with 
respect to || |[e, || \\a.

P roof. Taking# e X Q, [|#||e <  1, we get q(x) <  1 and so a(Tx) <  q£x) 
<  1 . Consequently, |fTx\\a <  1 . Hence \\Tx\\a <  ||a$J|e for all x e  X g.

The converse statement to Proposition 3.4 is not true. As an example 
it is sufficient to take X  =  T  =  the space of real numbers, o(x) =  \{ex — 1 ), 
q(x) =  \{ex" — 1) for x >  0, and T x =  x. We have ||#||e — |#|/ln 3 and ||#||9 
= \x\jVln 3, and so \\Tx\\e =  ||#||a <  ||#||efor all x e  X , but cr(Tx) — a(x) > q(x) 
and q(x) <  1 for all 0 <  x <  1. However, let us still remark that if we 
take two Orlicz spaces L v(8) and L v{8) over a set 8  with respect to an 
atomless and infinite measure p, and we assume that L v{8) c  L v{8), 
then supposing the identity map T  of L v{8) in L v(8) to be a contraction 
with respect to the norm, it is also a (q, <r)-contraction. It is sufficient 
to show that y>(u) <  <p(u) for all и >  0. However, in the other case we would 
have y{u0) >  <p(u0) for >  0. Choosing a set A c  8  such that p{A)
=  1 lip {uQ) and #0(s) =  u0 for s eA , xQ (s) — 0 for s e 8\A , we then obtain <t(#0) 
=  1? e(x0) <  1 and so IKL =  1 , |[#0||e <  1 , a contradiction.

i
§ 4 .  Adjoint operators. Let X e and Ya be two modular spaces with 

convex pseudomodulars q  and a, and let X* and Y* be the conjugate spaces 
with respect to <Xe, || ||e> and <Г„, || L>, respectively. Then the formulae 
£*(#*) =  sup(\x*{x)I — q(x)) and a*{y*) =  sup(|#*(y)| — o(y)) define con-

x e X Q v e Y a
vex left-continuous semimodulars in X*, respectively Y* (see § 2). Kow, 
let T  be a linear mai) of X Q in Ya, then the formula (T*y*)(x) =  (y*T)(x) 
for x e X Q defines a linear operator from Y* to X*, called the adjoint 
operator to T. We shall prove the following
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T h e o r e m  4.1. (a) I f  T : X e-+ Y a is strongly (g, a)-bounded, then T *: Y* 
->X* is strongly (о*, g)-bounded.

(b) I f  T : X e-^ Y a is a (g, a)-contraction (see §3, Def. 3.1 and con- 
‘ dition (B2)), then T *: X*->X* is a {в*, g*)-contraction.

Proof. If T : X e-> Y a is strongly (g, cr)-bonnded with constants h >  0 
and M  >  0, i.e. ofkT x) <  M g(x) for all x e X e, then

*
Q T*y* =  sup Г y*{Tx) -  e(Æ)j <  sup y*{Tx) -  - i -  afkTx)

1
sup {y * {y )-a i

yeTXç
* / и<7 (У >

which proves that T* is strongly (a*, p*)-bounded with constants h/M  
apd IjM . This proves both (a) and (b).

R em ark  4.2. The resnlt above makes it possible to define some cat­
egories of modular spaces in analogy to the known categories of normed 
spaces, where as morphism one takes continuons linear operators or 
contractions. Namely, taking as objects all real modular spaces X Q with 
convex modulais g, we obtain a category Mdb taking as morphism the 
strongly (g, unbounded linear operators, and a category Mdx taking as 
morphism the (g, a)-contractions. Associating with every X g the conjugate 
space (with respect to the norm || ||e) X* =  f* (X e) and with linear operators 
T, the adjoint linear operators T* is a contra variant functor
in each of the categories Mdb and Mdx.

References

[1] J .  M usielak, Approximation by means of bimodular norms, Proceedings Intern 
Confer, on Constructive Function Theory, Varna, May 19-25, 1970, 235-238.

[2] —, Modular spaces, Poznan 1978 (in Polish).
[3] — and W. O rlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
[4] —, —, Some remarks on modular spaces, Bull. Acad. Polon. Sci., Sér. sci., math., 

astr. et phys. 7 (1959), 661-668.
[5] H. N akan o , Generalized modular spaces, Studia Math. 31 (1968), 439-449.
[6] W. O rlicz, A note on modular spaces. Bull. Acad. Polon. Sci., Sér. Sci. math., 

astr. et phys. 9 (1961), 157-162.

IN S T IT U T E  O F M A TH EM A TIC S 
A. M IC K IE W IC Z  U N IV E R S IT Y  
Poznan


