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Linear operators in modular spaces

Abstract. The problem of modular convergence in a modular space and ofsmodular
continuity and boundedness of linear operators between such spaces is studied. Adjoint
linear operators are also investigated.

§ 1. Modular convergence. Let X be a real vector space. A pseudomodu-
lar in X is a functional ¢: X—[0, -+-oc] such that ¢(0) =0, o( —2) = o(x)
and p(ax+By) < o(z)+o(y)for o,y e X, a, § >0, a+ p = 1. If, moreover,
elaz+ By) < ap(x) +Be(y) for such z,y, a, B, then o is called a convex
pseudomodular. If o(x) = 0 implies & = 0, then o is called a modular.
If p(ax) = 0 for all @ > 0 implies » = 0, we shall say that o is a semi-
modular. If a pseudomodular p satisfies the condition lim p(ax) = o(x) for

a—>1—

all z € X, it is called left-continuous or normal (for this terminology, see [2],
Pp. 5 and 9; or [3], pp. 661-663, [5]1, pp. 439-440). The vector subspace
X, ={xeX:p(ax)>0 a8 a—>0+} of X is called a modular space; if o is
a pseudomodular (a semimodular), then |z|, =inf{u >0: o(z/u)< u}
is an F-seminorm (an F-norm) in X,, and if it is a convex pseudomodular
(a convex semimodular), then [zll, = inf{u > 0: o(x/u) < 1} is a seminorm
(a morm) in X,, equivalent to | |,. Moreover, if |#|, <1 then p(a)< |#l,
and if Jjzfl, < 1, then o(x) < |l@ll,. If ¢ is a left-continuous eonvex pseudo-
modular, then the conditions ¢(x) <1 and |lxf, <1 are equivalent for all
z e X, (see [2], pp. 6 and 10, or [3], p. 52, [4], p. 662, and [1], p. 235).

‘Let (z,) be a sequence of elements of the modular space X,; (#,) is
convergent in the norm ||, (or [/ [,) to an element z € X, if and only if
e(a(wn——w))->0 as n—oo for every a > 0 (see [2], p. 7, or [4], p. 662).
There is also a notion of modular convergence (briefly p-convergence):
(®,) is called modular convergent (o-convergent) to  if there exists an a > 0
such that g (a (s, —))—0 as n—>oco; we write it 4,~> z (see [3], pp. 50-53).
Obviously, convergence in norm in X, implies o-convergence to the same
limit. The converse implication does not hold in general, as may be shown
by easy examples of Orlicz spaces. Namely, let ¢ be a g@-function (i.e.
9(0) =0, (u) >0 for u >0, @(u) is non-decreasing and continuous,
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p(u)—>oco as u——>oo)\, and let L?(0, 1) be the respective Orlicz space, that
) 1

is, the medular space X, with the modular o(x) = f fp([w(t)|)dt. Then
]

o(®) < oo implies ¢(22) < oo for all # € X, if and only if ¢ satisties the fol-
lowing condition (4,) for large w: there ewist positive constants k and u,
such that ¢(2u) < ke{u) for all w > u, (see e.g. [2], pp. 13-14). If (4,)
does nct hold, then we may choose a function () = 0 such that ¢(z) < oo
and p(2x) = oo, Taking a,(t) = z(t) if #(f) <n and x,(¢) = 0 if () > n,
one may easily check that o(x, —x)—0, but 9(2(99"——{0)) = oo for all fh,
and so @,—> @, but (z,) does not converge to # in norm. One may show more,
namely

ProrosrrioN 1.1. Let X, = L%(0, i) be an Orlicz space with ¢ not sat-
isfying (4,) for large w. Then there exists ¢ sequence (x,) of elements of X,
which is o-convergent, but contains no subsequence convergent in the norm of X ,.

This follows immediately since in the converse case, taking #,> & in
L?(0,1) and an arbitrary subsequence () of (z,), one could extract a norm-
convergent sequence from (2,,), and this would imply ®»,—x in the norm
of L¥(0,1).

Now, let p be any pseundomodular.

DEFINITION 1.2. A set A < X, is called p-bounded if for any bequence
of elements z, € A and any sequence of numbers ¢,~>0, there holds ¢z, — 0.

We shall examine the connections between the following conditions
for a set 4 < X,:

(a) A 48 p-bounded,

(b) there exist positive constants M and k such that o(kx) << M for
all z e 4, : :

(e) there exists a positive constant k such that o(kx) <1 for all x e A,

(d) there is a positive number K such that |z, < K for all z € A,

(e) for every sequence of elements z, € A and any sequence of numbers
e,—0, there holds o(s,x,)—0.

PRrROPOSITION 1.3. If o is convex, then all conditions (a)—(e) are pairwise
equivalent. In the case of general pseudomodular o, there hold the implications
(e) = (a) =(b) =(c).

Procf. (a)=(b). Suppose that (a) is satisfied, but (b) does not hold;
then there exists a sequence of eclements z, € A such that o(z,n~%) >1
for #» =1,2,... Taking ¢ > 0 in such a manner that o(az,n ')—0 as
n—oo and an > 1, we get

. 1
1< o(wn™") = 9(——~ awnfn"l)< o(az,n~")—>0,
an
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.

a contradiction. The implication (e)=-(a) and the equivalence (b)<(c)
are obvious. Now, let ¢ be convex. Let us suppose (¢) and let £,—0, @, € 4;
then ¢(e,, ) < —-
ficiently large. Hence (c) (e ) The equlvalence (b)<=(d) follows immedi-
ately from the definition of the pseudonorm | [,.

DEriNiTION 1.4. A set A < X, will be called o-closed if , € A, *, > 1,
imply @ € A. The smallest ¢-closed set containing the set 4 < X, will
be called the g-closure of A and denoted by A°.

Evidently, the empty set @, the whole space X, and finite sets A < X,
are p-closed. .

PROPOSITION 1.5. (a) A set A = X, is o-closed if and only if A = A°

) If A s g-closed, then it is closed with respect to the IF-norm
(or norm) in X.

(¢) A c A c A% where A means the closure of A with respect to the

F-norm (or morm) in X,

(kwn) -~ -0 as n->o0, because ¢,/k < 1 for n suf-

Let us observe that 4 set A closed in norm does not need to be p-closed.
Indeed, let X, = L™0, 1) with ¢ not satisfying (4,) for large «. By 1.1,
there exists a sequence (x,) of elements of X, such that @, € X,, but
no subsequence (z,, ) of (x,) is"convergent in the F-norm (or norm) in X,
Taking as 4 the set of all elements of the sequence (x,), we easily observe
that 4 is closed in the F-norm (or norm) but is not ¢-closed. Consequently,
we see also that none of the inclusions 4 ¢ 4 = A4° needs to be an identity.

ProrosiTION 1.6. If 0 is a pseudomodular and aset A = X, is o- bounded,
then its o-closure A° is a sum of countable family of o- bmmded sets.

Proof. Let, for every fixed a > 0, A2 denote the set of all z € X,
for which there exists a sequence x,e€d4d,n =1,2,..., such that
ela(@—wm,))—~0 as n—>oco. We have 4° = (J 4A¢ = |J 4, and thus it

a>0 nenN —
suffices to prove that the sets 4% are g-bounded for every a > 0. Let x, € A2
for n =1,2,... and let 0<¢e,—0. There exists a sequence y, €4,

n=1,2,...,such that g(a(mn—yn)) < 1/nfor n =1, 2, ... Hence and from
the properties of o we get

olae,x,) < Q(Zae T, —Y,)) + 0(2ae,y,)—>0 as m-—>oo.

DEFINITION 1.7. A set 4 = X, will be called relatwely p-compact if
every sequence of elements z, € A contains a subsequence p-convergent
to an element # e X,; A will be called o-compact if every such sequence
contains a subsequence p-convergent to an z e A.

It is easily observed that a set 4 = X, compact (relatively compact)
with respect to the norm in X, is also g-compact (relatively p-compact).
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Moreover, a set A < X, is p-compact if and only if A is both relatively
g-compact and g-closed.

ProproSITION 1.8. A relatively o-compact set A < X, is o-bounded.
Proof. Let z, € A and ¢,—~0 and let us write a, = o(¢e,2,). Let (n)
be any increasing sequence of indices. There exist a number a > 0, an
element v € X, and a subsequence (n;,) of the sequence (n,) such that
g(a(wnkl~w))—->0 as l->oco. Taking I so large that 2e, <a, We obtain

Uy, = €&y Ty) < ola(m,; 5 )) +e( 22, 2)—~0 as l—>oo.

Thus a,—0, and so A is g-bounded.

-

§ 2. Conjugate spaces to modular spaces. We give now some remarks
on linear continuous funectionals over a modular space. If f is a linear
functional over a modular space X,, then two notions of continuity of f
can be considered: this of continuity in norm and that of modular conti-
nuity.

DEFINITION 2.1. A functional f over X, is called modular continuous
(or briefly, o-continuous) if x,->>x implies f(»,)—f(z) for any « e X,.

If f is linear, then obviously e- continuity of f is equivalent to p-conti-

nuity at 0, i.e. to the condition ,-%> 0 implies f(#,)—0. Let X* be the con-
Jugate space to X, with respect to the norm in X, and let X,° be g-conjugate
to X, i.e. X;° is the space of g-continuous linear functionals over X,.
It is evident that X,° = X,. This inclusion may be proper, as shows the
example of an Orlicz space L*(0,1), where ¢ is an N-function (that is,
@ is convex g-function satisfying the conditions ¢(u) Ju—>0 as u—0, o(u)lu
— o0 a§ #—>oo) not satisfying the conditien (A4,) for large u (see [4], p. 664).
In the following, the elements of X, will be denoted by a, a7, ete.

Let us remark that a linear functional #* over X, belongs to X if
and only if there exists a constant K > 0 such that [2*(#)] < K (o(2)+ 1)
for every # € X,, in the case of convex g (this is also true for s-convex
modulars g; see [6], p. 159). The right-hand side of this inequality cannot
be changed in general to Ko () since taking e.g. X = R and ¢(z) = 2% »
defined by z*(x) = @y with arbitrary y e R belongs to X, but does not
satisfy the inequality |o* (@) < Ka?.

H. Ngkano defined in the space X, a conjugate semimodular ¢* to
o ([6], p. 442) by means of the formula

o (%) = su};)(w* ()] — o (@)
and has shown that if ¢ is a pseudomodular in X,, then o¢* is a convex
left-continuous semimodular in X,. Hence, supposing o to be convex
semimodular, one may define two norms in the conjugate space X,. The
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first one is the norm of a linear continuous functional 2* over a normed
space <{X,, || [l,>:

%
I#*ll; = sup |&*(x)],
llall <1

and the second one is the norm defined in XZ‘ by means of the modular o*:
™ l,» = inf {u > 0: o (2" /u) < 1}.

The following inequalities hold. .
PROPOSITION 2.2. Let ¢ be a conver left continuous semimodular. Then

le*llps < o™y < 20"l for every a* e X .

Proof. We have, by left-continuity of o*, that o*(2*/llz*|,.) < 1
for every «* € X,. Moreover, by our assumptions the inequalities flell, <1
and o(x) < 1 are equivalent. Hence

fl* /Nl e

lo = sup 12" (@)] < sup (o(@)+ (=" /lo*]l)) < 2

o(r)<1 e(z)<1 _
and the right-hand side inequality is proved. In order to prove the left-hand
side inequality, we shall prove first that for every a* e X; with [lo*|¥ <1,
we have

(+) " (@") = sup (=" (@) — o()).
We have
0" (@") —maX(fl}gl(lw )| — e (@), (sl)lfl(xx*(wn—e(w))),

thus it suffices to préve that sup (Iw* ()] — g(w)) < 0. If po(w) >1, then

flell, < (m). and thus oo
(Sl)lpl (" ()] — o(@)) < (SHP (™ 15 e, — o ()} < SH>P (lwll, — o (2 )) <0.

Applying equality (-+) and the inequality ¢(x) < |lz], for ¢(x) <1, we get
o* (@ /la*f) = sup (|o* (@)|/I2"[; — e()) < sup (Il —e(@)) <1,

ex)<1 . ()<l
and thus the inequality [l2*],. < lz*|; holds for every «* e X,.

ExampLE I. Taking as X the space of all Lebesgue measurable, almost
everywhere finite functions in the interval [0,1] and putting e(x)
1

= [p(l@(#)|)dt with an N-function ¢ satisfying the condition (4,) for large u,
0

we have X, = L°(0,1) and a*e X, are exactly of the form &”(x)
1

= ofw(t)y(t)dt with y e L?" (0, 1), where ¢*(u) = sup (uv —p(v)) for u>0
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is the function compl(,mentmy to ¢ in the sense of Young. Moreover,

we have then o* (#*) = f(p (ly@))at and |l5*), = [l&"|; .

§ 3. Modularly continuous and bounded linear operators. Let X, Y be
real vector spaces, ¢ a pseudomodular in X, ¢ a pseudomodular in Y, and
let X, Y, be the respective modular spaces. Let T': X,~ Y, be a linear
map of X, in Y,. Then .

DrriniTION 3.1. 1" will be called (g, o)-continuous if x, € X, », >,
imply T, Tx, and T will be called (g, 0)-bounded if it maps o-bounded
sets in X, on o-bounded sets in Y,. T will be called a (o, o)-contraction if
o(Tx) < go(w) for all we X, and a restricted (g, o)-contraction if o(Tx)
< o(») for all » € X, satisfying the inequality o(2) < 1.

Obviously, there is in general no inclusion between the set of all
(0, 0)-continuous linear maps of X, in Y, and the set of all continuous’
linear maps of the normed space (X, || [[,> in the normed space {Y,, || [l,>.
As regards bounded operators, there holds ,

ProrosiTioN 3.2. If o and o are convex pseudomodulars, then a linear
operator 1': X,— Y, is (o, o)-bounded if and only if there holds the
Jollowing condition:

(B) There exist positive constants k and M such that o(kT») < M ||z,

Jor all © € X, satisfying the inequality o(x)<<1.

Proof. Let A = X, be g-bounded and let (B) hold. Let », € 4, ¢,—0,
0 <e, <1; then of l/snwn —0, by 1.3. Hence Hl/an 2,ll, < 1 for sufficiently
large n, and $0

o (ke, Tw) < Ve,o(kTV e,,) < Ve, MIIV e, < Ve, M—0

as n->oo. Congequently, enTmnf> 0, and so 7T is (p, o)-bounded. Conversely,
let us suppose that T is (g, o)-bounded. Since the set A = {x/[z|,: » € X}
i8 p-bounded,so T(A) is o-bounded. By 1.3, there are k, M > 0 such that
o(kTx) < M for all € A. Thus

o (kTa) < o (KT (@/I2],) < Mol

for all # € X, such that |z, < 1. Thus we proved (B).

Prorosition 3.3. If p is a convex lefi-continuous pseddomodular and o
i8 an arbitrary pseudomodular, and if there holds the condition

(B,) there ewist positive constants k and M such that o(kTx) < Mo(x)

for all x € X, satisfying the inequality g(m) <1,

then condition (B) s also salisfied.

Let us observe that in general conditions (B) and (B,) are not equiv-
alent. To show this we take as X, an Orlicz space L”(0, 1) generated by
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an N-function ¢ not satisfyino' the condition (4,) for large u, and as Y,
the space of real numbers, o(z f @ (1@ ()]} dt, o(y) = |y|. Then there exists

a linear funectional T over XQ Wh1ch is continuous with respect to the norm
Il ll, (and thus satisfies (B)), but is not e-continuous (see § 2), whence it
cannot satisfy (B,).

We shall also deal later with a more restrictive condition than (B,):

(B,) there exist positive constanis k and M such that o(kTx) < Mo(x)

for all z e X,
Linear operators satisfying (B,) will be calied strongly (o, o)-bounded.

If ¢ is convex, then the constant M in (B), (B,) and (B,;) may be
taken equal 1.

Let us still remark that if (X, [ |[> and <X, || {|> are normed spaces
and g(x)= |zl a(y)= [lly|ll, then every one of the conditions: (g, ¢)-bound-
edness of T, (B), (B,), (B,) is equivalent to continuity of 7 with respect
to the norms in X and Y. Moreover, from 3.1 and 3.2 it follows in general -

PROPOSITION 3.5. If o and o ave left-continuous, convex pseudomodu-
lars, then every linear restricted (p, o)-contraction T is a contraction with
respect 10 | [l If [l

Proof. Taking » € X, |lzll, <1, we get o(x) <1 and so o(Tx) < olx)
< 1. Consequently, [T@|,<1. Hence |Tz|, < |lo}, for all » € X,.

The converse statement to Proposition 3.4 is not true. As an example
it is sufficient to take X = Y = the space of real numbers, o(x) = $(e* — 1),
o{®) = %(e’”g—l) for > 0, and Tx= ». We have [z, = |»|/In 3 and |||,
= [wl/V'In 3, and so [ T#(,= |lz|, < llz|l,forall € X, but ¢(Tx) = o(2) > o(x)
and g(#) <1 for all 0 < x < 1. However, let us still remark that if we
take two Orlicz spaces L?(8) and L¥(8) over a set § with respect to an
atomless and infinite measure u, and we assume that L7(S) < L¥(8),
then supposing the identity map 7' of L?(S) in L¥(S) to be a contraction
with respect to the norm, it is also a (g, g)-contraction. It is sufficient
to show that y () < ¢ (%) for all w > 0. However, in the other case we would
have y(u,) > ¢(u,) for u,> 0. Choosing a set A = § such that u(4)
= 1/p(u,) and z,(s) = u, fors € A, x,(s) = 0for s € S\ A, we then obtain o (=)
=1, 0(x)) < 1 and so |m,ll, =1, [[oll, <1, a contradiction.

3
§ 4. Adjoint operators. Let X, and Y, be two modular spaces with
convex pscudomodulars ¢ and g, and let X* and Y7 be the conjugate spaces
W1th respect to (X, || [l,> and (¥, n ors respectlvelv Then the formulae
0" (#%) = sup (ja* (x)| — o(@ )) and o*(y*) = sup(]J (y)l —o(y)) define con-

:reX

vex left continuous semimodulars in X , respectnely Y: (see §2). Now,
let T be a linear map of X, in Y, then the formula (T%y*)(x) = (¥*T)(z)
for & € X, defines a linear operator from Y, to X;, called the adjoint
operator to T. We shall prove the following
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THEOREM 4.1. (a) If T': X,— Y, is strongly (o, o)-bounded, then T*: Y7
—X; is strongly (¢*, o*)-bounded.

(b) If T: X,—~ Y, is a (g, o)-contraction (see §3, Def. 3.1 and con-
dition (B,)), then T*: Yi—~X; i3 a (o, o*)-contraction.

Proof. If T: X,— Y, is strongly (g, o)-bounded with constants & >0
and M >0, ie. o(kTx)< Mp(x) for all »e X, then

* k * % k k
0 (Tn’Ty) =sup( o Y (Tw)—e(w)) sup(ﬂ *(Tw)—

xeX xeX

i (kTw))

1 * *
=— sup (¥ (y) —o(y)) < — " (¥"),

M yerx, M

which proves that 7™ is strongly (¢* ¢*)-bounded with constants %/M
and 1/M. This proves both (a) and (b).

Remark 4.2. The result above makes it possible to define some cat-
egories of modular spaces in analogy to the known categories of normed
spaces, where as morphism one takes continuous linear operators or
contractions. Namely, taking as objects all real modular spaces X, with
convex modulars g, we obtain a category Md, taking as morphism the
strongly (¢, o)-bounded linear operators, and a category Md, taking as
morphism the (g, o)-contractions. Associating with every X, the conjugate
space (with respect to the norm | |,) X, =X o) and with hnear operators
T, the adjoint linear operators T* = f (), r* 1s a contravariant functor
in each of the categories Md, and Md,.
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