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1. Introduction and Preliminaries. Duren, Hengartner and Laugesen [15]
has given the concept of multivalent harmonic functions by proving argument prin-
ciple for harmonic complex valued functions. Using this concept, Ahuja and Jahagiri
[8], [9] introduced the family H(p), p € N = {1,2,3,...} of all p-valent, harmonic
and orientation preserving functions in the open disc A = {z : |z] < 1}. A function
f in H(p) can be expressed as:

f=h+g (1.1)

where h and g are p-valent analytic functions in the unit disk A and of the form:

h(z) = thzk; hp =1 and g(z) = ngzk; lgp| < 1.
k=p k=p

Let S3;(p, ), Ku(p, o) and Qu(p, o) be the classes of functions f = h+g € H(p)
satisfying the conditions
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respectively for each z = re??, 0 < < 27rand0<r <1, a(0 < a < 1).
Whereas TH (p) denote the subclass of functions f = h +¢g € H(p) such that

Y= = 3 IhuleFand (s Z|gk|z g9l < 1. (1.2)
k=p+1
Hence, we denote TS5 (p, o) = S5 (p, ) NTH (p), TKH(p, a) = Ky (p, o) NTH(p),

and TQp (p, ) = Qu(p, ) N TH(p).
We formulate following lemmas from the work of Ahuja and Jahangiri [7, 8, 9,

10]:

LEMMA 1.1 Let f = h+7 given by (1.1) satisfies

= k—pa >k + pa
> Il + Y x| <1 (1.3)
L) T i)

for p > 1,0 < a < 1, then f is sense preserving, p-valent and f € Si(p, ).
Furthermore, f = h+g € TS} (p, @) if and only if (1.3) holds.

LEMMA 1.2 Let f = h+ 7 given by (1.1) satisfies

M ]{W|hk|+zwgk|<l (1.4)

2(1 — 2(1 —
Mt ¢ o p(l-a)
forp > 1, then f € Ky (p,a). Also f = h+g € TKg(p, @) if and only if (1.4) holds.

LEMMA 1.3 Let f = h+ 7 given by (1.1) satisfies

o0

>

k=p+1

forp>1,0< a<1,then f € Qu(p, a). Also f=h+9€TQu(p,a) if and only if
(1. )holds.

ik k|+z Sl <1 (1.5)

p(

Recently several fractional calculus operators have found their applications in
geometric function theory. Many research papers [11],[12],[13],[14] on harmonic func-
tions defined by certain operators such as Dziok and Srivastava operator [5], Hohlov
operator [19], Carlson and shaffer operator [1] have been published.

Motivated with their works, we intend to apply m-tuple integral operator [17,
18] which is a generalized form of previously introduced operators in the space of
analytic functions and is defined as follows:
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DEFINITION 1.4 Let h be an analytic function in A form € N = {1,2,3,...}, 6; €
Ri,0; € R U{0},; € RVi=1,2,...,m, an m-tuple integral operator, by means
of m-repeated Erdélyi-Kober integral operators is defined as:

Iy o [HI ] h(z), Y 6> 0, I8 Oh(z) = h(z); z€ & (16)

=1

where IE"S is the Erdélyi-Kober integral operator [16], defined for 8 € Ry,v € R
as:

I5°h(z) = ﬁf (1— )27 ""h(2t?)dt, § € Ry and I5° h(2) = h(z).

The image of power function 2* [17, 18] under the operator defined in (1.6) is
given as follows:

Ig:fr),’l(éi)zk = \p.2" (1.7)
where
(w +1+ ﬁ_)

vi+6;+1+ )

1:[ ( (1.8)
for each k > mazx [—0;(v; + 1)].

<is<m

In the subsequent work, we use Wright generalized hypergeometric function [3, 16]
which is defined as follows:

DEFINITION 1.5 Let a; (i =1,2,...q), b; (i = 1,2, ...s) be positive real numbers and
s q
A; (i=1,2,...q), B; (i = 1,2, ...s) be positive integers such that 1+ > B; — > A4; >
i=1  i=1
0, a Wright generalized hypergeometric (Wgh) function:
sl(ar, A1), s (ag, Ag); (b1, B1), oy (bs, Bs); 2] = g Vs[(ai, Ai)1,q; (bi, Bi)1,s; 2]

is defined as:

q¥s[(ai, Ai)1,q; (b, Bi)1,s; 2] = Zizl , €N (1.9)

which is an analytic function in the unit disk A if ¢ = s+ 1. Also for positive real
a and for positive integer A [[6], 240, Eq. (1.26)]:
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B a a+1 at+A—-1 kA
I(a + kA) = I(a) (A)k< - )k (A)k(A) k=0,1,2,..
when used together with the result [[4], p.57]:

et e o e-ras.

s q
we observe that at z = 1 the series (1.9) converges absolutely for > b, — > a; >
=1 =1

In particular if A4y =... = A, = By = ... = B, = 1, we have

where (F,((ai)1,q; (bi)1,5:2) = ¢Fs(a1,...aq;b1,....bs; 2) is the generalized hyperge-
ometric function defined as:

The symbol (\),, is called Pochhammer symbol defined as:

_ (A +n)
(Mn = Ty

We shall also make use of the Hadmard product (convolution)
converging in A and defined as:

oo oo o0
thzk * ngzk = thgkzk.
k=0 k=0 k=0

=AXA+1)...(A+n—-1)and (\)p = 1.

" *6f two power series

2. A Multivalent Harmonic Function. In this section, a multivalent har-
monic function belonging to the class H(p) involving m-tuple integral operators
defined as in (1.6) with the use of (1.7) is defined first and then some of its special
forms are also mentioned. Some notations and identities which we use throughout
the work are also given.

DEFINITION 2.1 Let f(z) be given by (1.1) and with the parameters m € N =
{1,2,3,..}, 6,0 € Ry,0;,0, € Ry U{0}, v, > —1,¥Vi = 1,2,...,m, |o] < 1, a
multivalent harmonic function in the class H(p) as an operator W f(z) is defined
as:
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WHz) ~W |: (Vl)7(ﬂii)7;(,y72, (67) :| £(2) (2.1)

vi),(8; (u)(ég)
yfgl, O + I a(e)

= Z hkz +JZ kgkzk
k=p p

— Z@kzk * thzk + az%zk * igkzk
k=p k=p k=p k=p

- [Zue)oe+ 5 o )} +ate)

where
m <Vi+1+%) m F(z/g+1+§) .
1;[ (u2+5+1+ ) ,1;[11“ 1/—1—5—1—1—1—5/), (22)
Uy(2) = mi1 P ((1,1), (z/1+1+6l 51)1m,(u1+5 +1+E ﬂz)lm’ 2),
V(2) = 1V ((1,1), (v +1+6’7ﬂ’)1m’(y +6/+1+ﬂ”ﬂ’)1m’ 2); (2.3)
and
D (vt 1+ E)T (vik 041+ 2)
& £1 @-+5+1+ﬁ) (m+1+§)
n (14 5T (48 +1+ %) o

1ﬂFQ/+&+1+ﬁJ (v+1+%)
are non-increasing functions of k(> p) such that 0 < 0 < 0,11 < 6, = 1 and
0<0,<0,.,<06,=1
In particular, taking 6, =1 =pgl,v; =a;—1—p, v, =c¢;—1—p, 0; = b;—ay, 0, =
d; —¢; for i = 1,2, ...,m, the operator W f(z) reduces to Qf(z) which is Dziok and
Srivastava type operator involving generalized hypergeometric functions:

ﬁll: i yl) (5)h

i=1 i=1

m

9(2) (2.5)
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= 2PFy(2) * h(z) + 02PF|(z) % g(2)

where

Fy (Z) ~ m+1Fm((17 (ai)l,m; (bi)l,m; Z),

Fi(2) & a1 Fp (1, (¢i)1,m5 (di)1,ms 2)- (2.6)

Ifwetake m =211 =a1—1—p,va=b1—1—p, 01 =1—ay, 02 =c1 —by; V| =

ag—1—p,vh=bo—1—p, 8 =1—as, 0y =co—byand B; =1=pi(i =1,2), the

operator W f(z) reduces to HP f(z) which is Hohlov type operator involving Gauss
hypergeometric functions:

HP f(z) = — L) I(m,(éi)h(z)+UF(;()CFz()bQ)Iyz;),(é;)g(Z) 27)

= 2P oF1(a1,b1;¢152) % h(2) + 02P o F|(ag,ba; ca; 2) * g(2).

Takingm =1, v=a1—1—-p,d =c1—a1,V =as—1—p, 8 =cy—azsand B; =1 =
!, the operator W f(z) reduces to L f(z) which is Carlson Shaffer type operator
involving incomplete beta functions:

LPf(z) = ?EZB Iill—l—p,m—m h(Z) + O.E((gz)) Iizl—l—p,@—azg(z) (2.8)

= 2P oF1(1,a1;¢152) * h(2) + 02P o F| (1, ag; co; 2) * g(2).

For convenience throughout the work we use following notations:

p+n—1) 1 p+n—1) 1
\Ijn ~ m+1\Ijm((na 1)> (V2+1+%3 E)l,m; (Vl+5l+1+(671)’ E)l,m; ]-);
/ / (ern*l) 1 /st (ern*l) 1
v, ~ m+1\pm((nal)7(yi+1+Taﬁ)l,m;(yi‘i'di_"l'i'Taﬁ)l,m;l)

(2.9)
for n = 1,2, 3, ... which are the representations of absolute convergent series of

m m
type (1.9) at z =1 provided > d; > n and >_J; > n respectively.
i=1 i=1

In the proof of our theorems, we use some identities which we prove in the form of
following Lemma:

m m

LEMMA 2.2 Let ¥,, ,U! be given in (2.9) with the conditions > d; >n, >0, >n
and Ay, A}, in (2.2), then for n =1,2,3, ...

=1 =1
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o0

1
TP‘I’” = > (k=p-n+2)n16 (2.10)
k=p+n—1
and
1 oo
)\—/\If’ = > (k—p—n+2)n_16; (2.11)
k=p4+n—1

ProoOF Using the series expansion (1.9) for ¥,, given in (2.9), A, given in (2.2) and
Oy in (2.4), we get

8

1 B Pvi+1+(+n—1+k)/B:)T(vi +di +1+p/Bi)
30 = ;F”Jfknr vi+0i+1+(p+n—1+k)/B)0(vi +14p/B)T(k+1)
B Zk+1 Pvi+1+(@+n—1+k)/B:)T(vi +di +1+p/Bi)

- nt LD + 0+ 1+ (p+ 1 — L+ k)/B)D(vi + 1+ p/B:)

8

k=0
= Z (k—p—n-‘rQ)n—lak
k=p+n—1
which proves identity (2.10). Similarly, identity (2.11) can be proved. =

In particular, taking 3; = 1= 6l,v; =a;—1—p, v, = ¢;—1—p, 6; = b;—a;, 5} =
d; — ¢; for (i =1,2,...,m), and using relation (1.10), for n = 1,2,3, ..., we get

1 1)n— -
/\7\1}71 Jn— 1H a) LF,, for Z(b —a;)>n (2.12)
p n—l1 i=1
and
L\Iﬂ _ (1)W—1ﬁ (Ci)n—l F’ for i((ﬂ - Ci) >n (213)
A" e (di)n—1 " pcil
where
Fo= mpiFn((n,(ai +n—1)1,m; (b +n—1)1m;1)
and

F’r/L ~ m+1F‘ﬁ~b((n7 (CZ‘ + n — 1)1,m§ (dz + n — 1)1,m; 1)

We also have the following well known result:

oFi(a+k,b+kic+kil) = (c—a(f)]g—k)kQFl(a’b; 1), (c—a—b—k) >0 (2.14)
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for k=0,1,2,... and

T(c)T(c—a—10)

2Fi(a,byc;1) = T(c—a)l(c—b)’

(c—a—0)>0.

3. Main results. In this section, some inequalities for W f(z) to be in the
classes S¥(p, ), Kp(p, o) and Qp(p, ) as sufficient conditions in terms of Wgh
functions are examined and proved . Some consequences of these results are also
derived as their corollaries. The results are given in the form of following theorems:

THEOREM 3.1 Let f € H(p) and W f(z) be given by (2.1) under the same parame-

ter conditions along with  d; > 2, >~ 4; > 2 and if inequality
i=1 i=1

1
S+ lol \Ifg+|a\p<1+a> U<p(l-a) (31

1

Ap Ap
holds, then W f(2) € S} (p, o).

PRrROOF To prove the theorem it is required by Lemma 1.1, to show

Spo= Y (k—pa)|hel0 + o> (k + pe)lgrl6; < p(1 - a). (3.2)
k=p+1 k=p

Since f € H(p), we have |h;| < 1 and |gg| < 1, k > p. Hence, by simple arrangement
of terms in (3.2), we get

S1< Y. (k=p)s+p(l—a) Y Oc+o]> (k=)o) +|olp(1+0a)> 6} (3.3)
k=p+1 k=p+1 k=p k=p

Now applying identities (2.10) and (2.11) for n = 1and 2, to the right hand side of
(3.3), we see that

1
Ul +|olp(l+a)— X U < p(l1—a) if (3.1)

1 1
51 < - ¥2tp(l-a) =V —p(l-a)+ |<7|>\,
P

Ap
holds. This proves the result. ™

On using (2.12) and (2.13), Theorem 3.1 yeilds following result:

COROLLARY 3.2 ([ 1]) Let f € H(p) and Qf(z) be given by (2.5) along with
Z(b a;) > 2 Z( ; — ¢;) > 2 and if inequality

=1
m

Hb F2+p<1—a)F1+|o|Hd Fj + |olp(1+ ) F] < 2p(1 = )

holds, then Q(f) € S¥;(p, o).
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Again, Corollary 3.2 for m = 2 together with the result (2.14) yeilds:

COROLLARY 3.3 Let f € H(p) and HP(f) be given by (2.7) along with
(61—a1—b1) > 1, (Cg—ag—bQ) >1

and if inequality

(lel
+p(l —« Fi(ay,by;er;1
[(cl—al—bl—l) p( )]2 1(a1,bi;c151)

azbs
+|0‘ |:(CQ —ag — b2 -1

holds, then HP(f) € S5 (p, «).

) -l-p(l +C¥):| 2F1((127b2;02; ].) < 2p(1 — a)

Further, on using summation formula: o F3 (a, 1;¢; 1) = %, (c—a) > 1, Corollary
3.3 yields the following result:

COROLLARY 3.4 Let f € H(p) and LP(f) be given by (2.8) along with (¢; —aq) >
2, (c2 — az2) > 2 and if inequality

a1 +p(l —a)(er — a1 — 2)
(01 — a1 — 1)(01 — a1 — 2)

a2 +p(1+ a)(c2 — a2 — 2)
(02 — a2 — 1)(02 — a2 — 2)

(c2—1) < 2p(1—0)

] (ci=1)+]o| [

holds, then LP(f) € S5 (p, @).

THEOREM 3.5 Let f € H(p) and W f(z) be given by (2.1) under the same parame-

>~ 6! > 3 if inequality

ter conditions along with > d; > 3,
= i=1

K2

1 1 1 1 1
—U3+{(2—a)p+1}—Vo+p* (1-a) — V1 +|o| — Vs+|o|[{(2+a)p+ 1} — V)
" N X x X
2 1 2
+lolp? (1 + oz)/\—/\Ifl <2p°(1 — ) (3.4)
P
holds, then W f(z) € K (p, a).

Proor To prove the theorem it is required by Lemma 1.2, to show

Sy =Y k(k —pa) il + [0 > _k(k + pa)lgel0) < p*(1 - a). (3.5)
k=p+1 k=p

Since f € H(p), we have |hy| < 1and|gx| < 1, k > p. Hence, by simple arrangement
of terms in (3.5) and applying identities (2.10) and (2.11)for n = 1,2 and 3, we get
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S < Z k*0,—pa Z kO+|o|p® (1+a)+|o| Z k*0),+|o|pa Z k0,

k=p+1 k=p+1 k=p+1 k=p+1
= D lk=p)(k—p—1)+2p+1)(k—p)+ "0 —pa Y (k—p)os
k=p+1 k=p+1

—p’a Y O +lolp*(1+a)

k=p+1
Hol Y [(k=p)(k—p—1)+2p+1)(k—p)+p*|04+|olpa > (k—p)Oi+lolp’a > 6
k=p+1 k=p+1 k=p+1
= Y (k=p)(k—p—1)0+{2—a)p+1} > (k—p)fstp*(1—a) > O
k=p-+2 k=p+1 k=p+1
Holp* A+ a)+lol | D (k—p)(k—p— 10, +{2+a)p+1} > (k—p)b;
k=p+2 k=p+1
+p?(1 4 ) Z 0;.
k=p+1
1 1 ) 1 ) 1,
= U+ {2-a)p+ 1}V +p (1 —a)—V; —p°(1 — ) + |o| V3
A A A N,

1 1
Hol{2+a)p+ 1} 55+ p*(1+ ) 5 ) <p?(1 — ) if (3.4) bolds.
P P

This proves the result.

On using (2.12) and (2.13), Theorem 3.5 yields following result:

COROLLARY 3.6 Let f € H(p) and Qf(z) be given by (2.5) along with > (b; —a;) >

i=1
m

3,5 (d; — ¢;) > 3 and if inequality
i=1



P. Sharma 97

i ai(ai =+ 1)

ci(ci + 1)

LG, st

m ¢
lo{p(2 + o) + 1}’HEF2/ +o|p*(1+ @) F < 2p%(1 - o)
i=1""

holds, then Q(f) € Kg(p, a).
Again, Corollary 3.6 for m = 2 together with the result (2.14) yeilds:

COROLLARY 3.7 Let f € H(p) and HP(f) be given by (2.7) along with (¢; —ay —
b1) > 2, (3 — az — ba) > 2 and if inequality

a1b1
(Cl — al —b1 —1)

) )

2
1-— F bi;crsl
c1—ai — b1 —2)2 i a):|2 1(a1, biser; 1)+

a2b2
(CQ*agfbgfl)

1
popsy wi W CLCR LIRS

0] [( (a2)2(b2)2 +p%(1 +a):| 2 Fi (a2, ba; ;1)

<2*(1-a)
holds, then H?(f) € Ku(p, a).

Further, on using summation formula: 2 F3 (a, 1;¢; 1) = % (c—a) > 1, Corollary
3.7 yields the following result:

COROLLARY 3.8 Let f € H(p) and LP(f) be given by (2.8) along with (¢; —ay) >
3, (c2 — az) > 3 and if inequality

T 2 —a) s )|

{(01—(11—3)2 Tp )+1}(01—a1—2) +p7(1 )} (C1—a1—1)+

o gy + )+ Dy )|
<%P(1-a)

holds, then LP(f) € Kg(p,a).

THEOREM 3.9 Let f € H(p) and W f(z) be given by (2.1) under the same parame-
ter conditions along with 251- > 2, > 0; > 2 and if inequality

i=1 11

1
lI/erp Vi ol ‘I"2+|0|p ¥ <p(2—a) (3.6)

Ap Ap
holds, then W f(z) € Qu(p, c).
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PRrOOF To prove the theorem it is required by Lemma 1.3, to show

ZjWM%+wQ}mwk p(1 ). (37)

k=p+1

Since f € H(p), we have |hi| < 1and |gx| < 1, k > p. Hence, by simple arrangement
of terms in (3.7) and applying identities (2.10) and (2.11) for n = 1 and 2, we get

Sz < Z (k—p)0r +p Z 9k+\0|2k p9'+|0|p29k
k=p+1 k=p+1 k=p =p
\I/+ 1\ +\|1\11’+|\1\I/’
ol— olp—
)\p 2 p)\ 1—P )\; 2 p)\27
< p(2 — o) if (3.6) holds.
This proves the result. n

On using relations (2.12) and (2.13), Theorem 3.9 yeilds following result:

COROLLARY 3.10 Let f € H(p) and Qf(z) be given by (2.5) along with) (b;—a;) >
i=1

2, Z(d —¢;) > 2 and if inequality

=1

T
HlT 2+PF1+‘U|H F2+|U|PF1\ p(2—a)
i=1 i= 1

holds, then Q(f) € Qu(p, ).

Again, Corollary 3.10 for m = 2 together with the result (2.14) yields:

COROLLARY 3.11 Let f € H(p) and HP(f) be given by (2.7) along with (¢; —aq —
b1) > 1, (2 — az — be) > 1 and if inequality

F(cl)I‘(cl —ay — bl — ].)
F(Cl — G,l)F(Cl — bl)

[a1b1 + p(e1 — aqr — by — 1)]

P(CQ)F(CQ — ag — bQ — ].)

b —ag —by—1 <p(2—
R R P S
holds, then H?(f) € Qu(p, a).
Further, on using summation formula: o F (a, 1;¢;1) = %, (c—a) > 1, Corollary

3.11 yeilds the following result:
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COROLLARY 3.12 Let f € H(p) and LP(f) be given by (2.8) along with (c; —a;) >
2, (ca — ag) > 2 and if inequality

(a1 —1)
(c1 —a1 —2)2

<p(2—a)

(2 —1)

+lo|[az + p(c2 — ag — 2)] (o—ar—2),

[a1 + p(e1 — ar — 2)]

holds, then LP(f) € Qu(p, o).

THEOREM 3.13 Let f € T'S§(p, ) and Wf( ) be given by (2.1) under the same
parameter conditions along with 2(5 > 1, 2(5 > 1 and if inequality

= =1

1
—v —\I/’ <2 3.8
50t ol (33)

holds, then W f(z) € S} (p, @).

PRrROOF To prove the theorem it is required from Lemma 1.1, to show

= k- pa > k+pa ,

Sy = ——|hy|O ——— gkl < 1. 3.9

D AP P L (39
_p+1 =

Since f € T'S}(p, @) we have again by lemma 1.1

p(l—a) p(l—a)

hi| < 77—k > d 7;k> .

o] (i —pa) FZPon lgk| < i T po) p

Hence, with the use of identities (2.10) and (2.11) for n = 1, we get

1
Z O + Z@k = 7\1/1 —1+ |0|X U4 < 1if (3.8) holds.
k=p+1 k=p

This proves the result. n

Similarly, if f € TKg(p, @) (TQm(p, o)) with the same hypothesis of Theorem 3.13,
inequality (3.8) ensures that W f(z) € Kg(p,a) (Qu(p,)) respectively.

As special cases of Theorem 3.13, we have following results:

Let f € TS}}(p, a) (TKgp(p, o)) (TQu(p,«)) and Qf(z) be given by (2.5) with

m

by —a;) > 1 Z( —¢;) > 1, inequality: Fy + |o|F] < 2 implies that Qf(z) €

Sia(p.0) (Kn(p,0) (Qu(p,a))
Let f € TS (p,a) (TKu(p, o)) (TQu(p,a)) and HP f(z) be given by (2.7) with

c1 > aj + by, ca > ag + by, if inequality: Il:gg)ra(f)lp(ii Zl) + o |F Ez F(I(E)?F(iz Zj; <2

holds, then H? f(z) € S§;(p, ) (Ku(p,a)) (Qu(p,)).
Let f € TSH(p, o) (TKp(p, o)) (TQu(p,a)) and Lpf( ) be given by (2.8) with

c1 > ay + 1, c0 > as + 1, inequality: (Cfc_l{;l_)l) + |g|(c262a 1_)1) < 2 ensures that

LPf(z) € Sp(p, @) (Ku(p,a)) (Qu(p, @))-
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