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Baire measurable solutions of a generalized
Gotab—Schinzel equation

Abstract. J. Brzdek [1] characterized Baire measurable solutions f : X — K of the
functional equation

fz+ f(@)"y) = f(2)f(y)

under the assumption that X is a Fréchet space over the field K of real or complex
numbers and n is a positive integer. We prove that his result holds even if X is a
linear topological space over K; i.e. completeness and metrizability are not necessary.
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For the first time, in connection with examining of subgroups of the centroaffine
group of the plane, the functional equation

(1) [+ f(@)y) = f(2)f(y)

has been studied by S. Gotab and A. Schinzel [3] in the class of continuous real
functions. In 1965 C.G. Popa [7] proved that every Lebesgue measurable real solu-
tion of (1) is continuous or equal to zero almost everywhere. Following this idea J.
Brzdek [2] showed that the same is true for each Christensen measurable solution
of the generalized Gotab—Schinzel equation

(2) flz+ f(x)"y) = f(x)f(y)

mapping a real or complex separable Fréchet space into the field of real or complex
numbers, respectively, where n is a positive integer.

J. Brzdek [1] proved also an analogous result for Baire measurable solutions of
the equation

3) fle+ f2)"y) = tf(x)f(y)
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mapping a Fréchet space over the field K of real or complex numbers into K, where
n is a positive integer and t € K\ {0} . To prove this fact he used the open mapping
theorem (see, for example, [5, 11.4]). We will show that it is enough to assume that
X is a linear topological space over the field of real or complex numbers; i.e. X
need not be complete metrizable. Thereby we must ”go around”the open mapping
theorem.

Throughout the paper N, R and C stand for the set of all positive integers, reals
and complex numbers, respectively. Moreover, we use some basic facts concerning
nets, which can be found in [4, Chapter I (3.10), p.14]. Here, we recall only that a
net {z, : ¢’ € ¥’} in a topological space X (where ¥’ is directed by the relation
<y/) is finer than a net {z, : 0 € X} in X (where ¥ is directed by <yx), if there
exists a function ¢ : ¥’ — ¥ fulfilling the following two conditions:

v for every og € X there is o(, € ¥’ such that ¢’ >x of implies ¢(c”) >x 0o;

v for every o’ € ¥’ we have z,(,) = 2.
To generalize the result of J. Brzdek [1] we need the following

PROPOSITION 1 (CF. [1, LEMMA 5]) Let X be a linear—topological space over K €
{R,C} and V C K. If g : X — K is a nontrivial continuous linear functional and
g Y (V) has a subset of second category and with the Baire property, then the set V
has a subset of second category and with the Baire property.

PROOF Let Y :=kerg. Then Y is a closed linear subspace of X and there exists a
point g € X \ 'Y such that g=}(V) = Vg +Y. Since Y is a linear—topological space
(with the induced topology), ¥ x K is a linear—topological space with the product
topology.

Define a mapping

h:Y xK> (y,r) > y+rzg €Y + Kuxg.

It is easy to see that h is a continuous linear bijection. We prove that H = h~! is
continuous; i.e. for every net {r, : 0 € £} C K and {y, : ¢ € £} C Y such that
limyexn(ryxo0 + Yo ) = 0 we have limyex (7o, yo) = (0,0).

To this end we prove that for each net S = {r, : ¢ € X}, there is a net
S" = {r, : 0’ € '} finer than S, such that

(4) either S’ is convergent or lim =0.

o'E€X Tyt

First consider the case, when there exists a net S’ finer than S such that r,» # 0
for each o/ € ¥'. If S’ is bounded, then S’ C {z € K : |z|] < M} for some M > 0
and {z € K: |z| < M} is a compact topological space (with the induced topology).
Hence there is a convergent net {r,~ : ¢’ € 3"} finer than S’. So assume that S’
is unbounded. Then, for each M > 0, there is ¢’ € ¥/ such that -1 < ﬁ Denote

7o
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e = 37 and apr = . Thus, for each ¢ > 0, there is ¢’ € ¥’ such that |a,| < e.

Define
YW ={(c"e): €>0,0 €Y, ay € {z€K:|z| <e}}.

The set X" is directed by the relation <s» given by
(0'1781) s (0'2,62) & 0] <sv o9 and g5 < €7.

Since the function ¢((0’,€)) = o’ is a nondecreasing surjection, the net {a,~ : ¢” €
2"}, where agr = ao for ¢” = (0’,€), is finer than {a, : ¢/ € ¥'}. Moreover, for
every € > 0 there is o’ € ¥’ such that a,r € {z € K : |z| < &} and, for 0/ >5» (¢/,¢),
asn € {z € K:|z|] < e}. Hence limgyres agrn = 0.

Next consider the case, when for every net S’ finer than S there exists o’ € X’
with r,» = 0. Denote ¥ = {0 € ¥ : 1, = 0}. We show that for every o € ¥ there is
& € 3 such that & >y 0. So take o € ¥ and define 3’ = {¢’ € X : ¢/ >y o}. Then
the set ¥’ is directed by the relation <x. Moreover, for each oy € X, there exists
oy, with o) >x o and o}, >x 0¢. Hence o’ >x o, implies ¢(o’) := ¢’ >x o{, >x 00.
Thus S’ is finer than S. Hence there is o € ¥ with r,; = 0. Since o >x o, for
each 0 € X, there exists ¢ € % such that & >y o. In this way we obtain that for
each op € X there is o9 € X such that ¢ >5 79 implies ¢(c) := 7 >5 79 >x 09-
Thus the net {r>: 0 € .} is finer than S. So we proved that for every net S, there
is a net S’ finer than S such that (4) holds.

If limyreyr o = 1 # 0, then we have limy /e 1o 29 = rxg and

Jim yor = lim ((ror2o + yor) = ror20) = —ra0.

= 0 we have

In the case where lim,/ex —-
-

T

1
lim r= lim (—(rorxo + Yo ) — x0) = —2
o ES Ty Yo U'EE’(TU/( o’L0 Yo ) O) 0
Since Y is a closed linear subspace of X, xg € Y. This is a contradiction. Thus
every net finer than S is convergent to 0. Hence lim,¢cx 7, = 0 and limyex 7529 = 0.
Consequently we obtain

li =1li — =0.
lim yo = lim((roo +yo) —70%0) =0
So we have limyexn(ry, ys) = (0,0), what ends the proof of continuity of H.

Since h is a homeomorphism, ¥ x V' possesses a subset of second category and
with the Baire property in Y x K, whence so does V in K (see [6, Theorem 15.2
and 15.4]), what ends the proof. n

Using Proposition 1 instead of [1, Lemma 5], we can prove [1, Theorem 1] under
the assumption that X is a linear—topological space over K € {R, C}. Consequently,
the following Theorem holds:
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THEOREM 2 (CF. [1, COROLLARY 2]) Let X be a linear-topological space over
K € {R,C} and f : X — K be a Baire measurable solution of (3), where n € N
and t € K\ {0}. Then f is continuous or the set {z € X : f(z) # 0} is of the first
category.

(1]
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