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Baire measurable solutions of a generalized
Gołąb–Schinzel equation

Abstract. J. Brzdęk [1] characterized Baire measurable solutions f : X → K of the
functional equation

f(x+ f(x)ny) = f(x)f(y)

under the assumption that X is a Fréchet space over the field K of real or complex
numbers and n is a positive integer. We prove that his result holds even if X is a
linear topological space over K; i.e. completeness and metrizability are not necessary.
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For the first time, in connection with examining of subgroups of the centroaffine
group of the plane, the functional equation

(1) f(x+ f(x)y) = f(x)f(y)

has been studied by S. Gołąb and A. Schinzel [3] in the class of continuous real
functions. In 1965 C.G. Popa [7] proved that every Lebesgue measurable real solu-
tion of (1) is continuous or equal to zero almost everywhere. Following this idea J.
Brzdęk [2] showed that the same is true for each Christensen measurable solution
of the generalized Gołąb–Schinzel equation

(2) f(x+ f(x)ny) = f(x)f(y)

mapping a real or complex separable Fréchet space into the field of real or complex
numbers, respectively, where n is a positive integer.

J. Brzdęk [1] proved also an analogous result for Baire measurable solutions of
the equation

(3) f(x+ f(x)ny) = tf(x)f(y)
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mapping a Fréchet space over the field K of real or complex numbers into K, where
n is a positive integer and t ∈ K\{0} . To prove this fact he used the open mapping
theorem (see, for example, [5, 11.4]). We will show that it is enough to assume that
X is a linear topological space over the field of real or complex numbers; i.e. X
need not be complete metrizable. Thereby we must ”go around”the open mapping
theorem.

Throughout the paper ℕ, ℝ and ℂ stand for the set of all positive integers, reals
and complex numbers, respectively. Moreover, we use some basic facts concerning
nets, which can be found in [4, Chapter I (3.10), p.14]. Here, we recall only that a
net {xσ′ : σ′ ∈ Σ′} in a topological space X (where Σ′ is directed by the relation
¬Σ′) is finer than a net {xσ : σ ∈ Σ} in X (where Σ is directed by ¬Σ), if there
exists a function ϕ : Σ′ → Σ fulfilling the following two conditions:

✓ for every σ0 ∈ Σ there is σ′0 ∈ Σ′ such that σ′ ­Σ′ σ
′
0 implies ϕ(σ′) ­Σ σ0;

✓ for every σ′ ∈ Σ′ we have xϕ(σ′) = xσ′ .

To generalize the result of J. Brzdęk [1] we need the following

Proposition 1 (cf. [1, Lemma 5]) Let X be a linear–topological space over K ∈
{ℝ,ℂ} and V ⊂ K. If g : X → K is a nontrivial continuous linear functional and
g−1(V ) has a subset of second category and with the Baire property, then the set V
has a subset of second category and with the Baire property.

Proof Let Y := ker g. Then Y is a closed linear subspace of X and there exists a
point x0 ∈ X \Y such that g−1(V ) = V x0 +Y. Since Y is a linear–topological space
(with the induced topology), Y ×K is a linear–topological space with the product
topology.

Define a mapping

h : Y ×K 3 (y, r)→ y + rx0 ∈ Y + Kx0.

It is easy to see that h is a continuous linear bijection. We prove that H = h−1 is
continuous; i.e. for every net {rσ : σ ∈ Σ} ⊂ K and {yσ : σ ∈ Σ} ⊂ Y such that
limσ∈Σ(rσx0 + yσ) = 0 we have limσ∈Σ(rσ, yσ) = (0, 0).

To this end we prove that for each net S = {rσ : σ ∈ Σ}, there is a net
S′ = {rσ′ : σ′ ∈ Σ′} finer than S, such that

(4) either S′ is convergent or lim
σ′∈Σ′

1
rσ′

= 0.

First consider the case, when there exists a net S′ finer than S such that rσ′ 6= 0
for each σ′ ∈ Σ′. If S′ is bounded, then S′ ⊂ {z ∈ K : |z| ¬ M} for some M > 0
and {z ∈ K : |z| ¬M} is a compact topological space (with the induced topology).
Hence there is a convergent net {rσ′′ : σ′′ ∈ Σ′′} finer than S′. So assume that S′

is unbounded. Then, for each M > 0, there is σ′ ∈ Σ′ such that 1
|rσ′ | <

1
M . Denote
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ε = 1
M and aσ′ = 1

rσ′
. Thus, for each ε > 0, there is σ′ ∈ Σ′ such that |aσ′ | < ε.

Define
Σ′′ = {(σ′, ε) : ε > 0, σ′ ∈ Σ′, aσ′ ∈ {z ∈ K : |z| < ε}}.

The set Σ′′ is directed by the relation ¬Σ′′ given by

(σ1, ε1) ¬Σ′′ (σ2, ε2) ⇔ σ1 ¬Σ′ σ2 and ε2 < ε1.

Since the function ϕ((σ′, ε)) = σ′ is a nondecreasing surjection, the net {aσ′′ : σ′′ ∈
Σ′′}, where aσ′′ = aσ′ for σ′′ = (σ′, ε), is finer than {aσ′ : σ′ ∈ Σ′}. Moreover, for
every ε > 0 there is σ′ ∈ Σ′ such that aσ′ ∈ {z ∈ K : |z| < ε} and, for σ′′ ­Σ′′ (σ′, ε),
aσ′′ ∈ {z ∈ K : |z| < ε}. Hence limσ′′∈Σ′′ aσ′′ = 0.

Next consider the case, when for every net S′ finer than S there exists σ′ ∈ Σ′

with rσ′ = 0. Denote Σ̃ = {σ ∈ Σ : rσ = 0}. We show that for every σ ∈ Σ there is
σ̃ ∈ Σ̃ such that σ̃ >Σ σ. So take σ ∈ Σ and define Σ′ = {σ′ ∈ Σ : σ′ >Σ σ}. Then
the set Σ′ is directed by the relation ¬Σ. Moreover, for each σ0 ∈ Σ, there exists
σ′0 with σ′0 >Σ σ and σ′0 >Σ σ0. Hence σ′ ­Σ σ′0 implies ϕ(σ′) := σ′ ­Σ σ′0 >Σ σ0.
Thus S′ is finer than S. Hence there is σ′0 ∈ Σ′ with rσ′0 = 0. Since σ′0 >Σ σ, for

each σ ∈ Σ, there exists σ̃ ∈ Σ̃ such that σ̃ >Σ σ. In this way we obtain that for
each σ0 ∈ Σ there is σ̃0 ∈ Σ̃ such that σ̃ ­Σ σ̃0 implies ϕ̃(σ̃) := σ̃ ­Σ σ̃0 >Σ σ0.
Thus the net {r

σ̃
: σ̃ ∈ Σ̃} is finer than S. So we proved that for every net S, there

is a net S′ finer than S such that (4) holds.
If limσ′∈Σ′ rσ′ = r 6= 0, then we have limσ′∈Σ′ rσ′x0 = rx0 and

lim
σ′∈Σ′

yσ′ = lim
σ′∈Σ′

((rσ′x0 + yσ′)− rσ′x0) = −rx0.

In the case where limσ′∈Σ′
1
rσ′

= 0 we have

lim
σ′∈Σ′

1
rσ′

yσ′ = lim
σ′∈Σ′

(
1
rσ′

(rσ′x0 + yσ′)− x0) = −x0

Since Y is a closed linear subspace of X, x0 ∈ Y . This is a contradiction. Thus
every net finer than S is convergent to 0. Hence limσ∈Σ rσ = 0 and limσ∈Σ rσx0 = 0.
Consequently we obtain

lim
σ∈Σ

yσ = lim
σ∈Σ

((rσx0 + yσ)− rσx0) = 0.

So we have limσ∈Σ(rσ, yσ) = (0, 0), what ends the proof of continuity of H.
Since h is a homeomorphism, Y × V possesses a subset of second category and

with the Baire property in Y × K, whence so does V in K (see [6, Theorem 15.2
and 15.4]), what ends the proof. ■

Using Proposition 1 instead of [1, Lemma 5], we can prove [1, Theorem 1] under
the assumption that X is a linear–topological space over K ∈ {ℝ,ℂ}. Consequently,
the following Theorem holds:
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Theorem 2 (cf. [1, Corollary 2]) Let X be a linear–topological space over
K ∈ {ℝ,ℂ} and f : X → K be a Baire measurable solution of (3), where n ∈ ℕ
and t ∈ K \ {0}. Then f is continuous or the set {x ∈ X : f(x) 6= 0} is of the first
category.
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