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Baire classification and multivalued maps

A set Y with two topologies 7; and 7, is called a bitopological space [8],
[14]. For a set M = Y by M® we denote the t,-closure of M.

In (Y, 7;, t,) the topology 1, is perfectly normal with respect to 1, if each
e ¢}
1,-closed set M < Y is of the form M = () W,, where W, are 7,-open sets

n=1

such that W%, = W, for n > 1 [6]. Equivalently, 1, is perfectly normal with
respect to 7, if each 1,-open set W is of the form W = (] W,, where W,e,

n=1
and W, < W, ;.

This property is not symmetrical. For instance, if Y is the set of real
numbers, 7, = {(a, ©): aeY} U {Q, Y} and 1, is the natural topology on Y,
then t, is perfectly normal with respect to 7, but converse does not hold.

In the case 7, =1, we have a perfectly normal topological space [5].

In the sequel by 7% (Y, t;) and #(Y, t;) we shall denote the class of all
non-empty 7;-closed or 7;-compact subsets of Y, respectively.

Let X be a topological space. If F: X — Y is a multivalued map, then
for any sets A < X and B <Y we denote [3]:

F(A) = [F(x): xed},
F*(B) = {xeX: F(x) < B},
F (B)={xeX: F(x)nB# Q).

For any countable ordinal number o, a multivalued map F: X — Y is said to
be of t;-lower or t;-upper Baire class o if for each t;-open set V < Y the set
F~ (V) or F* (V), respectively, is of the additive class « in X. We shall use
LB, (7)) and UB,(t;) to denote the 7;-lower and t;-upper Baire classes a of
multivalued maps. Thus LB,(7;) and UB,(z;) are classes of t;-lower and ;-
upper semicontinuous maps, respectively.

Now let F,F: X—Y be multivalued maps such that F,(x),
F(x)e?(Y,7;) for n>1, xe X. We write Fet;-lim F, if for each xe X the

n—"x

sequence F,(x): n> 1} converges to F(x) in the Vietoris topology on
(Y, 1)



60 J. Ewert

I

TueoreMm 1.1. ([6], Theorem 2.1). Let X be a topological space and let
(Y, t,, 75) be a bitopological space such that t, = 1, and t, is perfectly normal
with respect to t,. Suppose that F,, F: X — Y are multivalued maps such that
F,(x), F(x)e €(Y, ty) for each n>= 1, xe X, and Fet,-im F,. Then

(a) For every t,-closed set M c Y.
Fr*(M)y= N\ U Fl(W).
n=1k=1

e o)
where W, are t,-open sets such that M = (\ W, and WP, < W, for n> 1.

n=1

(b) If Fo(x), F(x)e (Y, 13), then

F-(M)= () ('31 Frun(W)).

n=1k=
This theorem implies the following results:
CoRrOLLARY 1.2. Let X be a topological space and let (Y, 1,,1,) be a
bitopological space such that ©, = 1, and T, is perfectly normal with respect to

t,. Suppose that F,, F.: X —Y are multivalued maps such that F,(x),
F(x)e (Y, t,) for n>1, xe X and Fet,-lim F,.

(a) If F,eUB,(ty) for n= 1, then FeLB,,,(1;). '

(b) If F,(x), F(x)e #'(Y,1,) for n>1, xeX and F,eLB,(t,), then
FeUB, (7)) ‘

When 1, =1,, Corollary 1.2 coincides with the result of Garg [7],
Theorem 3.1.

CoroLLARY 1.3. Let X be a topological space and let (Y, t,,1;) be a
bitopological space such that 1, < t, and 1, is perfectly normal with respect to
;. If F: X — Y is a multivalued map such that F(x)e €(Y, 1,) for xe X, then
the following is satisfied:

(a) If FeUB,(t,), then FeLB,, (1))

(b) If FeLB,(x,) and F(x)e X (Y, 1;) for xe X, then FeUB,,(1,).

If 1, =1, and Y is a compact metric space, then Corollary 1.3 gives the
theorem of Kuratowski [12].

By (E,,,t) we denote a separable Banach space with the weak
topology t, and the topology 1, determined by the norm on E.

THEOREM 1.4 ([6], Theorem 5.1). In the bitopological space (E, t,,, Ty, T,
is perfectly normal with respect to t,,.

CorOLLARY 1.5. Let X be a topological space and let F,, F: X — E be
multivalued maps such that F,(x), F(x)e 4(E, t,) for n> 1, xe X and F = 1
lim F,.

n—=x
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(a) If F,eUB,(ty), then Fe LB, (1.

(b) If F,eLB,(z,) and F,(x), F(x)e # (E, t,), then FeUB,, (1.

CoroLLARY 1.6. Suppose that X is a topological space and F: X - E is a
multivalued map such that F(x)e 4 (E, 1,)) for xe X. Then

(a) If FeUB,(z,), then FeLB, (1,

(b) If FelB,(t,) and F(x)e ¥ (E, 1) for xe X, then FeUB,,(ty).

Any singlevalued map f: X — Y can be considered as a multivalued
map F defined by F(x) = {f(x)]. In this case for each set D = Y we have
F~(D)=F* (D)= f"'(D). Moreover, UB, = LB, = B,, ie, it is the Baire
class o of singlevalued maps [2], [11].

Therefore from Corollaries 1.5 and 1.6 we obtain the following

CoroLLARY 1.7. ([1], Theorems 3 and 2). Ler X be a topological space.

(@) If f,: X — E are maps of the weak class o and f = t-lim f,, then fis

n—a

in Ba+1(ts)'
(b) If a map f X —» E is in B,(t,), then feB,, (1.

11

In this section we consider multivalued maps of two variables. For a
map F: XxY—Z by F, and F’ we denote the maps defined by F «(y)
=F(x,y) = F'(x) for xeX, yeY.

The paper of Engelking [4] contains the following

THEOREM. In a metric space the union of a locally finite family of sets of
an additive (multiplicative) class a is the set of the same class.

Let us note that the proof of that theorem gives more.

- TueoreM 2.1. In a perfect space having a o-locally finite base the union of
a locally finite family of sets of an additive (multiplicative) class a is the set of
the same class.

CoroLLARY 2.2. In a perfect space possessing a o-locally finite base the
union of a o-locally. finite family of sets of an additive class o is the set of the
same class.

THEOREM 2.3. Suppose that X is a metric space, Y is a perfect space
possessing a a-locally finite base and (Z, 1., t,) is a bitopological space in
which 1, is perfectly normal with respect to 1,. If F: XxY—Z is a
multivalued map such that F,.e UB,(1y) for xe X and F’eUBgy(t,) » LBqy(z,)
for yeY, then FelB,,(z,).

Proof. Any t,closed set M <= Z is of the form M = () W,, where
n=1
W,et, and W2, < W, for n > 1. Let {B,: seS! be a o-locally finite base for

X, let S, = |seS: diamB, < l/n ‘and {z;: z,eB,, seS). We shall show that
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e8]
(1) Fr(M)y= N U By xY)n(X xF (W)).
n=1 seS,
Let us take a point (x, y)e F*(M). Then F(x,y) < W, for each n>1.
Because F’eUBg(t;), there exists a neighbourhood B, of x such that
diam By, < 1/n and F*(By,) < W,. Hence F(z,,, y) = W, and in consequence

Fre N U B, xY) N (X x F] (W)

n=1 seS,

Now let (x, y)e [V U ByxY)n(X xF; (W) and (x, y)¢F " (M). There
n=1seS,
exists a sequence |z, s,,eS,,, n =1} such that

(2) x = lim Zg,»
(3) Fiz,, oW, fornx=l.

On the other hand, for some m we have F(x, y)n(Z\W?) # Q. The
condition F’eLBy(r,) and (2) imply that there exists »ny such that
F(z,, WO(EZ\WP) # @ for n>ny. So for n>maxing, mj we obtain
F(z,, ) N (Z\W,?) # @, what is a contradiction to (3). Thus (1) is proved.
For any fixed n > 1, '

(By x Y) (X xFL(W))): seS|

is a o-locally finite family of sets of the additive class o in the space X x Y.
According to Corollary 2.2 the set U (B, x Y) N (X x F (W,)) is.of the same

class. Thus (1) implies that F +(M) is of the multiplicative class a+1 and
FelB,y, ()

THEOREM 2.4. Suppose that X is a metric space, Y is a perfect space with
a o-locally finite base and (Z, t,, 1,) is a bitopological space such that t, is
perfectly normal with respect to t,. If F: X xY — Z is a multivalued map such
that F(x, y)e X (Z,1,) for (x,y)eX xY, F,elLB,(t,) for xeX, and
FYeLBy(t;) nUBy(1,) for yeY, then FeUB, . (1,). .

Proof. Let {By: seS} be a o-locally finite base for X, D=
{zg: z,€B,, seS} and S, = |{seS: diam B, < 1/n}. A 1,-closed set M = Z is
of the form M = (\ W,, where W,et, and W2, = W, for n > 1.

n=1

We shall prove the expression

) F-(My=( U (B, x Y) n(X x FZ(W,)).

n=1 seS,

If (x, y)e F~ (M), then F(x, y) "W, # @ for each n. It follows from the
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condition F?eLB,(r,) that there exists a neighbourhood B, of x such that
diamB, < 1/n and F(x', y) "W, # @ for x'eB,. Thus F(z,, yyo W, # @ for
some se S, and

(5) x e N U (B, x Y) (X x FZ(W,).

n=1 seS,

Now let (x, y) be a point satisfying (5) and let us suppose that
F(x, y)nM = Q. According to (5) there exists a sequence \Zs,: Sn€S,| such
that ,

(6) x=limz,, F(,)nW,#0Q for n>1.

n—w

On the other hand, F(x,y) cZ\M = U (Z\W'?). The rz-compactness of

F(x, y) implies the inclusion F(x, y) < Z\W‘Z’ for some m > 1. Because F” is
T,-upper semicontinuous we can take n, such that F (z5,, ¥) = Z)\ W for n
>no. Hence F(z,,y) c Z\W? < Z\W, for n > max {ny, mj, what is a
contradiction to (6). So (4) is proved. The rest of the proof is analogous as in
Theorem 2.3.

If 1, =1,, X,Y and Z are metric spaces and f: X xY—>Z is a
singlevalued map, then each of Theorems 2.3 and 2.4 gives the theorems of
Montgomery [13] and Kuratowski [10] (for separable space [9]). Moreover,
applying Theorem 1.4, we obtain the following

COROLLARY 2.5. Assume that X is a metric space, Y is a perfect space with
a o-locally finite base. If f: X xY — E is a singlevalued map such that f7 is
continuous for ye Y and f, is of the weak class a for xe X, then f is of the class
o+1.

Let,u, and [, denote the set of all real functions f such that for each real
number r the set {x: f(x) <r} or |x: f(x) >r} is of the additive class « [15].

THEOREM 2.6. Let X be a metric space and let Y be a perfect space with a
g-locally finite base. If f- X xY — R is a real function such that f.cu, (f.el)
for xe X and [ is continuous for yeY, then fel i (f€uysy).

Proof. Let us put 7, ={(a, ©): aeR} U{OD, R}, 1,=10, R}
{(— o0, a): aeR}. Then in the bitopological space (R, t,, 1,) the topology 7; is
perfectly normal with respect to t;, i # j, i, j = 1, 2. So the conclusion follows
from Theorem 2.3 or 24.

I

For a multivalued map F: X — Y, the graph of F is denoted by I'(F),
ie, I'(F)= |(x, y)e X xY: yeF(x)}.

We present here characterizations of the graphs of multivalued maps
belonging to UB, or LB,.
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At first we formulate some properties of bitopological spaces.

A bitopological space is called pairwise Hausdorff [8] if for each distinct
points x, ye Y there exist disjoint subsets Uet;, Ver; such that xeU, yeV
for i,j=1,2;1i#j.

In (Y, 7y, 7,) the topology t; is perfect with respect to t; if each 7;-open
set is F, in (Y, 7;) for i #j [14].

The bitopological space (E, 1,,, 1) is pairwise Hausdorff and t, is perfect
with respect to 1, [6].

THeoreM 3.1. Let (X, 1) be a perfect space with a o-locally finite base and
let (Y, t,, 15) be a pairwise Hausdorff bitopological space in which t, is perfect
and has a o-locally finite base. If F: X — Y is a multivalued map such that
F(x)e #'(Y, ©,) for xe X and FeUB,(t,), then I'(F) is of the multiplicative
class a in (X xY, T x1,).

Proof. Let us denote by 4 = {V,: seS]| a o-locally ﬁnite base of the
topology 7,. If (x, y)¢'(F), then y¢ F(x). Since F(x) is 1,-compact and
(Y, 74, 7,) is pairwise Hausdorff, there exist sets U(x, y)et,; and Ve 4 such
that

(7) F(x)cU(x,y), ye¥ and Ulx,y)n¥=0.

Let U, be the union of all sets U(x, y) satisfying (7). Thus we obtain X
xY\I'(F) = |J F*(Uy) x V,. The converse inclusion is evident, so we have
seS

8) X xY\I['(F)= | F* (UyxV,
i seS

where U, and V, satisfy (7).

(FT(U) xV,: seS} is a o-locally, finite family of sets of the additive
class o in (X x Y, 7 x1,). Applying Corollary 2.2 to (8) we have that I'(F) is
of the multiplicative class o in (X x Y, 7 x1,).

Let us note that for a map FeUBy(r,) with t,-compact values it is
sufficient to assume (X, t) any topological space and (Y, 7, 7,) pairwise
Hausdorff [6], Theorem 4.1. '

If-1; = 1,, all spaces are metrizable and F is a singlevalued map, then
Theorem 3.1 coincides with the result of Kuratowski [10], p. 541, and
Montgomery [13], Theorem 4.

CoROLLARY 3.2. Let (X, 1) be a perfect space w1th a o-locally finite base.
If F: X —E is a multivalued map such that F(x)e X (E, t,) for xe X and
FeUB,(z,), then [(F) is of the multiplicative class o in (X xE, 1 x1y).

TueoreM 3.3. Let (X, t) be a perfect space with a o-locally finite base and
let (Y, t,,1,) be a bitopological space such that ©, < 1,, 1, is perfect with
respect to 1, and 1, has a o-locally finite base. If F: X — Y is a multivalued
map, F(x)e¢(Y, 1) for xeX and FelB,(t,), then I'(F) is of the
multiplicative class a+1 in (X x Y, 1 x1,).

Proof. Let us denote by |V,,: seS,, n > 1} a o-locally finite base of the
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topology 7, (for each n>1, the family {V,: seS,,} is locally finite). If
(x, y)¢ ' (F), then ye Y\F(x)et,. Thus there exist V,, and 7,-open set U,
such that yeV,, =« U, = Y\F(x). So we have

(x, y)e U UF (Y\Us) x V-

n=1 se&S

It is easy to verify that
9) XxY\I'(F)= U U F* (Y\Ug) xV,

n=1 seS,
For each fixed n, [F*(Y\U,,) x V,,: se8§,} is a locally finite family of
sets of the multiplicative class « in (X x Y, 7 x1,). Accordmg to Theorem 2.1
the union

U FT(Y\Ug) x ¥,

seSy,

is of the same class. Therefore, (9) implies that I'(F) is of the additive class «
+1in (X xY, 1 x71,).

CororLLARY 34. Let (X,t) be a perfect space. If F: X - E is a
multivalued map such that F(x)e ¢ (E, t,,) for xe X and F e LB,(t,), then I'(F)
is of the multiplicative class a+1 in (X xE, T x1y).
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