
ANNALES SOCIETATIS MATHEMATICAE POLONAE 
Series I: COMMENTATIONES MATHEMATICAE XXVIII (1988) 

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO 
Séria I: PRACE MATEMATYCZNE XXVIII (1988)

W an g  Y u w e n  and C h e n  S h uta o  (Harbin)

Non-squareness, B-convexity and flatness of Orlicz space
with Orlicz norm

Abstract. This paper investigates the properties mentioned in the title under the case of 
finite atomless measure when the Orlicz spaces are generated by ^-functions (for definition of 
/V-functions see [8]). It is shown here that Orlicz spaces of this kind are locally uniformly non- 
square and therefore are not flat. Another main result is that uniform non-squareness, uniform 
non-/*,1* property, б -convexity and reflexivity coincide.

Introduction. Non-squareness, B-convexity and flatness are important 
geometric properties of Banach spaces, which expose the intrinsic construc­
tion of the spaces according to the ‘shape’ of the unit ball of the spaces. 
Therefore, it is interesting to investigate those problems in classical Banach 
spaces, for example, Orlicz spaces.

Let X  be a Banach space, S(X) the sphere of X. X  is said to be 
uniformly n o n - l (n ^ 2) if there exists S > 0 such that for any x l5 x2, ■ ■ ., x„ 
in S(Y) with ||x1 + x2±  ... ±x„|| <  n(l — Ô) for some choice of signs. X  is said 
to be В-convex if, for some integer n ^ 2, X  is uniformly non-1(п1]. Particular­
ly, a uniformly non-/(21) space is called uniformly non-square [5].

Schoffer [11] introduces another definition of uniform non-squareness 
and other geometric concepts. X  is called uniformly non-square if there exists 
/ > 1 such that for any x, у in S(2Q we have max (||x +j/||, ||x —y||] ^ /; X  is 
called locally uniformly non-square if for each хе5(20, there exists lx > 1 such 
that for any yES(X), we have max !||x + y||, ||x—y||] > /,.

The two definitions of uniform non-squareness coincide (see Lemma 1).
X  is called flat if there exists a curve on S(X) with antipoints and length

two.
Non-squareness, B-convexity and flatness of Orlicz spaces equipped 

with Luxemburg norm have been exactly examined in papers [l]-[4 ], [9], 
[12], [13].

Let (G, I ,  ц) be a finite atomless measure space. By M(u) we denote an 
iV-function [8] and by N(v) the complementary N-function to M(u). M(u) is 
said to satisfy condition A2 for large и if there exist u0 > 0 and К > 2 such 
that M ( 2 u ) ^ K  M(u) for all u ^ u 0. The functional / M(x)=  \M(x(t))dt

G
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defined on the set of all measurable functions x: G\~*R (real line) is a 
pseudomodular. This functional defines the modular spaces called the Or liez 
space and usually denoted by L M. The norms introduced in LM, the so-called 
Luxemburg norm and Or liez norm, are defined respectively as follows:

(1) IWI(M) = inf {Л > 0: I m (x/X) < 1}, IMIm =  sup fx(t)y(t)dt,
I  jvO O ^l G

where x is a function belonging to L M.
It is well known that the two norms are equivalent, nevertheless, the 

corresponding geometric properties between the two norms are perfectly 
different.

Without any confusion, throughout this paper we denote by L M the 
space (LM, |H |M).

I. Lemmas.
Lemma 1. Let X  be a Banach space. Then
(i) i f  X  contains a subspace isomorphic to c0 or lx, then X  is not B- 

convex;
(ii) if X  contains a bounded sequence not containing any weak Cauchy 

subsequence, then X  contains a subspace isomorphic to lx;
(iii) if X  is locally uniformly non-square, then it is not a flat space;
(iv) if X  is uniformly non-l(J21, then it must be uniformly поп-fi^ (n ^ 3);
(v) there exists 3 > 0  such that for any u, veS {X ) with

(*) min{||M + i>||, ||m —i?||} ^ 2(1—<5)

if and only if there exists l > 1 such that for any x, yeS(X), we have

(**) max {||x + y||, ||x—j>||} ^  1.

Proof, (i) (see the proof of Theorem 2.2 in [5]). (ii) (see [10]). (iii) (see 
17H in [11]).

(iv) If X  is uniformly non-Iffl x (n ^ 3), then by definition there exists 
<50 > 0 such that for any x lt x2, . . . , x n- i ,  x„e(S(Ar)) there exist n — 2 
numbers e2, e3, . . . , e„_i  (e,=  ±1, i = 2 , . . . ,  n — 1) with

\\X1+£2X2+  . . .  + £ „ _ 1 Х И_ 1 || < ( и - 1 ) ( 1 - < 5 0) .

Let
s n - 1 £ _ 1 .3 — 3q, £n 1,

n
then we have

||X1+ £ 2 X2+ £ 3 X3 +  . . .  + £ „ - !  X ^ j + ^ X J I

^  Лх1 + £ 2 х2 +  . . .  - b £ « - i ^ - i l l  +  IWI ^ ( n - l ) - ( n - l ) 3 o + l  =  n{ l -3) ;

hence, X  is uniformly non-Zj,̂  (n ^  3).



Non-squareness, B-convexity and flatness 157

(v) Necessity. If (**) is not satisfied, we can choose x„, y„ eS(X) 
(n = 1,2, . . . )  with

lk. + >J -*1, I K - > J  - ”1 (и -►00).
Let un = (x„ + y„)/||x„ + yn||, vn =  {хп- у п)/\\хп-Уп\\ (« = 1,2, . . . ).  By the in­
equality

(2) 2/||x„ + yn\ \ -  ||x„ - y„\\ • Il/||x„ - yn|| -  l/||x„-I-yn|| I

= ||2xn/||x„ + yJ |||-||(x„-y„)(l/||x„-y„ ||-l/||x„  + yJ|)||

< p x j \ \ x n + Уп\\ + (*„~)0(Vll*„~Уп\\~ l/ll*„ + yH||)||

= ||(̂ n + );n)/ll̂ n + >;JI + (^-> ,n)/ll^-> ;n|||| = \K + vn\\
< 2/||xn + yJ| + ||x„-y„|| [|l/||xn-y „ ||- l/||x „  + y„|||] 

we immediately obtain

(3) Ik  + i J  -►2 (n-»oo).

Almost the same proof as that of (3), we have

(4) ||m„ —»„|| —►2 (« -► oo);

this contradicts (*).
Sufficiency. If (*) is not satisfied, we can choose un, v„eS(X) 

(« = 1,2, . . . )  with

(5) \\un + v„\\->2, \\u„-vn\ \ ^ 2  (n-> oo).

Let x„ = (un + v„)/lk + «„||, y„ = (un- v n)/\\u„~vn\\ (n = 1,2, . . . );  similarly as in 
the case of (3) and (4), we have ||x„ + y„|| -*1, ||x„—y„|| ->1 (n -*oo) contra­
dicting (**)•

Lemma 2. (a) Let x  be in L M, x Ф 0; then there exists a k0 > 0 such that 

||xj|M = inf ^[1 + / M(fcx)] =7~C1 + / m(^o^)]-
k> О* Kq

(b) LM is weakly sequentially complete iff no closed subspace of L M is 
isomorphic to c0.

(c) Let M(u) satisfy the condition A2 for large u; then for any e > 0  
and c > 0, there exists a Ô > 0 such that IM( x ) ^ c  and 1 м (у )^ д  imply 
\1м{х + у ) - 1 м (у)\ Re­

proof. (a) (see Theorem 10.5 in [8] and Theorem 1 in [15]). (b) (see
Chapter 10 in [7] or [14]). (c) (see [6]).

L em m a  3. I f  x„, y„eS(LM) with max {||x„-f-j/„||M, ^ 1 + l/«
(« = 1,2, . . . ) ,  then
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(6)
kn + K
k„h„ lM

k„ h„ 
k„ + hn

0 (n -* oo),

where k„, hn > 0 satisfy

IK + уЛм = 7~ [ 1 + 1м(кп{хп + у„))], 1К~уЛм = у [ 1  + 1м (К(хп-Уп))]Kn *in

{n = 1,2, . . . ) .
Proof.  By (6) and the convexity of M(u), we have '

(7) 2 + 2/n>\\x„ + y„\\M + \\xn- y H\\M

= ¥ r ^ l 1+ ! 7rr7T M(/£»(^W+y„W))+kn h„ I ; k„ + h„
a

+ f ~ j i-M(h„(x„(t)~yA<))) 4

^ Г / М 1 + I m (iH t 2x" )[ ^ I|2xJIm = 2 (" = *> 2> • • •>•
Similarly,

(8) 2 + 2/n >\\xn + y„\\M + \\xn- y n\\M

k„+hnN hn
kn hn kn + hn

k„ + hn
G

11 +-fjV f
(  k„ h„

kn hn \k„ + h

К
k„ + К

dt

2y„ ]>> \\2уп\\м = 2 (n = 1,2, . . . ) .

Therefore, by (7), (8) and M(u) satisfying the condition M(\u\ — |r|) 
^ \M ( 2 u ) -  M(2v)\, we have

k„ + hn
К  К

M

<

kn К  
k„ + hn

k„ + h „

(W -|y„l)

(n -> oo).

Lemma 4. I f  N(v) satisfies the condition A2 for large v, then the set

K  =  \ k :  ||x||M = i { l  + /„(fc*)}.

is bounded for any b ^ a > 0.
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Proof. Write u0 =  M 1(l/2iu(G)). By Theorem 4.2 in [8], N (v) satisfies 
the condition A2 for large v iff there exists / > 1 such that

(9) M(lu) ^ 2/M(w) for all u ^ u 0.

For given b ^ a >  0 and x e L M with a ^ ||x||M = (1 + l M(kx))/k ^ b, since 
IMI(M) > H \x\\m by the definition of |H|(M), we have IM(3x/a) > 1,
therefore

J M (3x(t)/a)dt
G { \ 3 x ( t ) \ l a > u Q)

= Im (3x/fl) -  i M (3.v (t)/a) dt ^ I M (3x/a) -  M (u0) p (G) {.
G(|3*(f)|/a <u0)

Now, suppose к > 3l/a, so we can select a positive integer i such that 
/' < \a k  ^ /, + 1. By repeatly utilizing (9), we get M(ll u) ^ 2l ll M(u) (и ^ w0). 
Hence

b> \\x\\M = l- \ \ + I M(kx)\ > X- M U a k-x{ t)  ) 
\ a '

dt

1 J

G(3/«|.v(f)| > «о* 

2‘ /*' I

M ( k - x i t )
\ a

u ( l m )

G(3/a|.v(f)| > uq)

dt

2*' /•'
t

G(3/a|x(f)| > u0)

> (2‘ /*)/(~/' +1 ) = a l1/ 61",

therefore, i < log2 6/b/a. Thus,

. 3 , 3 . 1 + logo6ib /a  I 3 ,1 + lo g  -?6lb/a/с ^ ш а х < -/, - /  z > =  - /  
la a a

L em m a  5. Let x e L M, s > 0. 77ieu t/iere exists <5 > 0 suc/i that IIxXgvJIm 
^ ||x||M —£ for any e a  G with p(e) < Ô.

Proof. Since x e L M, by the definition of ||-||M, we can select y e L N 
such that IN(y) ^ 1 and |’ x(t) y (t)dt ^ ||x||M — e/2. By the absolute continuity

G

of the integral, there exists <5 > 0 such that for any e <= G, if only p{e) < Ô, we 
have § x ( t ) y ( t ) d t  ^  e/ 2. Therefore,

e

II*XgJ m ^ f x (t)y ( t)d t^ \\x \\M- e .
G \ e

L em m a  6. The following properties are equivalent.
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(I) N(v) satisfies condition A2 for large v;
(II) there exist e > 0 and v0 > 0 such that N ((1+ e) v) ^  2N(v) for all v

^ v0;
(III) there exist 5 > 0 and u0 > 0 such that M  (2 m) ^ (2 + д)М  ( m)  for all и

> w0;
(IV) there exist l >  1 and u1 > 0 such that M{u) ^ M(lu)/2l for all и

> Mi.
Proof. (I)=>(II). Let К  ^  2, v0 > 0 with N(2v) ^ K N(v) for all v ^ v0. 

Taking £ = 1/(K — 1), by the convexity of N(v) we have

N ((l+ e)v) =  N (e2v + (l — e) v) < Ne(2v) + ( l —e) N(v)

< [ l+ ( X - l ) e ]  JV(») = 2N(v) (I? ^ i70).

(II) =>(III). Write iVj (r) = j N ((1+ e) v) and denote by ( m) the comple­
mentary ЛГ-function to Nj'fv). By (II), N i(f) <  N(v) (v ^ t;0), therefore there 
exists m 0 > 0 such that J M ( 2 m/(1  +e)) = M i ( m)  ^ M(u) (м ^ m 0) .  Taking <5 
= 2£ , for all m ^ m 0 , we have

M  (m) <  i  M  (2 m/(  1+ e)) <  i  M (2 m)/( 1 + ê) = M (2 m)/(2  + Ô).

(III) => (IV). For given <> > 0 in (III), select a positive integer n such that 
nô ^  2. Let / = 2", m x = m 0 ; then for all u ^ u u  we have

М(/м) = М(2”м) ^ (2  + <5)"M(m) ^ (2" + n2"_1 <5)M (m) ^ 2/М(м).

(IV) => (I). See Theorem 4.2 in [8].

II. Main theorems.
T h eo r em  1. The following conditions are equivalent.
(A) L M is reflexive;
(B) L M is uniformly non-square;
(C) LM is uniformly n o n - l (n ^ 2);
(D) L M is B-convex;
(E) noclosed subspace of L M is isomorphic to c0 or f ;
(F) M  ( m) satisfies condition A 2 for large u, and there exist Ô >  0 and 

m 0 > 0 such that M (2u) > (2 + 0)M (u) for all и ^ m 0 .

Proof. The implications (В) =>(C) =>(D) =>(E) are evident by (i) and (iv) 
of Lemma 1. Also (A)<=>(F), by Lemma 6. So, to complete the proof it is 
sufficient to show the implications (E)=>(A) and (A)=>(B).

(E)=>(A). Since noclosed subspace of LM is isomorphic to c0, by (b) of 
Lemma 2 L M is weakly sequentially complete. Let |x„) be an arbitrary 
sequence in the unit ball of L M. Since noclosed subspace of L M is 
isomorphic to llt by (ii) of Lemma 1 we can choose a weak Cauchy 
subsequence \x„k} of {*„}; therefore, in virtue of the weak sequential com-
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pleteness of LM, there exists x 0 in L M such that x „ k ^ x  (k -► oo). By the 
lower semi-continuity of the norm || ||M we have

||x0||M < Lim||x„J|M ^ 1.
к -* oo

It follows from the famous Eberlein-Smulian Theorem that L M is reflexive. 
(A)=>(B). If (B) does not hold, we can choose x „ ,  y n in S(LM) such that

max !||хи + уп||м, ||x„-y„||M] < 1  + 1 /n {n = 1, 2, ...).

By (a) of Lemma 2, there exist kn, hn >  0 such that

||x„ +  уи||д̂ =  t~ |1 /д/(/+(x„ +  y„))},
Kn

ll-̂ л Уп\\м =  T  I Уи))]»К
n = 1 , 2 , . . .  Therefore, by Lemma 3,

(9)
kn + hh

MK K  ~M\k n + hn
ки К

(W -|y J (n -> oo).

Observe that i  <  1 -  l /и < ||x„ + y„||M ^ 2, \  ^ 1 -  \/n < | |x „ -y „ | |M < 2 for all 
2; by Lemma 4, the set {/c„, is bounded. Without loss of generality

let h„^ kn (n = 1,2, ...). Write H 0 = suphn and K 0 = infkn.
n n

Since ||x„ + y„||M ^ 2  (n = 1 ,2, . . . ),  it is obvious that K Q > 0 and

K 0 < kn hn ^ H 0 
2 k„ + h„ 2

Hence, by (9), we obtain

(n -oo ) .

Remembering that M(u) satisfies the condition A2 for large и and sup/c„
n

< oo, we have

(10) / m( M W - I l ,I))->0 (n -> oo)

and IM(2knx„) ^ с (и = 1, 2, ...) for some positive constant c .

By (c) of Lemma 2, there exists Ô >  0 such that for any x, у  e L m , if only 
I M ( x )  ^  c  and I M ( y )  ^  ô ,  we have

(H) IM(x + y ) > I M( x ) - X 0/2H0.

By (10), there exists an integer n0 such that

(12) 1м(К(\хп\-\Уп\)) < ô for all n ^  n0.

11 — Roczniki PTM — Prace Matematyczne XXVÎII
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Let G „= [teG : x„(t)y„(t) ^  0) (n = 1,2, . . .).  Since M{ul)/ul ^  
M{u2)/u2 whenever ut ^ u2, by (11) and (12), we have

2 + 2/n > ||x„ + y„||M + ||x„->g|M

M(k„(\xn(t)\ + \yn(t)\))dt +1 1 1
^ H ~  + k + ~k* * 0  Kn J

Gr

+ — J M(hn(\xn(t)\ + \yn{t)\)]dt

G \G ,

^ TT' + TT + i r I м(к„(\хп\ + |y„|))
rl Q кп кп

= T f -+ г + T  I m (2k" W  +  k» ~  l x « D )ri q Kn Kn

>  тг^ +  т-  {1 +  1м(2 кп x „){
1 K 0

HQ кп ~ К 2 H 0

>\\2xn\\M+ l/2 H 0 = 2+ \/2 H 0

for all n ^ n0. This contradiction shows condition (B).

Theorem 2. (a) L M is locally uniformly non-square-, ((3) LM is non-fat.
Proof. By (iii) of Lemma 1, we only need to show (a). If LM is not 

locally uniformly non-square, we can choose x, yneS (L M) with

max l||x + y„||w, ||x-y„||M} < 1 + 1/n {n = 1, 2, ...).

By (a) of Lemma 2, there exist k„ and h„ with

Ix + jJ a [1 + h i ( K ( x  + yn))}, Цх-УпНм = -r-{ 1 + M M *  ~ LJ)},

n — 1, 2, therefore, by (7), we have

2 +  -  >
2 kn + hn

1 + /
n kn hn ' ‘ M\k n + hn

k„hr
2x ) } ^ 2  (#i = l ,2 , . . . ) .

Since x(f) is a fixed function, it is obvious that

b — sup
k.,h

n k„ + hn
<  oo and a = inf

k„ hr
n kn + h„

> 0 .

Hence, by Lemma 3, we obtain I M(a(\x\ — |y„|))/b ->0 (n -> oo). Therefore, 
\y„(t)\ jx(f)J (n -* оo) (where ^  denotes the convergence in measure).

Without losing the generality, let hn ^ k n (n = 1,2, . . .),  lim kn = k0,
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lim hn =  h0 and |y„(t)| —► (л: (r)| (n - >  go)  a.e. on G (otherwise, we may select
Я-+00
subsequences with those properties). It is obvious that k0 > 0, h0 > 0. Let us 
consider a few cases.

(A') k0 =  h0 = +  oo. In this case, k„hJ(k„ + hH) -*■ +  oo (n -> oo), a contra­
diction.

(B') k0 ^  h0 < +ao. By Lemma 5, there exists ô > 0 such that for any 
e cz G with fi(e) <<5, we have

(12') 2 —1/2h0.

Choosing G0 c G  such that f t(G/G0) < ô and |y0(OI “♦|x(0| in °°) uniform­
ly on G0, by M(m1)/m1 ^  M (u2)/u2 (uj ^  u2) we have

2 + 2/n > ||x + yn||Af + ||x -y J |M

> /Г+ Г + Г  J M (kn(x ( t ) + y J t ) ) ) d t +
G 0 (x(t)yn( t ) > 0 )

+ l~  J  M ( h n( x ( t ) - y „ ( t ) j ) d t

G q(x(t)y„(t) < 0 )

c0
Let n-*  oo ; by (12') we obtain a contradiction:

2 + l|2xxc0||M^ — + 2 
no

1
2ho

=  2 +
1

2h0

(C') k0 < h0 = -boo. For any / /> 0 ,  write G, = G(|x(t)| ^  >/), G„ 
=  G (дс(r)yn(г) <  0) (n =  1, 2 ,...) ;  then

(13) ^(G„nG4)-> 0 (w-*oo).

In fact,

2 > \ \ x - y „ \ \ u > Y  j M ( h n(\x(t)\ +  \ y „ ( t ) \ ) ) d t > l -  J M ( h nx(t ))dt

G „ r C 4 Gn nGn

> ^ - M ( h nrf)n(Gn n G 4).
к

Hence, we have

2K
H(G„nG4) ^

M(hnti)
0 {n -> oo).
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For any e > 0, by Lemma 5, there exists ô > 0 such that P x ĝvIIm > 2 —e 
whenever e cz G satisfies fi(e) < Ô.

By (13), there exists a subsequence {Gm} of {G„} such that, for each m, 
we have

v(Gm r\ Ge) < <5/2m+1.

Choose G0 c:G such that n(G0) <i<5 and such that |y„(t)| -*|x(f)| 
(n -*ao) uniformly on G \G 0. Then ц{С) <<5, where

00  00

G' = G0u U (C .n G J  = C0u[( U G j n G j .
m=1 m=1

Noticing that

G \G 'c (G \  U G„)u[( 0  G j\(G 0uGJ],
m= 1 m= 1

we obtain

1H---> Р  + УтИм ^ 7~m km
1 + M (km(\x(t)\ + \ym(t)\))dt

G \  U C ,m— 1

1+ M (km(\x(t)\ + \ym{t)\))dt-

G \G '

M (km(\x(t)\ + \ym(t)\))dt

( U Gm)\(GouGe)m= 1

1 +
G \G '

M (km(\x(t)\ + \ym(t)\j)dt-

M (km(\x(t)\ + \ym(t)\))dt
G\(GQvGe)

(n = 1 ,2, . . . ) .  Let m -* oo ; we get 

1
(14) 1 ^

k0
1+ j* M (k0 2x(t))d t— J* M (k0 2 x(t))dt

G \(G 0 uG e)G \G '

» I|2xZgxc ||„—2 -  Af (2*0e)A*(G) > 2 - e + j - M ( 2 k 0s)ii(G).
ACq ACq

Since e is arbitrary, (14) gives a contradiction, completing the proof.
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