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O n a topological characterization oî simple closed curve
on the plane

1. Introduction. By a simple closed curve we mean a set homeomorphic 
with a unit circle x2-\-y2 = 1  or, equivalently, a set of points which is 
a union of two arcs axb and ayb such that axbnayb =  {a} u{6}.

A set A is said to be hereditarily locally connected provided that each 
connected subset of X  is locally connected.

A set X  satisfying the condition
oo

(a) X  =  U  [a, a{], where [a, a{] denotes the arc with end-points a and
i= 1

aii hb ai] c  «i+iL ai ^  ai+ 1  for eaGh i and a == lim air
г —> c o

may still be rather complicated topologically. However, we shall show 
that when X  is a plane set (i.e., X  is lying in the plane) and a here­
ditarily locally connected one, X  must be a simple closed curve (The­
orem 2).

This result is simultaneously a partial solution of the unsolved pro­
blem proposed by Professor B. Knaster at his topological seminar in 
Wroclaw: is A a simple closed curve if A is a plane point set satisfying 
condition (a) and (only) locally connected? The following not simple 
closed curve G on the plane satisfying condition (a) shows that always the 
condition of local connectedness is an essential one: C is the union of 
1° curve y =  sin тс jx̂  0 <  x <  1, 2° segment x =  0, —1 <  y <  1, 3° arc of 
the circle (with center (1,1) and radius 1) joining points (0, 1) and (1, 0).

Theorem 1 concerns a general property of the plane. We adopt the 
definition of a topological limit given in [1], p. 245.

Throughout the paper <5(A) denotes the diameter of set A, Â the 
closure of A in Euclidean metric ç(a, b) on the plane.

2. A sequence of arcs. Now we shall prove a theorem which concerns 
a sequence of arcs on the plane and which will be used in the proof of 
Theorem 2.
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T h e o r e m : 1 . For each convergent sequence of mutually disjoint arcs 
[an, Ъп], lying on the plane and with end-points convergent to different points 
a and b respectively, there exists a convergent sequence' of subarcs [an , b'n{] 
disjoint with its topological limit and with end-points convergent, also respect­
ively, to points a and b.

Proof.  Assume, a contrario, that this theorem is false, then for each 
sequence of subarcs [an., b'n.] <= \_an., bnf\ convergent to its topological 
limit G with end-points convergent to a and b we have

(0) [an., b'ni]r\G Ф 0 for % =  1 , 2 , . . .

Therefore there exists a sequence of arcs [ak, 6fc] satisfying

(1) , [ak, bk] n [am, 5m] = 0  for 7c Ф m

convergent to topological limit G with end-points convergent to a and b :

(2) lim ak =  а Ф b — lim bk,
k->oo k—xx>

such that

(3) [ak, bk]n G Ф 0 for h = 1 , 2 , . . .

By (2) we have a,bcG.  Let K a and K b be closed discs with centres 
in a and b, and with diameters such that

(4) E „ n E b =  0,

(5) there exist at least three different arcs [ak., bk.] such that sets 
Z{ =  [ak., bki] r\G — {Ka\ j K b) are non-empty for i = 1 , 2 , 3 .

and #
(6) sets Z{ are lying on the subarcs of arcs [ak, bk] joining K a and 

K b for i =  1 , 2 , 3 .

We say that A is a subarc c  [ak, &fc] joining sets A and В if for each 
subarc L c  [(ak, bk] inequality I n i  ^ 0  Ф L nB  implies that L  => К .

Let us notice that for discs K a and K b with sufficiently small diame­
ters condition (4) and (5) are satisfied: (4) follows from а ФЬ, (5) from 
(1) and (3). However, condition (6) need not always be satisfied. The next 
simple Sierpinski’s example (see [2], p. 115) will show it. Let the arc [an, bn] 
be a union of arc r =  2~n, л /2 <  6 <  2n (in polar coordinates) and the 
segment 0 <  x <  1, у =  2~n. For n =  1 , 2 ,  ... we have a sequence of 
arcs convergent to segment 0 < æ< 1 ,  у =  0 and with end-points con­
vergent, respectively, to a =  (0,0) and b =  (1, 0). It is easy to see that 
for this sequence there do not exist discs K a and K b satisfying (6).

Therefore we consider a sequence of arcs [ak, bk] satisfying (1), (2) 
and (3) such that there do not exist discs K a, K b satisfying (6). We may 
assume that for n sufficiently large discs A” and K b with diameters equal
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2In satisfies (4), (5) and do not satisfy (6). Hence for fixed n directly fol­
lows that there exists a sequence of snbarcs [a”, b”] joining K% and K b 
and disjoint with its topological limit Gn c  G — For each n
we choose one arc [an, bn] from a sequence {[a”, bg]}f=1 and so we get 
a sequence {[aw, &n]}»=i. It is easy to see that we may choose, in this 
way, a sequence of arcs disjoint with its topological limit and with end­
points convergent respectively to point a and b, which contradicts (0).

It remains to consider the case such that for every sequence of arcs 
[ak, bk] satisfying conditions (1), (2) and (3) there exist discs K a and K b 
satisfying (4), (5) and (6). Suppose now that we have discs K a and K b 
and all arcs (subarcs of arcs \_ak, bk]) joining them. Then (4) and (5) implies

(7) in the midst of these arcs there are at least three ones having points 
in common with G,

hence we have on the plane:

(8) a figure containing two discs joined by disjoint arcs.

How, let us consider an upper semicontinuous decomposition of the 
plane such that its only non-degenerate elements are discs K a and K b. 
Then there exists a continuous function F from the plane to plane such 
that F is const on K a and K b (see [2], p. 356, Theorem 9).

An image of figure (8) is a set containing two points F(Ka) and F(Kb) 
joined by sequence of arcs having only end-points in common and besides 
being disjoint. By (7) in the midst of these arcs, for at least three arcs 
the intersection of these arcs and G is non-empty, but it contradicts with 
theorem (see [2], p. 360, Theorem 3). This completes the proof.

How we shall show that if a sequence of arcs is assumed to be in Eucli­
dean 3-space instead of the plane, the conclusion of Theorem 1 need not 
follow. We consider well-known hereditarily locally connected Urysohn’s 
continuum see ([4], p. 46, example 4).

E x a m p l e  1. Let P i , p 2, ... be a sequence of prime numbers greater 
than 2, G be segment [(0, 0, 0), (1,0,  0)] and [an, bn] be the arc contain­
ing pn — 2 semicircles joining in turn points:

(1 IPn, 0, 0), (2jpn, 0, 0), . . . ,  ( l - l /3>n, 0, 0)

lying on the semiplane y >  0, z — y In. Obviously a sequence of arcs [an, bn] 
converges to G, lim an =  (0, 0, 0), lim bn =  (1, 0, 0) and [ak, bk] n [am1

n - >  oo n —>-oo

= 0 for k Ф m. However, it easy to see that this sequence does not satisfy 
the conclusion of Theorem 1.

3. A simple closed curve. This section is devoted to the proof that 
if a set X  on the plane satisfies condition (a) and is hereditarily locally 
connected, then X  is a simple closed curve. First we prove two lemmas.
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Lemma 1. If  in the set X  satisfying (a) there does not exist a sequence 
of points b{€ [%, ai+1] such that

(9) b =  limb{, b eX  and b ф а ,
£—>co

then for each point p:

(10) pe {X  — (a, a{)}, p ф а  and p ф a-

a set {Х — (а,а{)}—{р} is not connected.
Proof.  Let p satisfy (10); then from condition (a) we have for i, к 

— 1? 2, ...
OO

{ X - ( a ,  %)} =  [a{, p ] v { p ,  ai+k] и (J [a} , aj+1] и {a} .
j=i+k

OO

Letting К  — [a{, p) and L — (p, ai+k\ и [J [<q, %+1] u{u} we get
j-i+k

(11) {X  — (a, a{)} — {p} — K u L ,  ate К  and aeL.

From (a) we have

(12) K n L  =  0.

К  is obviously closed in { X ~  (a, %)} — {p} and we shall show that 
L is closed in {X — (a, at)} — {p} also. In fact, because each, sequence of

OO

points bjt [â , %+1] is convergent to a and so (J [cq, aj+1] и {a} is
j=i+k

closed. Hence L  as the union of two closed sets is clearly closed. Then 
by (11) and (12) the set {X  — (а, а{)} — {р} is not connected, our lemma 
is proved.

L e m m a  2. If  on the plane a set X  is satisfying condition (a) and is here­
ditarily locally connected, then for each sequence of points fye [a{, ai+1] 
гее have lim bt =  a.

г—юо
Proof. We shall consider two cases:
Case I. In X  there exists a sequence of points b{e [at, ai+J

that
limbj =  b, b Ф a and be X.
£—>oo

such

Let us consider a sequence of arcs [a{, b{] a [a{, ai+1\. Since all 
arcs [ai} Ь{] с  X  and the set X  satisfies condition (a) hence there exists 
a convergent subsequence of these arcs, which are denoted [at , b{] also. 
Hence by Theorem 1 we get

(13) in X  there exists a convergent sequence of disjoint arcs [a'-, &'•] disjoint 
with its topological limit and lim a'- =  a, lim b'i =  b.

i —>oo i—>oo
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It is obvious that for n sufficiently large

(14) д([а’„Ь<])> о(а,Ъ)12.
Now we shall show that

(15) there exists a connected subset 8  a  X  such that be 8  and 8  is not 
locally connected at point b.

In fact, because X  is locally connected, let T с  X  be a connected 
neighbourhood of the point a and such that

(16) 0(T)< o(a,b)/4:.

From (13) there exists i0 such that for i >  i0, ще T. Let us define 
a set

o o

i>i0
The set 8  is a union of T, arcs [a{, &'•] which are not disjoint with T

OO
and a point b such that be T kj U  Wu &*] and so, clearly, 8  is connected.

i>i0
From the definition of 8  and fact that in this case be X  we get 8  с  X . 
A set 8  — T can be written in the form: 17 18 19

(17) 8  — T =  Mi и Ni for i > i 0,
i o o

where =  (J [а], b '^-T  and =  (J [a'j, b j]~T и {b}. We note
?=г0 +1 j=i+1

that, for each i > i 0,b'i e M i and beN {, because arcs [%, 6,-] are dis­
joint it follows that
(18) Mi r\Ni =  0 for each i >  i0.

The set is closed in 8  — T. The closure N{ of N{ in 8  — T is such 
that Nt cz Ni и G, where G is a topological limit of sequence of [а[, &'•]. 
But from (13) it follows that =  0 hence N{ =  N{ and so by (17)
and (18) we get
(19) 8 ~ T  is not connected.

Let F be a connected subset of 8  such that be V and for arbitrary i 
b{e V ; then by (19), (14) and (16) we have

à(V) >  &;•])- Ô(T)> e(a,b)l±

but it follows by theorem (see [2], p. 161. Theorem 2) that (15) holds 
(i.e., 8  is not locally connected at point b).

But X  is hereditarily locally connected and 8  <= X  is connected, 
and so 8  is locally connected, particularly locally connected at point b, 
'which contradicts (15). Case I does not hold.
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Now we shall show that the second case does not hold either. 
Case II. There does not exist in X  a sequence of points {&J conver­

gent to be X  and b Ф a, but X  containing a sequence {6J such that lim b{ 
=  c, с Ф a and ce E2 — X, where E2 denotes a plane.

The set X  can be written in the form:
OO

(20) X  =  [a, ax1 u Z , where Z — U  &i+1] u {«}•
г=1

Since [a , af\ is closed in X  and Z is also closed in X  (lim&t- =  c,
г—xx>

c i X )  we get two closed sets such that [а ,ах] u Z  is locally connected 
(from (20) and from fact that X  is locally connected) and [ a ^ ^ n Z  
is locally connected too, because [a, af\ nZ  =  {a} u{aj}. Then by theorem 
(see [2], p. 164, Theorem 10)
(21) Z is locally  ̂connected.

In this case there does not exist a sequence' {̂ -} such that limZ>;
г—хэо

=  b, b Ф а  and be X, hence by Lemma 1 for each b{ a set Z — {6J is not 
connected. Then each connected subset W <= X  which contains points a{ 
and a it must contain points 2>г- and hence

а д > й ( к , у >  e(«,ft)/2,
and by theorem (see [2], p. 161, Theorem 2) we get that a set Z is not locally 
connected, which contradicts (21) and so case II does not hold. This 
completes the proof of Lemma 2.

T h e o r e m  2. A plane set X  is a simple closed curve if and only if X  is 
hereditarily locally connected and can be written in form (a).

Proof.  If X  is a simple closed curve, then, obviously, X  is heredita­
rily locally connected and can be written in form (a).

Conversely, suppose that a plane set X  is hereditarily locally con­
nected and can be written in form (a). Let X  =  [a, ax] kjZ (see (20)); 
then by Lemma 2 there does not exist in X  a sequence of points b{e [af, ai+x\ 
convergent to be X  and b Ф a, hence by Lemma 1 for each point p e Z 
such that p Ф аг and p Ф a a set Z — {p} is not connected and so by theorem 
(see [2], p. 119, Theorem 1) Z is arc with end-points a and ax. It is easy 
to see from (a) that [a, a{\ nZ =  {a} u{ax}, hence X  is a union of two 
arcs [а, аг] and Z having only end-points in common and so X  is a 
simple closed curve. This completes the proof.

Now we shall show that if X  is assumed to be in Euclidean 3-space 
instead of the plane the conclusion of Theorem 2 need not follow.

E x a m p l e  2. Let An denote an arc [an, &w] in Еъ from example 1 and 
let Boj and Bxj denote, respectively, semicircles joining points

(1 IPy, 0, 0), (1 lp2j+1, 0, 0)
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and
( 1 - 1  Ipy^i, 0, 0), ( 1 - 1  IPy, 0, 0)

lying in a semiplane y <  0, z = 0 .
Let

oo 1 oox  =  L U » u  U  u ^ - .
n= 1 i —0 j —1

The set X  can be written in form (a) if we put a =  (1/3, 0, 0) and 
щ =  A{ n P , where P  denotes a plane in Еъ which is perpendicular to 
the plane z — 0 and such that a e  P. The set X  is hereditarily locally con­
nected (see [3], p. 323) but is not compact (the closure of X  contains 
a segment [(0, 0, 0), (1,0,  0)]) and so X  is not a simple closed curve.
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