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1. Introduction. Let X be a compact Klein surface without boundary of
algebraic genus g > 2. Singerman [6] showed that the order of a group of
automorphisms of X is bounded above by 84(g—1). On the other hand,
Bujalance showed that every finite group can be represented as a group of
automorphisms of a compact Klein surface without boundary [2], [3].

Thus this bound may be considered as a particular case of finding the
minimum genus of surfaces of genus p > 3 for which a given group G is a
group of automorphisms. The case of cyclic group was considered by
Bujalance [2]. In this paper we consider the above problem for finite ahelian
groups. The corresponding problem for compact orientable Klein surfaces
was solved by Maclachlan [5].

2. Preliminaries. By a compact Klein surface without boundary we mean a
compact surface without boundary together with a dianalytic structure [1].
It is well known that a compact Klein surface may be expressed as C*/I,
where C* is upper half complex plane with hyperbolic structure and I is a
certain non-Euclidean crystalographic group (NEC group).

An NEC group is a discrete subgroup I' of the group ¥ of isometries of
the non-Euclidean plane C* (including those which reverse orientation-
reflections and glide-reflections) with compact quotient space C*/I.

Let 4" denote the subgroup of index 2 in ¥ consisting of orientation
preserving isometries. An NEC group contained in %% is called Fuchsian
group, otherwise it is called a proper NEC group. Given an NEC group I let
I'' ' =I'n%* be the canonical Fuchsian subgroup of I Macbeath and
Wilkie [4], [7] associated to every NEC group a signature that has the form

(1) ( ) i: [ml’ sy mr]» {(nlla ey nlsl)9 "'a(nk13 [AREY nksk)})

and determines the algebraic structure of the group.
The numbers m; (m; =2, r>0) are the periods, the brackets
(i1, .., i) (k =0, 5,20, n; > 2) are the period cycles, and g = 0 1s called

the orbit genus.
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Sometimes we will denote the period cycles shortly by C,, ..., C; and in
that way the signature just defined can be written in the form

(g, i, [ml, ceey mr], {Cl, ey Ck})

The group with signature (1) has a presentation with the following
generators

(i) X15.evr Xy
(i) eq, ..., &,
(ii]) €105 --v» Crsys -+-5 CkOs -+ 5 Cisyo
(iv) a4, by, ..., a,, b, (if the sign is +), d;, ..., d, (if the sign is —),

< gy Yyg
subject to the relations
i xi=1i=1,..,r,

Gi) h=ci=(c 1) =1i=1,..,kij=1,..,s;,

(lii) ei_lcioeicisi = 1, i= 1, ...,k,

(iv) xl...x,el...ekalb,'af‘bf‘ ...fngga;‘bgl =1 (if the sign is +),
Xy...X €y ...edi...d} =1 (if the sign is —).

Hereafter the letters x, a, b, ¢, d, e will be used for these canonical
generators of the group only. Let a: I' = Z, be a homomorphism which
maps all x, a, b, e onto +1 and all ¢, d onto —1. We denote Kera by I'*.
A group with the above presentation is called in this paper a group with
signature.

Every NEC group I' has an associated fundamental region whose area
depends only on the group and not the region chosen. It is given by
r kS
) Il =2n(ng+k=2+Y (1=Vm)+ ¥ ¥ (1-1/n)/2),
i=1 i=1j=1
where #n =1 if the sign is — and » =2 if the signis +.

Conversely, if for a group with signature I" the right-hand side expres-
sion of (2) is greater than zero, then I' can be realized as an NEC group with
signature (1) [8].

If A is a subgroup of finite index in an NEC group I, then it is an NEC
group and

Lr:A] = |4)/|T].

An NEC group I', is called the group of a non-orientable surface if it has
signature (p, —, [—], {—]) where [ —] indicates that the signature has no
periods and {—) that the signature has no period cycles.

A homomorphism @ of a proper NEC group I' into a finite group G is
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called non-orientable surface-kernel homomorphism if Ker® is a group of
surface and @ (I'*) = G.
The following theorems will be basic for our considerations.

THeorReM 2.1 (Singerman [61). A necessary and sufficient condition for a
finite group G to be a group of automorphisms of a non-orientable Klein
surface of genus p = 3 is that there exists a proper NEC group I' and a non-
orientable surface-kernel homomorphism @: I' —G.

THeoreM 2.2 (Bujalance [2]). A homomorphism © of a proper NEC group
with signature (1) into finite group G is a non-orientable surface-kernel
homomorphism if and only if ©(c;) has order 2, ©(x;) has order
m;, O(c;j-1¢;) has order n; and ©(I'") =G.

For a finite group G, let #; denote the class of all proper NEC groups
I' for which there exists a non-orientable surface-kernel homomorphism
O: I —G.

If G is an abelian group then O (c; ;- ¢;;)* = 1. Thus all n;; = 2. More-
over, there are no period cycles of the length 1, otherwise 1 = @ (ec;oe™ ' ¢;1)
= O (c;o ¢;;) what is impossible since all n;; are greater than 1. Similarly, if G
is of odd order, then the set of period cycles is empty. Thus we have the
following corollary:

CoROLLARY 2.3. Let A be a finite abelian group. Then any I' € A", has a
signature (g, +, [my, ..., mJ, (27), ..., (2%, (=)"}), where sy, ..., 5, = 2, (2°)

denotes (2, .%., 2) and (—)" an empty period cycle repeated I-times. Moreover, if
A is of odd order, then T has signature (g, —, [my, ..., m], {=}).

By Theorem 2.1 we have that if G is a group of automorphisms of a
non-orientable Klein surface of genus p > 3, then G = I'/T", for some proper
NEC group I'. Thus 2n(p—2)/|G| = |I'|. In the case of abelian group A we
have

3) (r—=2/|Al =g—2+ '-21(1 —1/m)+k+1+(s;+ ... +5)/4.

1

We want to find the minimal p for a fixed 4 and thus we have to minimize
the right-hand side expression on the class .#,. Let us denote this minimum
for a group A by my.

3. Some reductions. An abelian group A is uniquely determined by
its invariants my, ..., my, where m|m;,;. When A is given in the form
A=2Z, @..0Z, wesay that it is in canonical form and the generators of

the cyclic groups will be called canonical generators.
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For given homomorphism @ of an NEC group I' into abelian group A4,
denote by x, a, b, ¢, d, e elements of 4 corresponding under the homomor-
phism © to the canonical generators of I

Lemma 3.1. Let A be a non-cyclic abelian group different from
2,02, m=2Y)and Z,DZ,DZ,. Let I' be a group with signuture (1) for
which ' # I and let @: I' - A be a homomorphism such that ©(x;) has
order m;, O (c;;) has order 2, O (c; ;- c;;) has order n; and @(I'*) = A. Then
I' is an NEC group and © is a non-orientabie surface-kernel homomorphism.

Proof. Assume that an abelian group 4 and a homomorphism @: I'
— A satisfy hypothesis of the lemma. Arguing as in the proof of Corollary
23 we show that I has signature of the following type:
(g, £, [my, ..., m], 42°Y, ..., (2%, (—)"}). Since I'* # I, we have that g > 0
and the sign is — when the set of period cycles is empty. Suppose that the
group I' is not an NEC group. Then the right-hand side of (3) for I is less
than 0 and it is easy to check that the following is the complete list of such
groups.

) 0, +, [m], {(-)})
=), (=), (0, +,[2], {2, D}),
Do
(

==
+ + +

0’ +, [’_]s {(2a 2’ 29 2)})9
1’ > [2],{_;)’

—
-
|
-

o~ — — — —
o

S
!

O, +, [2’ 2]9 {(—)})9
09 +, [—']s {(23 2)})’
(13 T [—]’ {_})a

) (17 —,[29 2]’ %-Jf)'

Take I' with signature (0, +, [2, 2], {(—)}), for example. I' is generated by
Xy, X5, ¢, e subject to the relations xi =x%=c?>=e 'cec=x;x,e=1.
Now for given homomorphism ©@: I' - A satisfying the hypothesis, 4 is
generated by x;, x,, e. Since e = —(x; +x,), we have that the third generator
is redundant and hence A is generated by two elements of order 2. Thus 4 is

not the group in question, a contradiction. The remining cases can be proved
similarly.

For the rest of this section, let A be an abelian group satisfying the
hypothesis of the previous lemma. For any I'e A", denote |I'/2r by u(T).

Lemma 3.2. Let I'e A 4 be a group with non-empty set of period cycles.
Then there exists I'' € A", with orbit genus zero such that p(I'") < u(I).

Proof. Assume that I' has signature (g, +, [my, ..., m], {Cy, ..., Ci})



Abelian groups of automorphisms 201

and let © be a corresponding non-orientable surface-kernel homomorphism.
Consider the group [I" with signature (0, +, [ny, ..., B45,],
{Cy, ..., C}), where
m;, i=1,...,r,
ni= !@(ai—r)L i=r+ls'~-’ r+gr
|@(bi-(r+g))|’ l=r+g+la’ r+2'ga
and the following homomorphism @': I" — A4

s@(xi), i=1,..,r,
@' (x)) =49(a;-,), g=r+l,...,r+yg,
OMi—p+g), i=r+g+1,...,r+2g,
O)=0(@y), i=1,..,k j=0,...,s;,
0 (e), i=1,..., k-1,
—(O'(xD+ ... +O (x4 2)+O(e))+ ... +O(e,)), i =k.
By Lemma 3.1, I'e.#,. Moreover,

p(I) = p(D)=U/ni+ .o +1/n,4 55 < ).

Now suppose that I' has signature (g, —, [my, ..., m], {Cy, ..., G;}),
and let ® be the corresponding homomorphism.

Consider the group I'" with signature (0, +, [ny, ..., B4 ], (Cq, ..., Ci})s
where

O'(e) = {

{mi, i=1,...,r,
n =
Cl@@i,ei0)l, i=r+l, ., r+g.

If some n; are equal to 1, then we regard that this period does not appear in
the signature.

Let @': I" - A be the homomorphism given by
@(xi)s i=1,...,r,

@, f —3
(XI) {@(di-rCIO)’ i=r+1,-c-,"+g,

O)=0(y), i=1,...,k j=0,..,s,
O (e), i=1,.., k=1,
—(@'(xp)+ ... +O' (X1 )+ O(e)+ ... +O(e,)), i =k.

Now, since 2(d;+¢;) = 2d;, (d; + ¢,0)+(d;+ ¢ 0) = di+dj, (d;+¢10) +(€10+ )
=d;,+¢,;, we have that @' (I'') = A and thus, by Lemma 3.1, I'e.¥,.
Moreover, u(I') = p(N—(1/n, 1+ ... +1/n,. ) < p(D).

Lemma 3.3. Assume that T'e€ ¥, has signature (0, +, [my, ..., m],

0'(e) = {
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{Cyi, ..., C)). Then there exists I € X', with signature (0, +, [n,, ..., n],

(C,.....C,) such that C; = (2), Cy = ... = C,=(—) and p(I") < p(I).
Proof. By Corollary 23 we have that C, =(2%),..., C, =(2™,
Cos1=...=C,=(-), where sy, ..., s, > 2.

Firstly, note that we can assume that, for any i < n, we have ¢; = ¢ for
j<j only if j=0 and j' =s;. If this is not the case for some iy, let
0 <ji <...<js-y <s;, be integers such that ¢ o, ;> ... Gg,j_, are all
different elements among ¢ 0, Gig15 -+ +» Cigsiy- Consider the group I'" with
signature (0, +, [my, ..., m], |Cy, ..., Ci}), where C; = C; for i # i, and C;
= (2°).

Let @: I">A be a homomorphism defined by @'(x) = @(x;) for
i=1,...,r, O()=06() fori=1, ...,k and

@(Cit)’ i¢i09 t=05'--9 Sh
O'(ci) = 4O(cip0), i=ip,t=0,s5,
@(ciO’jt)T i=i0, t=l,...,S_1.

Clearly, I"e.#", and p(I") < u(I); hence, repeating the procedure for other
period cycles if necessary, we obtain the assertion.

Secondly, we can assume that for any two non-empty period cycles C;,
C, we have ¢; # ¢, for any j=0,...,s5; and t =0, ..., s;. If this is not the
case, let I be a group with signature (0, +, [m,, ..., m,], |Cy, ..., C}), where
C,=C fori#uand C,=(2" ") and let ®: I" > A be a hgmomorphism
defined by @'(x)) =@ (x;) fori=1,...,r, O'(e)) =0O(¢) fori=1, ...,k and

@(cij)i i#u,j=0,...,s,-,
O’ (ci) = O [cu), i=u,j=0,...,t-1,
Oc,j+1), i=uj=t,...,s,—1.

Clearly, I"e.#, and u(I") < u(I'), and hence, repeating the procedure for
other period cycles if necessary, we obtain the assertion.

We will prove the lemma by induction on n, the number of non-empty
period cycles. Clearly, it is true for n = 1. For n > 1 consider the group with
signature (0, +, [my, ..., m], {Cy, ..., Comy, (=) "*1}), where C; = C; for
i<n—2and C,_y =" ') :

Let ©®: T">A be a homomorphism given by @’'(x)) =0 (x;) for
i=1,...,r,@(€)=0() for i=1, ...,k and

@(CU)’ l=1,..., n—2,j=0,...,s,~,
9/( /) @(cn—l,j)a i=n—'15 j=0,-~-, s”—l“‘l,
C::) =
Y @(Cn,j—sn_l)’ i=n—'19 j=sn—19""sn—1+sn_1’

@(cn—l,o), i=n—'1, j=5n—1+sn'
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Two previous remarks guarantee that @’ is a non-orientable surface-
kernel homomorphism and thus I'"e ¥",. Clearly, u(I") = u(I'); hence the
lemma.

LEMMA 3.4. Assume that I € X 4 has signature (g, —, [my, ..., m.], {—}),
g = 1. Then there is 1 <i < g such that d;€® ({xy, ..., X,, dy, ..., d;, ..., d,»"),
where (Xy, ..., X, dy, ..., d;y ..., dg>" is the subgroup of I'* yenerated
by the elements in brackets with d; omitted.

Proof. Since @(I'*) = A, d; = w for some wel'"
Consider two cases.

(1) Exponent sum of d, in w is even. Then since d? = (d3...d2x,...x,)” ",
‘we obtain that d, €0 ({xy, ..., X,, d3, ..., d; D). :

(2) Exponent sum of d, in w is odd. Then there exists 2 <i < g such
that exponent sum of d; in w is odd (otherwise w¢ I'*). Thus we have that

d; = v forv=wd{'d,el'* and exponent sum of d; in v is even. As in the pre-
vious case we obtain that d, €@ ({(xy, ..., X,, dy, ..., di, ..., dg>").

ProrosiTION 3.5. Let A be an abelian group of even order and assume that
reA ' has signature (g, —, [my, ..., m], {—}). Then there exists I' € X,
with signature (0, +, [ny, ..., n], {(=)}) such that u(I'") < p(D).

Proof. Note first that since I'* # T, g > 1. By Lemma 3.4, there is
i <g such that ;€@ (<xy, ..., X,, dy, ..., d;, ..., d;>*). Consider the group
I’ with signature (0, +, [ny, ..., B4 ,-,], {(—)}), where

m; i=1...r,
nj= I@(dj-r)|9 j=r+1,...,r+i-1,
IQ(dj—r+1)I, j=r+i,...,r+g—1,

‘and let ®': I" > A be a homomorphism given by

@(x')9 j=1,---, T,
O'(x) =<0d;-,),  j=r+l,.,r+i-l,
@(dj—-r+l)a j = r+i, .—.._.: r+gy;"1,
O'(¢) = —(O(x)+ ... +O(x,,,-,)) and let ©’(c’) be any element of order 2.

Since A4 is generated by x,, ..., x,,d;, ..., d;, ..., d, we have that I"e X ,.
Moreover, u(I") = p(D)—=(1/m 41+ ... +1/n 4 g ) < p(D).

ProposITION 3.6. Let A be an abelian group of odd order and let 'e X .
Then there exists I' € X, with a signature (1, —, [ny, ..., n;], {—}) such that
u(r < (D).

Proof. Note first that by 2.3 I' has signature (g, —, [my, ..., m], {~}).
Let i <g be an integer such that &, €@ ({xy, ..., X,, dy, ..., d;, ..., d>").

3 — Commentationes Math. 28.2
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Consider the group I" with signature (1, —, [ny, ..., n,], | —}), where n; are
defined as in the previous proposition and let ®': [" = 4 be a homomor-
phism defined on all x' as in the previous proposition and let @'(d) be the
element of A satisfying 2-0'(d) = —(O@'(x)+ ... +0'(x;4+4-4)). Clearly,
I'e A, and as in the previous proposition u(I) < u(I).

Now let for given abelian group A of even order ¥ denote the
subclass of .#, consisting of all I' having signatures of the following type

(Os [mls vy m,], ‘1(23)9 (_)‘})

LEmMMA 3.7. Let I'e.#S. Then there exists I''€ X, with signature
(09 '*Ta [_]s l‘(ZS), (—)t:) or (Oa +, [mla ceey mr]a :(—)t}) such that lu('rl) <
p(I).

Proof. Assume that I' has signature (0, +, [m,, ..., m], {(2°, (=)'}). If
s =0 or r = 0 then the assertion clearly holds (I" has signature of the desired
form). Suppose thus that s>2 and r>0. Let ® be the corresponding
homomorphism.

Suppose m, = 2 for some k. Then two cases are possible.

(1) X, €4C10s -++» C1ss €25 -++» 41> . Consider the group I'' with signa-
ture (0, +, [my, ..., My, ..., m], (2, (—)}) and a homomorphism &'
I’ = A detined by

@I( /)_{@(xiL i=1,.'..,k—1,
T R e N

1y @(ei)’ i=19'-'3t9
@ (ei) = ’ ! ! ’ ’ Y
—(@'(x)+ ... 4O (x,-))+O(e))+ ... +O(e)), i=1t+1,

O'(cy) =0(cyy) for j=0,...,s and O'(c) =O(c) for [=2,...,1+1L
Clearly, I"e 4 and obviously, u(I") < u(I.

(2) x. ¢ (cw, ves C1ss €2y ovry ¢ > 1. Consider the group I with signature
0, +, [my, ..., Wy, ..., m], {(2°*1), (—)}) and a homomorphism @": I'" - 4
detined, on all x’ and ¢’ as in the previous case, and by

@(CU), i=0,...,S—1,
@,(C’lj) =40 (c1o%), i=s,
@(CIO)’ i=S+1,
O)=0(), I=2,...,t+1.

Clearly, I e #% and u(I") = u(N—% < p().
Thus we can assume that if I’ has non-empty period cycle then no

period is equal to 2.
Now suppose that m, = 3 for some k. Consider in this case the group I”

with signature (U, +, Lny, ..., 1], (2°71), (=)'}), where we understand that
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(2271 is an empty period cycle if s—1 =1, n; = m; for i # k and n, =6. Let
@': I" - A be a homomorphism detined by

’ r @(xi)a l#k,
&) = {Q(Xk C10C1s-1), 1=Kk,

@/( 1)_ @(ei)’ i=1,...,t,
DV (@ )+ ... +O (D +O(e)+ ... +0(e),  i=t+1,
1A _ @(clj)9 j=0,-~-,s—‘2,

@(CU)—{Q(QO), j=s—1,

O'c)=0(), 1=2,..,t+1.

Clearly, I"e ¥ and since 1—-2% <(1—-§)+%, we have u(I") < p(I).

Thus we can assume that if I' has non-empty period cycle then all
periods are >4 and as in the proof of 3.3 we argue that ¢,; = ¢;; for j <j
only if j=0 and j =s.

Let us consider two cases now.

() s>r. Let T" be the group with signature (0, +,[—], i(2°™"),
(=)**}), where as earlier we regard (2') as an empty period cycle and let
@': I" > A be a homomorphism defined by

@(xi)a i=1,...,r,
@/(el{)= @(ei—r)’ i=r+1,~...,r+t,
—(O'()+... +0'(e), i=r+i+l,

(¢ V{@(C”)’ J=0 . s=r=1,
‘= O(ci0), Jj=s~-T1,
: O(ci—r+1)s l=r+1,...,r+t.

I" has the desired signature and since 1< 1—1/m;+1 we have that
w(I")y < ().

(2) s<r. Let I" be the group with signature (0, +, [my, ..., m,_ 1],
{(=y*) and let ©': I" >4 be a homomorphism defined by

O(x)=0(x), i=1,...,r—s+1,

@(xr—s+1+i)’ : i=1,..., S—l,
O'(e)) = 1O (ei-5+1) i=s, ..., s+1—1,

~(O(x)+ .. +O (X, es )+ O (D) + ... + 0 (€= 1),

@(Cl,,_l), l=1,...,s,

@(Cl)__.{@(cl-sn)s I=s+1,...,5+t.
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Now, I'"e # is of desired signature and as in the first case we show that
p(I") < (D).

Now for a given abelian group 4 of even order let #*% denote the
subclass of Y consisting of all I' having signatures of one of the following

types (0, +, [—1, {29, (=)}) or (0, +, [my, .., m], {(=)}). We will call

any group with such signature reduced.
Now we may summarize the results of this section.

ProposITION 3.8. Let A be an abelian group of even order satisfying the
hypothesis of Lemma 3.1. Then m, = min {u(I): I'e X%} (see the end of
Section 2 for the definition of m,).

ProposITION 3.9. Let A be an abelian group of odd order. Then m,
=min {u(l): TeX',} and I has signature (1, —, [my, ..., m], {—}).

4. Some elementary algebra.

TueorREM 4.1 (Maclachlan [5]). In an abelian group A let &, ..., &, be
elements such that

E4Et .. +E =0, m&=..=m&=0.

Then there are elements ny, ..., n, of A, which generate the same subgroup of
A as &y, ..., ¢&,, satisfying

’71+’7_2+---+7h=0, npny=...=nn=0,

where
Z (1-1/n) < Z (1-1/m)
i=1 j=1

and in addition the divisibility conditions holds: ny|n,|...|n,.

Tueorem 4.2 (Maclachlan [5]). If

A=2,®..0Z,, where mim; 4,
and
A=2,®..02Z,, where nin; .,
and there exists a homomorphism of A onto A', then n|m; for all i.
5. Following Maclachlan ideas. Let 4 be an abelian group of even order.
Let X = {£,, ..., &} (r = 0) be an ordered r-tuple of elements of A and let
K ={ay,...,a (s=>0) be an unordered s-tuple of trivial or of order 2

elements. Let m,, ..., m, be the orders of &, ..., &,. A couple (X: K) is said
to be generating couple if X U K generates A. For given generating couple
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(X:K)=(Eqy ooy &7 ttyy ..., 1)) let

i=1

s—1+ Y (1-1m) ifs<r,
”(X:K)={r—-1+(s—r+l)/4 if s>r.

For given reduced NEC group I' in %', let '
XN =Iix1,....x,€,....,¢6_,), KI)=lc¢es...5¢1¢])
or
X ={ey, ..., e},
K(I)=1¢10€115--+> €10€1,5-15 €10 €25 -++» €10 Crv1}
according as I' has signature (0, +, [my, ..., m], {(=)}) or (0, +,[-1],
129, (<)}). Since O(I'*) = A, (X(IN:K(I) is a generating couple. It is

also clear that p(I) = p(X (I:K(I).
Conversely, if 4 is an abelian group of even order with non-cyclic

maximal 2-subgroup and satisfying hypothesis of Lemma 3.1 and (X:K)
=(y, ..., & oy, ..., 2) IS a generating couple, then there exists at least one
reduced NEC group I' = I'(X:K) in X, such that u(I'(X:K))= u(X:K).
This is the group with signature (0, +, [m,, ..., m_J, (—=)*"})if s <r and
O, +, [ 4@ Y, (=) if s>r.

In order to define the corresponding homomorphism @ consider two
cases.

Case 1. There exists an element § of order 2 in A such that § # o; for
i=1,...,s.

If s<r, let ® be the homomorphism defined by

O(x) =¢ fori=1,...,r—s,
Oe) = 6;_”,- fori=1,...,s and —(&;+...+¢&,) for i=s+1,
‘ O(c) = Py for I=1,...,s and B for I =5s+1.
If s > r note first that s > 2 (otherwise A is cyclic). Renumerate elements of
K in such way that a,, ..., a, are all distinct elements of order 2 in K. Since
there are at least 3 different elements of order 2 in A, we can assume that
t = 2. (If this is not the case, we can take two of these elements instead of a4,

a, if t =0 and B instead of a, if t = 1.) Then the new tuple K’ gives us the
generating couple (X:K') such that u(X:K') = u((X:K)). Now let

Ole) =¢ fori=1,...,r and —(&;+...+¢&) for i =r+1,
O(cyj) = Bag—17+1 for j=1,...,s—r and f for j=0,s—r+1,
@(cl) =a[s-,-——2+[]+1 fOI‘ l=2,...,r+1,
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where [i] means reduction modt. Clearly, @ is the homomorphism we have
looked for.

Case 2. For every element B of order 2 in A there is i <s such that
B = o;. Renumerate if necessary elements of K in such way that ay, ..., o,
are all distinct elements of order 2 in K. Since 4 has non-cyclic maximal
2-subgroup, ¢t > 3. Let s >r.

If t >s~r, let

Oe) =& fori=1,...,r and —(&;+...+¢) for i=r+1,
Ofcyj) = oy 04y for j=1,...,s—r and a; for j=0,s5—r+1,
Oc) =a,0,,4; forl=2,...,t—(s—71)

and o, for l=t—(s—r)+1,...,r+1.

If t <s—r, let ©® be defined on all e as in the previous case and let
O,) =00, forj=1,...,t—1L afort <j<s—randj—t even, a,_, for
t<j<s—r and j—t odd, a; for j=0, s—r+1, O(c) =0a,—,_,+; for I
=2,...,r+1.

It is easy to see that in both cases @ is the homomorphism we have
looked for. The homomorphism @ in case s < r can be defined similarly.

Now let A = A; ® A, where A, is the maximal 2-subgroup of 4 and
let 4,=2, ®...®Z,, be the canonical decomposition. Suppose that

m1=...=m1=2 and m,+1-7£2.
DEeriniTION 5.1. A generating couple (X:K) = (&, ..., & oy, ..., &) i
said to be '
(@) reduced if ay, ..., o are non-trivial and 4 = ;> ®... ® (o >(~B (X h
(b) divisibly reduced if it is reduced and ]é]]|§,+1| fori=1, r—1,

(c) totally reduced if it is divisibly reduced and &,, ..., ¢, is a canonical
set of generators for the subgroup of A it generates.

LEMMA 5.2. If (X:K) is any generating couple for A, then there exists
(X':K") which is reduced and u(X':K) < u(X:K).

Proof Let X =(¢,...,&] and K = oy, ..., ). If (X:K) is not
reduced, then o;e<éy, ..., ¢, a1, ..., 0, ..., for some i. Thus if K’
= 0y, ..., O, ..., &, (X:K’) is a generating couple, Moreover, if s < r then
p(X:KY)=pu(X:K)=1m,__y, <p(X:K), if s=r+1 then u(X:K’)
= pu(X:K)—}% < pu(X:K)and finally if s > r+1 then s— 1 > r and consequent-
ly p(X:K') = u(X:K)—% < p(X:K). Thus the lemma follows by induction
on s.

Lemma 5.3. If (X:K) is any generating couple for A, then there exists
(X":K') which is divisibly reduced and u(X':K') < p(X:K).




Abelian groups of automorphisms 209

Proof. Let X ={&;,..., &}, K = {ay, ..., a,}. By the previous lemma
we can assume that (X :K) is reduced.

If s>r, let us take the set n,, ..., n of canonical generators for the
subgroup of 4 generated by X. Clearly, t <r and thus pu(X:K)=t—-1+
+(s—t+1)/d<r—1+(s—r+1)/4 = u(X:K), where X' = {n,, ..., n,.

If s<r, let us consider (¢,,...,&¢ _s: &1, ..., &) as a generating
couple in the sense of Maclachlan [5] for the subgroup of 4 generated by X
By Lemma 6.2 [5], there is a set of elements 7y, ..., n,+, of orders n
that generates the same subgroup of A such that n]n,; for every i and

r—s

Z (1-1/n) < Z (1—-1/m). Let X' = ny,..., N+s). Since clearly u(X':K)
< y(X K), (X’ K) is the couple we have looked for.

LEMMA 54. Let (X: K) be any divisibly reduced generating couple for A
and let (X*:K*) be totally reduced generating couple such that |K*| = |K|.
Then pu(X*:K*) < pu(X:K). v

Proof. Let X =1{¢,...,¢&}, K={ay, ..., and X* = {&F, ..., &%),
K* = {af, ..., a¥}.

We have to consider two cases: . r' <r, IL. ¥ =r.

Case I. Consider three subcases.

() r <s. Then pu(X*:K¥)=r—1+(s—r+1)/4d <r—1+4(G—-r+1)/4 =
(X :K).
(i) r=s and s>r’ Then p(X*:K*)=r—-1+(—-r+1)M4 <r-1+

+s—r=s5—1< s—1+2(1—1/m,) u(X:K).
i=1
(i) s<r. If s=r" then

p*:K¥)=r—-1<r—1+4+ ) (1-1/m) = u(X:K).
i=1
Thus let s <r' < r. Since both couples are reduced, 4 = (X*> ® (K*)
=<{X)Y® (K). Now since |[K* =|K|, (X*>=(X). Let my,...,m, and
Ny, ..., n. be the orders of &, ..., & and &%, ..., &X respectively. We want to
employ Theorem 4.2. So let 4’ = Zn, ®... @Zmr and A" = Z,,,1 ®... ®Z,,
where dy =...=d,_,=1and d,_,,.,=nfori=1,...,r.
We have an epimorphism of A’ onto A”. Thus, by Theorem 4.2, d;|m; for
i=1,...,r. Thus
u(X*:K*¥)=5—1+ 7 1-1/n)=s—-1+ Z (1-1/d)
i= 1 i=1

r—s

<s—1+ ) (1-1/m) = p(X:K).
i=1
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Case II. Consider two subcases.

(i) s > r. Then clearly u(X*: K*) = u(X:K).
(ii) s <r. Then the proof is contained in Case I (iii).

CoroLLARY 5.5. Let A be an abelian group with non-cyclic maximal
2-subgroup and satisfying hypothesis of Lemma 31. Then m, =
min {u(X:K): (X:K) is totally reduced generating couple for A).

LEMMA 5.6. Let A be an abelian group with cyclic maximal 2-subgroup
satisfying hypothesis of Lemma 3.1. Then m, = min {u(I'): T € ¥4 and T has
signature (0, +, [my, ..., m], {(=)})-

Proof. By Proposition 3.8, it is sufficient to show that for any reduced
group I' in A, there exists I'"'e#', with desired signature such that
u(I") < u(I). Clearly, such group has no non-empty period cycles.

Let I' has signature (0, +, [my, ..., m], {(—)}) and let @ be the
corresponding homomorphism. Let § be the only element of order 2 in A.
Consider the group I with signature (0, +, [ny, ..., n.4,-1], {(—)}), where

_m i=1,...,r, ,
T lOe ), i=r+1,...,r+s—1,

and the homomorphism @: I' - 4 defined by

, @(xi)’ i=1,...,r,
O'(x) = {@(ei_,), i=r+1,...,r+s—1,
@' (¢) = O(e) and O'(c") = B.
Since A has only one element of order 2, we have @(c,) =... = @(c)
and hence I'eA',. Now since 1—1/n; <1 for i=r+1,...,r+s-1,
u(I”) < u(I). Hereby the lemma is proved.

6. Minimum genus. We have reduced the problem of finding the mini-
mum genus of surfaces of genus p > 3 for which a given abelian group A4 is a
group of automorphism to the problem of calculating m,. In the light of the
previous considerations it is natural to split the problem into following cases.

(i) A satisfies hypothesis of Lemma 3.1 and has non-cyclic maximal 2-
subgroup.

(ii) A satisfies hypothesis of Lemma 3.1 and has cyclic maximal 2-
subgroup. ‘

(iii) 4 is of odd order.

(iv) A does not satisfy hypothesis of Lemma 3.1.
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PROPOSITION 6.1. Assume that an abelian group A satisfies hypothesis of
.Lemma 3.1 and has non-cyclic maximal 2 subgroup. Let A = Z%5 @ A’, where s
is as big as possible and A’ =Z,, ®...®Z,, is the canonical decomposition.

Suppose that my, ..., m, are odd and my., ..., m are even. Then
( k—s
s—1+ Y (1—1/m) if s<k—I,
i=1
k—1 if s—(k—1)=2I,
k—1+(—k—1+1)/4 - if s—(k—1)> 2l
ktl-s)/2

my={(k+s=1)2—1+ Y (I=1/m) if 0 <s—(k—1) <2l

i=1
.and s—(k—1) is even,
k+l-s—1)/2

(k+s—=I1-1)/2—-1+ Y (1'_1/’"i)+(1_1/2m(k+l~s+1)/2)v

i=1

| if 0 <s—(k—1) <2l and s—(k—1) is odd.

Proof. By Corollary 5.5, we have to minimize (X :K) over all totally
reduced generating couples (X:K). Although for given abelian group A,
totally reduced generating couple (X :K) is not uniquely determined by the
number of elements in K, the sequence (n, ..., n,: u), where n; = ||, u = |K]|
and u(X:K) are. We will refer to any such sequence as to the sequence
corresponding to u.

Let s<k—I We will show that if (X:K) is any totally reduced
generating couple and (n,,..., n: u) is the sequence corresponding to
u = |K| in which n,, ..., n, are odd and n,,,, ..., n, are even and u <r—t,
then for any v <u and for any totally reduced generating coupie (X':K)
with |K'| = v, we have u(X:K) < u(X':K’). It can be done by induction on
u. The assertion clearly holds for u = 0. Suppose that the assertion holds for
some u <s. We will prove it for u+1. Let (X:K) be any totally reduced

generating couple with |K|=u+1 and let (ny,..., n: u+1) be the corre-
sponding sequence where n,, ..., n, are odd and n,,,, ..., n, are even and
u+l<r—t.

Now let v <u+1 and let (X':K’) be totally reduced generating couple
with |[K'| = v.

If v=u+1 then clearly u(X':K') = u(X:K).

If v =u, let us consider two >cases:

(i) t = 1. Then the sequence corresponding to u is the following one
(ny,...,n_yq, 20, M4q,...,nm: u). Thus
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r—(u+1)

p(X:K)=(u+1)-1)+ Z (1-1/n)

t—1 -

=u—1+ Y (1=1/m)+(1-1/2n)+ rZ“ (1=1/n)

i=1 i=t+1
+1-(1-12m)+(1-1/n)—(1—-1/n,_,)
= u(X":K)+ n,_,—1/2n,.

Now since u+1 <r—t, r—u > t+1. Thus n,_, is even. Since n, is odd and
in addition nin,_,, n._,/n = 2. Consequently, 1/n._,—1/2n, < 0. Hence
(X :K) < pu(X': K').

(ii) t = 0. Then the sequence corresponding to u is the following one
(2, ny, ..., n,: u). Thus

r—(u+1)

p(X:K)=(@+)-1)+ Y (1-1/n)

i=1

U= 141+ T (1= 1/n)

+1-(1=-)-(1-1/n_.)
= p(X":K)=1+3+1/n,_, < u(X":K).

Finally if v <u then let (X”: K”) be totally reduced generating couple with
|IK”| = u. Then by the previous case u(X:K) < u(X”:K”) and by induction
hypothesis u(X":K") < u(X':K').

Thus m, is attained for (X : K) with |[K| = s and it is easy to see that it is
equal to the value declared in the proposition.

Let s—(k—1) > 2l. Note first that if (X:K) is any totally reduced
generating couple in which |K|=u<s and (ny,...,n: u) is the corre-
sponding sequence with n,, ..., n, odd and n,.q, ..., n, even and u—(r—t)
> 2t, then for any v <t the sequence corresponding to u—v is
(Byy ey My F2M ity oeey 2, Byqy oony By u—0). Thus u(X':K)=r—1+
+u—v—r+1)/4d <r—1+@wu—r+1)/4 = u(X:K) for any totally reduced gen-
erating couple (X':K’) with |[K'| =u—v.

On the other hand, let (X :K) be any totally reduced generating couple
with u = |K| and let (ny, ..., n,: u) be the corresponding sequence in which
ng, ..., n, are even. Then for any v < u the sequence corresponding to u—v is

@, .7.,2, Ry, .oy M u—v). We will show that for any totally reduced
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generating couple (X': K’) with |K’'| = u—v we have pu(X:K) < u(X':K'). By
induction, it is sufficient to prove it for v = 1.
If u<r then u—1<r+1 and thus

u(X :K) =u—1+r2“(1—1/ni)

i=1
r~ut+1

=(@-D-1)+0-H+ ¥ (1-1nm)

+1 _(1 —%)_(1_ 1/mr-—u+l)
= (X K) =145+ Umy_ sy < p(X:K)).

The cases u =r+1, r+2 and u >r+2 are similar.

So in the case s—(k—1I) > 2l, m, is attained for (X:K) with K| =
s—(k—1) and, finding the sequence corresponding to s—(k—I), one can show
that it is equal to the value declared in the proposition.

For s—(k—1) = 2l the proof is essentially the same as in the previous
case.

Now let 0 <s—(k—1) <2l and let s—(k—1) be even. We will show first
that if (X:K) is totally reduced generating couple with u =|K| and
(ny, ..., n: u) is the corresponding sequence in which n,, ..., n, are odd,
Mtys ..., n, are even and 0 <u—(r—r1) <21, then for any v < (u—(r—1))2
and totally reduced generating couple (X':K’) with |K'|=u—nv,
p(X':K') < u(X:K). Note first that (u—v)—(r—(t—v) =u—(r—1t)—2v <
2t—2v=2(t—v) and v <t. Thus it is sufficient to prove the assertion for
v=1.

The sequence corresponding to u—1 is (ny, ..., n_y, 20, Myq, ...y B!
u~1). Let (X":K’) be any totally reduced generating couple with |K'| = u—1.
If u<r then u—1 <r and .

w(X:K) = u—1+’2“(1—1/ni)
i=1

(=)= 1)+ Y (L= 1)+ (1= 1k gy )+ 1= (1 1k )

i=1
= u(X":K)+ 1k sy 2 p(X:K),

where k,_,,; =2n, f r—u+1=t and n,_,,; if r—u+1 <t.

Ifu>r+1thenu—1>r=rand thus u(X:K)=r—1+(u—-1)—r+1)4
<r—=14+@u—-r+1)/4 = u(X:K).

Finally, if u=r+1 then u—1=r and pu(X:K)=r—1+@m—-r+1)/4
>r—1=u(X":K).

On the other hand, if (X :K) is totally reduced generating couple with u
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=|K| and (n, ..., n: u) is the corresponding sequence in which u <r,
ny, ..., Ny, are odd and n,_,,, ..., n, are even, then for any v <u the
sequence corresponding to u—v 1S (Mg, ..oy B yopy 2 yiptqs -oes 2y,
Ry ysts--s M u—v) or (2,...,2,2n,...,20,_ 4, Be_yyy,s ..., 20,0 U—0) ac-
cording as v < r—u or v > r—u. Then as in the previous case one can show
that pu(X: K) < u(X':K’) and thus m, is attained for (X:K) with |K|=
s—(s—(k—1)/2 and is equal to the value declared in the proposition.

Finally, let 0 <s—(k—1I) <2l and let s—(k—/) be odd. Then as in the
previous case we show that if (X:K) is totally reduced generating couple
with the corresponding sequence (ny, ..., n,: #) in which ny, ..., n, are odd,
M+y, ..., 1, are even and u = (r—t)+1, then for any totally reduced gener-
ating couple (X': K’) such that |K'| >u or |[K') <u—1, u(X:K) < u(X":K").
On the other hand, the sequence corresponding to u—1 is the following one
(ny, ..., m_y, 20, Myq, ..., u—1). Let (X':K’) be totally reduced gener-
ating couple with |K’| =u—1. Then

u(X:K)= u—1+'rzu(1—1/ni)

r—u

=(@=D-1)+ 2 (1=U/m)+(1=1/2n s 1)

i=1
_(1 - 1/an—u+ 1)+1
= pu(X":K)+1/2n,_ 4y 2 p(X":K').

Thus m, is attained for (X:K) with |[K|=s—(s—(k—1)—1)2 =(s+k—
—1-1)/2 and it is easy to see that it is equal to the value declared in
the proposition.

ProrosiTiON 6.2. Assume that an abelian group A satisfies hypothesis of
~Lemma 3.1 and has cyclic maximal 2-subgroup. Let A =2y ®...0Z, be

the canonical decomposition. Then my = —1+ Y (1—1/m).
i=1
Proof. By Lemma 5.6, we have to minimize u(I') over all groups in %',
which have signatures of type (0, +, [ny, ..., n,], {(—)}). Every NEC group
in X, with such signature determines generating couple (X(I):K(I))
=(xy, ..., X2 @) such that p(I')= u(X(I:K(I). Conversely, given any
generating couple (X:K)=(¢q, ..., &: @) determines an NEC group
I'(X:K) in %, with signature (0, +, [ny, ..., n,], {(=)}), where n, =|&|
such that u(I'(X:K))= u(X:K) (the corresponding non-orientable surface-
kernel homomorphism is given by @(x) =¢&;, O(e) = —(&;+ ... +&) and
©(c) is the only element of order 2 in A). ,
Thus in order to find m, for the group in question it is sufficient to
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minimize p(X:K) over all generating couples (X : K) with empty K. Hereby
the assertion follows from Theorem 4.1.

ProrosiTiION 6.3. Let A be an abelian group of odd order and
lee A=2, ®..®Z, be the canonical decomposition. Then m,

=—1+) (1-1/m).
i=1

Proof. By Proposition 3.9, we have to minimize u(I') over all groups in
X', which have signatures of type (1, —, [ny, ..., ng], | —}). For any NEC
group I in .#, with such signature (X (I):K(I) = (x,, ..., x,: @) is gener-
ating couple for A such that u(I') = u(X(I:K(I)). Conversely, for any
generating couple (X:K) = (&, ..., &: Q) there is at least one NEC group
I(X:K) in .#, such that u(X:K)= u(I'(X:K)). This is the group with
signature (1, —, [ny, ..., n;], {—]), where n; is the order of ¢ (the corre-
sponding non-orientable surface-kernel homomorphism © is given by
O(x;) =¢ and ©(d) is an element satisfying 20 (d) = — (&, + ... +&).

Thus as in the previous proposition we obtain the assertion.

ProPOSITION 6.4. Assume that an abelian group does not satisfy hypothesis
of Lemma 3.1. Then my=m—-1/2m if A=Z,®2Z,, and my=% if A
= 22 (“BZZ ®ZZ or A =Zz ®ZZ

Proof. Let A=Z, ®Z,. Then it is easy to observe that for any NEC
group I in X, u(I) is an integral multiplicity of . On the other hand, an
NEC group I' with signature (0, +, [2], {(2, 2, 2)}) belongs to %, — the
corresponding homomorphism @ is defined in the following way. Let ¢, &,
be generators of A. Then O (x) = @(e) = O (cy) = O(c3) = &4, O(cy) = &, and
O(c,) =&, +&,. Moreover, u(I') =%. Thus m, =%

In the same way one can show that for the group A =2,®Z, D Z,,
m, is also equal to %.

Now let A =7, ®Z,,, where m > 1. Consider an NEC group I" with
signature (0, +, [2, 2m], {(—)}). Let &,; £, be canonical generators of A and
let @: I' > A be the homomorphism defined by @(x;) =&, ©(x,) =&,
O(e) = —(¢;+&) and O (c) =¢;.

Clearly, © is non-orientable surface-kernel homomorphlsm and thus
rex . p(I') =(m—1)/2m. We will show that this is m,.

Let 'e X, and let ® be the corresponding homomorphism.

(i) If I' has more than 2 period cycles, then u(l) > 1
@iy If I has 2 non-empty period cycles, then u(I') > 1.
(iii) If I has 2 period cycles one of which is non-empty, then p(I) > 1.
(iv) If I" has 2 empty period cycles, then there is at least one period or
the genus is greater than 0 (otherwise u(I) = 0). In both cases u(I') >}
(v) Assume that I' has 1 non-empty period cycle. Then either the genus
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is greater than O or I' has some periods (otherwise since e =1, A has only
elements of order 2 what is a contradiction since m > 1).

If I' has genus greater than O then u(I') > 4. Thus suppose that the
genus is 0.

If I' has more than one period then u(I') > 4. Assume then that has 1
period only. Clearly this period must be m or 2m.

If the period is m then the period cycle must “provide” 2 elements of
order 2. Consequently s>3 and thus p(N > —24+1+42+(1-1/m=
3m—4)/4m > (m—1)/2m.

If the period is 2m then u(N) = —2+1+4+(1—=1/2m) = (m—1)/2m.

(vi) Assume that I' has 1 empty period cycle. Then:

If I" has 1 period, then the genus is greater than O (otherwise u(I') <0).
Thus let the genus be greater than 0 and let k be the period. Then u(I) =
(k—1)/k = (m—1)/2m.

If I' has 2 periods and the genus is greater than O, then u(I') > 1. So let
the genus be 0 and let k, / be the periods. A is generated by x,, x,. Thus k

=2 and [ = 2m. Consequently, u(I') = (m—1)/2m.
If I' has more than 2 periods, then u(I') > 3.

(vii) Assume that I' has no period cycles. Then the genus is greater than
0 and the sign is — (otherwise I' is a Fuchsian group).

If the genus is greater than 2, then u(l) > 1.

If the genus is 2, then I has some period (otherwise u(I) = 0) and thus
u(l) =3

If the genus is 1, then I' has at least 2 periods (otherwise u(I) <0). If I’
has more than 2 periods, then u(I') > 4. Assume thus that I" has 2 periods
k, I. Since A is generated by d?, x;, x, and d* = —(x;+x,) so k=2 and
| = 2m. Consequently, u(I') =(m—1)/2m.

Hereby we showed that m, = (m—1)/2m.
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