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1. Introduction. Let X  be a compact Klein surface without boundary of 
algebraic genus g ^  2. Singerman [6] showed that the order of a group of 
automorphisms of X  is bounded above by 84(0—1). On the other hand, 
Bujalance showed that every finite group can be represented as a group of 
automorphisms of a compact Klein surface without boundary [2], [3].

Thus this bound may be considered as a particular case of finding the 
minimum genus of surfaces of genus p ^  3 for which a given group G is a 
group of automorphisms. The case of cyclic group was considered by 
Bujalance [2]. In this paper we consider the above problem for finite abelian 
groups. The corresponding problem for compact orientable Klein surfaces 
was solved by Maclachlan [5].

2. Preliminaries. By a compact Klein surface without boundary we mean a 
compact surface without boundary together with a dianalytic structure [1]. 
It is well known that a compact Klein surface may be expressed as С+/Г, 
where C+ is upper half complex plane with hyperbolic structure and Г is a 
certain non-Euclidean crystalographic group (NEC group).

An NEC group is a discrete subgroup Г of the group ^  of isometries of 
the non-Euclidean plane C+ (including those which reverse orientation- 
reflections and glide-reflections) with compact quotient space C+/Г.

Let denote the subgroup of index 2 in ^  consisting of orientation 
preserving isometries. An NEC group contained in is called Fuchsian 
group, otherwise it is called a proper NEC group. Given an NEC group Г let 
Г + = Г глУ+ be the canonical Fuchsian subgroup of Г. Macbeath and 
Wilkie [4], [7] associated to every NEC group a signature that has the form

(1) (g> i  ? [>b, ..., mf\, i(nj i , . •., ŝ ), • •., {n̂ i , ...,

and determines the algebraic structure of the group.
The numbers m, (щ > 2 , r ^  0) are the periods, the brackets 

{nn , ..., nis.) (к ^  0, st ^  0, пи ^  2) are the period cycles, and g ^  0 is called
the orbit genus.
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Sometimes we will denote the period cycles shortly by C1? Ck and in 
that way the signature just defined can be written in the form

(g, ± , [> ь  ..., mr], \CU ..., C*}).

The group with signature (1) has a presentation with the following 
generators

(i) Xj, ..., xr,
(ii) eu  ..., ek,

(iü) Go, ... , Gsj , •••> GcO, •••, k̂sk,
(iv) al t blt ag, bg (if the sign is +), du  dg (if the sign is - ) , 

subject to the relations

(i) x"1' = 1, i = 1, r,

(ii) Go =  Gy =  (Çî,j— l G/)  ̂ 1, i Д )  j  1, •••» G»
(iü) G"1 Go G G4 = 1, i = 1, ... Д ,
(iv) ...x r Ci ...Cfcax bj a f 1 b f 1 . . .dgbgd'1 bg1 — 1 (if the sign is +), 

x i . . . x rei . , .ekdi.. .dg — l (if the sign is —).

Hereafter the letters x, a, b, c, d, e will be used for these canonical 
generators of the group only. Let а: Г ->Z2 be a homomorphism which 
maps all x, a, b, e onto 4-1 and all c, d onto —1. We denote Kera by Г +. 
A group with the above presentation is called in this paper a group with 
signature.

Every NEC group Г has an associated fundamental region whose area 
depends only on the group and not the region chosen. It is given by 2

(2) |Г| = 2n(rig + k — 2+ £  (1 -1 M )+  £  £  (1- 1 /^ /2 ) ,
i= l i =  1 j =  1

where rj = 1 if the sign is — and rj = 2 if the sign is -K
Conversely, if for a group with signature Г the right-hand side expres­

sion of (2) is greater than zero, then Г can be realized as an NEC group with 
signature (1) [8].

If Л is a subgroup of finite index in an NEC group Г, then it is an NEC 
group and

[Г:Л ] = И|/|Г|.

An NEC group Гр is called the group of a non-orient able surface if it has 
signature (p, {—}) where [ — ] indicates that the signature has no
periods and j —} that the signature has no period cycles.

A homomorphism 0  of a proper NEC group Г into a finite group G is
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called non-orient able surface-kernel homomorphism if Ker<9 is a group of 
surface and 0 ( T +) — G.

The following theorems will be basic for our considerations.

T h eo rem  2.1 (Singerman [6]). A necessary and sufficient condition for a 
finite group G to be a group of automorphisms of a non-orient able Klein
surface of genus p ^  3 is that there exists a proper NEC group Г and a non-
orientable surface-kernel homomorphism 0  : Г G.

T heo rem  2.2 (Bujalance [2]). A homomorphism 0  of a proper NEC group 
with signature (1) into finite group G is a non-orient able surface-kernel
homomorphism if and only if 0(с,7) has order 2, <9(x;) has order
m,, l cij) has order пи and 0  (Г+) = G.

For a finite group G, let Ж G denote the class of all proper NEC groups 
Г for which there exists a non-orientable surface-kernel homomorphism 
<9: r-+G.

If G is ah abelian group then cfj)2 = 1. Thus all = 2. More­
over, there are no period cycles of the length 1, otherwise 1 = 0(ecioe~1 cn) 
= 0(ciocn ) what is impossible since all n{j are greater than 1. Similarly, if G 
is of odd order, then the set of period cycles is empty. Thus we have the 
following corollary:

C o ro llary  2.3. Let A be a finite abelian group. Then any Т е  ЖА has a 
signature (g, ± , [ml5 ..., mr], {(2Sl), ..., (2s*), (-)'}), where su  ..., sk ^  2, (2s) 
denotes (2, .?., 2) and ( —)* an empty period cycle repeated l-times. Moreover, if 
A is of odd order, then Г has signature (g, —, [ml5 ..., mr], { —}).

By Theorem 2.1 we have that if G is a group of automorphisms of a 
non-orientable Klein surface of genus p ^  3, then G = Г/Гр for some proper 
NEC group Г. Thus 2n{p — 7)!\G\ = \T\. In the case of abelian group A we 
have

r
(3) (p — 2)/\A\ = g — 2+ (1 — l/mi) + k + l + (s1 + ... +sk)/4.

i= 1

We want to find the minimal p for a fixed A and thus we have to minimize 
the right-hand side expression on the class ЖA. Let us denote this minimum 
for a group A by mA.

3. Some reductions. An abelian group A is uniquely determined by 
its invariants ml , . . . , m s, where гщ\т1 + 1. When A is given in the form 
A = Zmi 0 . . .  ® Z mj we say that it is in canonical form and the generators of
the cyclic groups will be called canonical generators.
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For given homomorphism 0  of an NEC group Г into abelian group A, 
denote by x, a, b, c, d, e elements of A corresponding under the homomor­
phism © to the canonical generators of Г.

Lemma 3.1. Let A be a поп-cyclic abelian group different from 
Z 2 © Z 2m (m ^  1) and Z2 © Z2 © Z2. Let Г be a group with signature (1 ) for 
which Г + Ф Г and let 0 : Г -* A he a homomorphism such that <9(xf) has 
order m,, ©(c^) has order 2, 0(cij - 1 си) has order n{j and 0 { Г +) = A. Then 
Г is an NEC group and 0  is a non-orient able surface-kernel homomorphism.

Proof. Assume that an abelian group A and a homomorphism 0: Г 
->A satisfy hypothesis of the lemma. Arguing as in the proof of Corollary 
2.3 we show that Г has signature of the following type: 
(g, ± , I> ! ,  mr], {(2s1), ..., (2s*), (-)*}). Since Г + #  Г, we have that g > 0 
and the sign is — when the set of period cycles is empty. Suppose that the 
group Г is not an NEC group. Then the right-hand side of (3) for Г is less 
than 0 and it is easy to check that the following is the complete list of such 
groups.

(0, + , [ - ] ,  {(-)!), (0, + , [m], {(-)}),
(0 , + , [ - ] ,  { ( - ) , ( - ) } ) .  (0 , + ,  [ 2 ] ,  {(2 , 2 )}),

(0, {(2, 2, 2)}), (0, + , [ - ] ,  1(2, 2, 2, 2)}),
(1 . { ( - ) } ) .  

(2, -

(1 , — , [ 2 ] ,  { - > ) ,

(0, + , [ 2, 2], ((-)}), 

(0,  +  , [ - ] ,  1(2, 2)1), 

(1, -  1 -Î) .
(1 , - , [ 2 , 2 ] ,  ) - } ) .

Take Г with signature (0, + , [2, 2], {( — )}), for example. Г is generated by 
xl9 x2, c, e subject to the relations x\ = x2 = c2 — e~1 cec = x 1x2e = 1. 
Now for given homomorphism 0: Г -> A satisfying the hypothesis, A is 
generated by xl5 x2, e. Since e = — (xt + x 2), we have that the third generator 
is redundant and hence A is generated by two elements of order 2. Thus A is 
not the group in question, a contradiction. The remining cases can be proved 
similarly.

For the rest of this section, let A be an abelian group satisfying the 
hypothçsis of the previous lemma. For any Г ejCa denote |Г|/2я by g(T).

Lemma 3.2. Let Г e ЖA be a group with non-empty set of period cycles. 
Then there exists Г ' еЖА with orbit genus zero such that p(T') ^  p(T).

Proof. Assume that Г has signature (g, + , [m1? ..., mr], {Clf ..., Cfc})
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and let 0  be a corresponding non-orientable surface-kernel homomorphism.
Consider the group Г' with signature (0, -I-, [nl5 nr+2g], 

ICi, •••, Ck}), where
( Щ, i = l , . . . , r ,

n, = < |0(a,_r)|, i = r+ 1 , ..., r+g,
4 0  (Ь/-(г+9))|, i = r + 0 + l , . . . , r  + 2g,

and the following homomorphism 0 \  Г  -*■ A

| 0 ( 4  i = l , . . . , r ,
O'(xl) = <в(а,-_г), i = r + 1 , ..., r + g,

l0 (b i - (r+g)), i = r + g + 1, r + 2g,

®'(cy) = e(cy), i = 1 , ..., k; ;  = 0, ? î>

0 '(4)
0 (cÉ), i = l , . . . , k - l ,
— (0 '(xV)+ ... + 0 '(xr+2») + 0 (^i)+ ••• + 0 (ek-i))> 1 — k.

By Lemma 3.1, Г еЖ А. Moreover,

д(Г) = д(Г)-(1/пг+1+. . .+ 1 /пг+2в) < д(Г).

Now suppose that Г has signature {g, —, [m1? ..., m j, {C^ ..., CkJ), 
and let 0  be the corresponding homomorphism.

Consider the group Г  with signature (0, + , [щ, ..., nr+g], ‘C1? ..., Ck[), 
where

( mt, i 1 , ..., r ,
(|<9(4_rc10)|, i = r + l ,  ..., r + g.

If some nt are equal to 1, then we regard that this period does not appear in 
the signature.

Let 0': Г' A be the homomorphism given by

0 'W)
&(Xi), i = 1, . . r,
0(di-rClo), i = r+ 1 , ..., r + g,

0'(e'd

0'(с'и) = 0(Cij), i = 1 , ..., k; j  = 0, ..., sh

<9 (C;), j = 1 , ..., к — 1 ,
— (0 '(x1)+ ... +0'(xr+g) + 0 (e1)+ ... + 0 (ek- 1)), i = k.

Now, since 2(d- + c10) = 2d,, (di + cl0) + (dj + cl0) = d, + dj, (rfi +  q 0) + (cio + cu) 
= d; + cki> we have that <9'(Г+) = A and thus, by Lemma 3.1, Г ' е Жа. 
Moreover, д{Г) = д(Г)-{1/пг+1 + ... + l/nr+9) ^  д(Г)-

Lemma 3.3. Assume that Г е Жа has signature (0, + , [mlf ..., mr] ,
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ICx, ..., CkJ). Then there exists Г' еЖ А with signature (0, + , [nb ns], 
{Cl5 . . C(î) such that = (2s), Сг = ... = Ct = ( —) and д{Г) ^  g{T).

Proof. By Corollary 2.3 we have that Cv = (2*1), ..., Cn = (2s"), 
Cn+ ! = . . .  = Ck = ( - ) ,  where su  ..., s„ ^  2.

Firstly, note that we can assume that, for any i ^  n, we have cfJ- = ciy for 
j  < f  only if у = 0 and f  = st. If this is not the case for some i0, let 
0 <Л < .. .  < л_ ! < S;0 be integers such that ciQ>0, ciQjl, ..., ci()Js_ 1 are all 
different elements among ciQ>0, ci()1, ..., ci()S . Consider the group Г  with 
signature (0. + , [mlt ..., mr], \C[, ...,C'k)), where C\ = Ct for i Ф i0 and C'iQ 
=  ( 2s).

Let O': Г' —* A be a homomorphism defined by ©,(x$ = 0{x i) for
i = 1 , •.., r, 0'(el) = 0(е{) for i = l, ..., к and

(&(cit), i Ф i0i t = 0, ..., st,
0'(c'it) = w k 0,0)) i = i0, t = 0, s,

'© feci,). i fо> i l , . . . , s  1

Clearly, Г  еЖ А and д(Г') ^  g (Г); hence, repeating the procedure for other 
period cycles if necessary, we obtain the assertion.

Secondly, we can assume that for any two non-empty period cycles Ch 
Cu we have си Ф cut for any j  = 0, ..., st and t = 0, ..., st. If this is not the 
case, let Г  be a group with signature (0, -I-, , ..., mr] , \C\ , ..., Ck}), where
Q  = Ct for i Ф и and Cu = (2S“ *) and let O': be a homomorphism
defined by 0 '{x •) = <9(xf) for i = 1 , ..., r, 6>'(e-) = 6>(e,) for i = 1 , ..., к and

i Ф u, j  = 0, . • • , $i »
i = u, j  = 0, . .., r - 1 ,

®(cuJ+ i), i = u, j  = t, . .., su 1 ,

Clearly, Г 'е Ж А and д(Г') ^  g{T), and hence, repeating the procedure for 
other period cycles if necessary, we obtain the assertion.

We will prove the lemma by induction on n, the number of non-empty 
period cycles. Clearly, it is true for n = 1. For n > 1 consider the group with 
signature (0, + , [ml5 ..., mr], {Cu  ..., C; _ l5 (-)*~"+1|), where C- = Cf for 
i ^  n - 2  and C„_t = ( 2S"_1 s").

Let O': T ' ^ A  be a homomorphism given by O'(x|) = 0  (xj for 
i = 1 , ..., r, 0'(e'i) = &{et) for i = 1 , ..., к and

® (Cij), i = 1 , . . . ;, n - 2, 7 = 0, . . . ,  s.
i = n — 1 , 7 = 0, . . . ,  si
i — n — 1 , j  = S „ _  j ,  . . .

®(c„-l,o), i = n — 1 , j  = s ^ + s ,
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Two previous remarks guarantee that 0 '  is a non-orientable surface- 
kernel homomorphism and thus Г 'е Ж A. Clearly, ц(Г') = /л(Г); hence the 
lemma.

L em m a  3.4. Assume that Г еЖ А has signature (g, — , [m 1} ..., mr] ,  { — }), 
g ^  1. Then there is 1 < i such that ^ е 0 ( ( х г, ..., xr, dly ..., dh ..., dg}+), 
where <х1? ..., xr, dx, ..., d{, ..., is t/ie subgroup of T + generated
by the elements in brackets with dt omitted.

Proof. Since 0 ( Г +) = A, dx — w for some w e T +
Consider two cases.

(1) Exponent sum of dl in w is even. Then since d\ = {dl. •. dg x t ... xr)“ \  
we obtain that dx E0(<xb ..., xr, d2, ..., d9>+).

(2) Exponent sum of dx in w is odd. Then there exists 2 ^  i ^  g such 
that exponent sum of dt in w is odd (otherwise w $ r +). Thus we have that 
di = v for v = w d ï 1 d{ е Г + and exponent sum of d{ in v is even. As in the pre­
vious case we obtain that Й, е 0 (<х15 ..., xr, dx, ..., diy ..., d9>+).

P r o po sitio n  3.5. Let A be an abelian group of even order and assume that 
Г еЖ А has signature (g, — , [ml5 ..., m,], { —}). Then there exists Г' еЖ А 
with signature (0, + , [n1} ..., ns], {( — )}) such that р{Г’) ^  p{T).

Proof. Note first that since Г + Ф Г, g ^  1. By Lemma 3.4, there is 
i < g such that ^ е б ^ х ^  ..., xr, dx, ..., dt, ..., dg}+). Consider the group 
Г  with signature (0, + , l> i , ..., nr+g^{], {(—)}), where

Cmj, j  = 1, ..., r,
nj = < \0{dj-r)\, j  = r + l, ..., r + i - 1 ,

' \@(dj-r+i)U j  = r + i, ..., r + g - 1 ,

and let 0 ’\ Г  -* A be a homomorphism given by

(0{Xj), j  = 1, ..., r,
0 ' (x'j) = < 0 {dj-r), j  = r + 1 , ..., r + 1 -  1 ,

(<9 (dj„r+l), j  = r + i, ..7, r + g - 1 ,

0'{e') = —(©(x^-b ... + 0 (xr+9_1)) and let 0'(c') be any element of order 2. 
Since A is generated by xl5 ..., xr, d±, ..., d{, ..., dg we have that Г  е .Г А. 
Moreover, p(F) = р(Г)-(1/пг+1 + ... + l/nr+g- t) ^  p(T).

P r o po sitio n  3.6. Let A be an abelian group of odd order and let Т е  ЖA. 
Then there exists Г' е Ж А with a signature (1, —, [n1} ..., ns], { —}) such that 
р ( П  ^  p{T).

Proof. Note first that by 2.3 Г has signature {g, — , [ml5 ..., m,], { —}). 
Let i ^ g  be an integer such that di e 0 ( { x l , ..., xr, dt , ..., dt, ..., dg}+).

3 — Commentationes Math. 28.2
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Consider the group F  with signature (1, —, [nx, ..., ns], {—}), where и,- are 
defined as in the previous proposition and let 0': F  -> A be a homomor­
phism defined on all x' as in the previous proposition and let &'{d) be the 
element of A satisfying 2-0'(d) = —( 0 ,(x \ )+ . . . + 0 ' (x ,r+g- l)). Clearly, 
Г 'еЖ А and as in the previous proposition g(F) < /х(Г).

Now let for given abelian group A of even order ,Ж°А denote the 
subclass of ЖA consisting of all Г having signatures of the following type 
(0, 1(2*), (—)'!)■

Lemma 3.7. Let Г е Ж^. Then there exists F e ЖA with signature 
(0, + , [ - ] ,  !(2s) , ( - ) fJ) or (0, + , [mj, ..., mr], {( — )*]) such that g(F) ^
М П

Proof. Assume that Г has signature (0, + , [ml5 ..., mr], {(2s), ( — )*}). If 
s = 0 or r — 0 then the assertion clearly holds (Г has signature of the desired 
form). Suppose thus that s ^  2 and r > 0. Let 0  be the corresponding 
homomorphism.

Suppose mk = 2 for some k. Then two cases are possible.
(1) xke<c10, ..., cls, c2, cf + 1>+. Consider the group F  with signa­

ture (0, + , [ml5 ..., mk, ..., mr], {(2s), (-)'{) and a homomorphism 0': 
F  -► A defined by

6>'(*;)
0(xi), i = 1 , ..., k - 1 ,  
0 ( x i + l), i = k, ..., r - 1 ,

0 ’{e[) 0(ед,
~(0'(x'l)+ . . .+ 0 ' (x ' r- l) + 0{e l)+ ... + 0(et)),

i = 1 , ..., t , 
i = t + 1 ,

^  ( c i j )  — 0 ( c i j )  for j  = 0, ..., s and 0'(ci) — 0 (c l) for 1 = 2, . . . , r  + l. 
Clearly, Г 'еЖ А and obviously, fi(F) ^  g(T).

(2) хкф <c10, ..., cls, c2, ..., ct}+. Consider the group Г' with signature 
(0, + , [ml5 ..., mk, ..., mr], {(2S+1), ( — )*}) and a homomorphism 0'\ F  -+A 
defined, on all x' and e' as in the previous case, and by

(0{сц),  i = 0, . . . , s - l ,
0 '(^ .) = Ш С ю х Д  i = s,

l&(c10), i = s+ l ,

0'(c'l) = 0(c l), 1 — 2, ..., t + l.

Clearly, F  е Жа and g (Г) = /л (Г) —i  ^  g (F).
Thus we can assume that if Г has non-empty period cycle then no 

period is equal to 2.
Now suppose that mk = 3 for some k. Consider in this case the group F  

with signature (U, + , L^i, •••, ML {(2S_1), ( — )'}), where we understand that



Abelian groups of automorphisms 205

(2s x) is an empty period cycle if s — 1 = 1, щ — mf for i Ф к and nk = 6. Let 
0': Г' -*■ A be a homomorphism defined by

в'(е'д \0{ед,

i Ф k,
C\,s-l)> i = k,

i = 1 , ..., t,
. + 0  (et)), i = t + 1 ,

;  = o , ...., s - 2,
j  = s - 1 ,

1 = 2,. . . , t + 1 .

i) + 4> we have ц(Г') ^  ц(Г).

1®(C ю),
0'(c'l) = 0 (c l),

Clearly, Г  e and since 1 — ̂  < (1 -
Thus we can assume that if Г has non-empty period cycle then all 

periods are ^  4 and as in the proof of 3.3 we argue that clj = cir for j  < f  
only if j  = 0 and /  = s.

Let us consider two cases now.

(1) s > r. Let Г  be the group with signature (0, + , [  — ], \(2s~r), 
(—)r+'|), where as earlier we regard (21) as an empty period cycle and let 
0': Г' —* A be a homomorphism defined by

(0(Xi), i = l , . . . , r ,
0'(e-) = <0(е{- г), i = r+1, ..., r + t,

l - ( 0 ' ( e ’1) + . . . + 0 ' ( e ’r+t)), i — r + t+ l ,

®(cij), j  = 0, s —r - 1 ,
&(Cio), j  = S - r ,

Q! { A   f0  (CjjS_ r— 1 + j), / 1 , ..., f,
)0 (c/_r+1), / = r + 1 , ..., r+1.

Г  has the desired signature and since 1 ^ 1  — we have that
fi(r) ^  »(Г).

(2) s ^  r. Let Г  be the group with signature (0, + , [mlt ..., mr_s+1], 
!(_)s+f}) anc| jet q >. f  _+a a homomorphism defined by

0'(x[) = 0 ( x t), i = 1 , ..., r - s + 1 ,

6>'(4)
® (Xr-s  + 1 +«)> I == 1, S — 1,
@(ei-s+1)> i = s, ..., s + t — 1 ,
— (0 (xi)-b ... + 0 (x r_s+1)-l-<9'(e'1) + ... +0'(e 's+t- l)),

i = s + t,

0'icd @ l ~  1 * •••> 2 * * S’
0 (c,_s+1), l = s + 1 , ..., s + t.
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Now, Г'е;ЖА is of desired signature and as in the first case we show that
*|(Г) <МГ).

•Now for a given abelian group A of even order let ЖА denote the 
subclass of X'A consisting of all Г having signatures of one of the following 
types (0, + , [ - ] ,  {(2s), ( — )'}) or (0, mr], {(-)*}). We will call
any group with such signature reduced.

Now we may summarize the results of this section.

P roposition 3.8. Let A be an abelian group of even order satisfying the 
hypothesis of Lemma 3.1. Then mA = min{p(T): Г е Ж А\ (see the end of 
Section 2 for the definition of mA).

Proposition 3.9. Let A be an abelian group of odd order. Then mA 
— min \р(Г): Т е  ЖА) and Г has signature (1, —, [ml5 ..., mr], { —}).

4. Some elementary algebra.

T heorem 4.1 (Maclachlan [5]). In an abelian group A let ..., £r be 
elements such that

£1+^2  + •••+£«• = 0, = ... = mr-£r = 0.

Then there are elements rjx, ..., rjt of A, which generate the same subgroup of 
A as Éj , ..., £r, satisfying

1/1 + 1/2+ ... +qt = 0, nx -tu = ... = n, • r]t = 0,
where

t  ( i - i M )  < t  ( i - i M )
i=l 2=1

and in addition the divisibility conditions holds: nl \n2\ ...\nt.

T heorem 4.2 (Maclachlan [5]). I f

A = Z mi © ... © Z mfc, where mi\mi + 1,

and

A' = Z ni ® ... ©Z„fc, where щ\гц + 1, 

and there exists a homomorphism of A onto A', then щ\ пц for all i.

5. Following Maclachlan ideas. Let A be an abelian group of even order.
Let X — ..., ^r) ( r> 0 ) be an ordered r-tuple of elements of A and let
К = {al5 ..., as| (s ^ 0 )  be an unordered s-tuple of trivial or of order 2 
elements. Let ml5 ..., mr be the orders of ..., £r. A couple (X: К) is said 
to be generating couple if X  u  К generates A. For given generating couple
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( X : K ) = ( ( 1.......a j  let

s - l +  £  (1 -l/m ,) if s < r,
1= 1

r —1+(s —r+ l)/4  if s > r.

For given reduced NEC group Г in ЖА let

ц(Х:К) =

Х(Г) = \xu  xr, q ,  ..., _ j j , К(Г) = (q c2, q  ct

or

x ( n  = \ q , - , ^ ,
Х(Г)= {qocu> с10с1)5_ 15 c10c2, q 0ct+1[

according as Г has signature (0, + , [mlt ..., mr], {( — )'}) or (0, + , [ - ] ,  
{(2s), (—)'[). Since 0 { Г +) = А , (Х(Г):К(Г)) is a generating couple. It is 
also clear that ц{Г) = ^(Х(Г):К(Г)).

Conversely, if A is an abelian group of even order with non-cyclic 
maximal 2-subgroup and satisfying hypothesis of Lemma 3.1 and (X : K ) 
= (£i, ..., £r: «1 » • ••, as) is a generating couple, then there exists at least one 
reduced NEC group Г = Г{Х:К)  in ЖА such that ц(Г{Х:K)) = ц(Х:К). 
This is the group with signature (0, + , [m1, ..., mr_s], {( — )s+1}) if s < r and 
(0, + , [ - ] ;  \(2s- r+i) , ( - y \ j  if s > r .

In order to define the corresponding homomorphism 0  consider two 
cases.

Case 1. There exists an element fi of order 2 in A such that fi Ф a, for 
i = l , . . . , s .

If s < r, let 0  be the homomorphism defined by 

0 (x {) = & for i = 1 , ..., r — s,
0 (q) = £r_s+i for i = 1 , ..., s and - ( ^  + ... + £r) for i = s + 1 ,
0  (q) = fitxt for / = 1 s and fi for / = s + 1 .

If s > r note first that s ^  2 (otherwise A is cyclic). Renumerate elements of 
К in such way that a l5 ..., a( are all distinct elements of order 2 in K. Since 
there are at least 3 different elements of order 2 in A, we can assume that 
t ^  2. (If this is not the case, we can take two of these elements instead of a1, 
a2 if t = 0 and fi instead of a2 if t = 1.) Then the new tuple K' gives us the 
generating couple {X:K') such that ц(Х:К') = ц((Х:К)). Now let

0 ^ )  = £i for i = 1 , ..., r and —(ft + ... +£r) for i ~ r + 1 ,
0 (ĉ j) = fay.. 1]+ ! for j  = 1 , ..., s — r and fi for j  = 0, s — r + 1 ,
0 (q) = a[s_r_2 + q+1 for l = 2, ..., r + 1 ,
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where [/] means reduction modt. Clearly, 0  is the homomorphism we have 
looked for.

Case 2. For every element fi of order 2 in A there is i < s  such that 
/3 = a,-. Renumerate if necessary elements of К in such way that a1, ..., oct 
are all distinct elements of order 2 in K. Since A has non-cyclic maximal 
2-subgroup, t ^  3. Let s > r.

If t > s — r, let

0{et) = & for i = 1 , ..., r and —(^  + ... +£r) for / = r + 1 ,
0  (ciy) = olx otj+ j for j  = 1 , ..., s — r and a x for j  = 0, s — r + 1 ,
0{ci) = a 1 as_r+i for / = 2, ..., f — (s —r)

and 0Lt for / = t — (s — r) + 1 , ..., r -h 1 .

If t ^ s  — r, let 0  be defined on all e as in the previous case and let
0 (c lj) = oq ocj+ ! for j  = 1 , ..., t - \ ,  a, for t ^  s - r  and j  — t even, a,-! for
t ^ j ^ s  — r and j  — t odd, for j  = 0, s — r + 1 , <9(сг) — as_r_ 1 + / for / 
= 2, ..., r-f 1 .

It is easy to see that in both cases 0  is the homomorphism we have 
looked for. The homomorphism 0  in case s < r can be defined similarly.

Now let A — A2 © A', where A2 is the maximal 2-subgroup of A and 
let A2 = Zmj © ... © Z mfc be the canonical decomposition. Suppose that 
ml = ... = mt = 2 and ml+1 Ф 2.

D efinition 5.1. A generating couple (X:K) = ( f j , ..., £r: a l5 ..., as) is 
said to be

(a) reduced if a1? ..., as are non-trivial and A = > © ... ® <as> © ( X >,
(b) divisibly reduced if it is reduced and |£,-|||£i + 1| for / = 1 , ..., r — 1 ,
(c) totally reduced if it is divisibly reduced and ..., Çr is a canonical 

set of generators for the subgroup of A it generates.

Lemma 5.2. I f  (X:K) is any generating couple for A, then there exists 
(X ' : K j  which is reduced and p (X' : K') ^  g (X : K).

Proof. Let = J^ , ..., and К = {al5 ..., as{. If (X:K) is not 
reduced, then a,- ..., ^r, a l5 ..., a,-, ..., as) for some i. Thus if K'
= Jals ..., ..., as[, (X :K j  is a generating couple, Moreover, if s ^  r then
p (X :K j  — p(X :K )— l/w,._(s_ < p(X:K),  if s = r + l  then p (X :K j
= p(X  : K)—j  < p(X:K)  and finally if s > r+ 1 then s — 1 > r and consequent­
ly p (X :K j  — p (X :K )—\  ^  p(X:K).  Thus the lemma follows by induction 
on s.

Lemma 5.3. I f  (X:K) is any generating couple for A, then there exists 
(X':K') which is divisibly reduced and p(X' : K j  ^  p(X : K).
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Proof. Let X  = {<*!, £r}, К = {<*!, as}. By the previous lemma
we can assume that (X : К ) is reduced.

If s> r ,  let us take the set rjlf of canonical generators for the
subgroup of A generated by X. Clearly, t ^  r and thus p (X' : X) = t — 1 + 
+ ( s - t + l ) / 4 ^ r - l + ( s - r + l ) / 4  = p(X:K),  where X '= \гп, rjt).

If s ^  r, let us consider (fj, ..., £r_s: £r_s+1, ..., Q  as a generating 
couple in the sense of Maclachlan [5] for the subgroup of A generated by X. 
By Lemma 6.2 [5], there is a set of elements rj1, rjt+s of orders nt 
that generates the same subgroup of A such that щ\щ+1 for every i and

£  (1-1/Hf) ^  £  (1-1/Wf). Let X' = \th, ..., rjt+s\. Since cleariy p{X':K)
i = 1 »=1
^  fi(X:K), (X ':X ) is the couple we have looked for.

Lemma 5.4. Let (X : К ) be any divisibly reduced generating couple for A 
and let (X*:X*) be totally reduced generating couple such that \K*\ = 1X1. 
Then p{X*:K*)^p{X:K).

Proof. Let X = {£j, ..., Çr}, K = \otu  ..., as| and X* = {tf,  ..., &}, 
K* =

We have to consider two cases: I. r' <r, II. r' = r.
Case I. Consider three subcases.

( i ) r < s .  Then p(X* :X*) = r'— 1 +(s — r' +1)/4 < r — 1 +(s — r + l)/4 = 
p{X:K).

(ii ) r ^ s  and s > r'. Then p(X* :K*) = r'— 1 +(s — r'+ l)/4 < r'- 14-
r  —  s

+ s - r '  = s -  1 < s - l  + £  (1 — 1/m,) = p{X:K).
i = 1

(iii) s ^  r'. If s = r' then
t — s

p(*:K*) = r’~  1 < r - l  + £  (1 — 1/m,) — p(X: K).
i= 1

Thus let s <r' ^  r. Since both couples are reduced, A = (X*)  ® <X*> 
= <X > © <X >. Now since |X*| = |X|, <X*>^<X>. Let ml 5 ...,m r and 
«1 , ..., nr> be the orders of £1? ..., and ..., £5 respectively. We want to 
employ Theorem 4.2. So let A' = Zmi ® ... ® Zm̂ and /4" = Zdl ® ... ® Zdr, 
where dx = ... = dr_r, = 1 and dr_r- + 1 = n, for i = 1 , ..., r'.

We have an epimorphism of Л' onto Л". Thus, by Theorem 4.2, for 
i = 1, ..., r. Thus

/i(X*: X*) = 5- 1+ У  (1 -  1/n,-) = s - 1 + У  (1 -  1M)
i = 1 i = 1

s S s - l + x / l - l / m ^ ^ X : * ) .
1= 1
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Case II. Consider two subcases.

(i) s > r. Then clearly p(X*: К*) = ц(Х:К).
(ii) s ^  r. Then the proof is contained in Case I (iii).

C orollary 5.5. Let A be an abelian group with поп-cyclic maximal 
2-subgroup and satisfying hypothesis of Lemma 3.1. Then mA = 
min \p(X:K): (X : K) is totally reduced generating couple for A\.

L em m a  5.6. Let A be an abelian group with cyclic maximal 2-subgroup 
satisfying hypothesis of Lemma 3.1. Then mA = min {р{Г): Т е Ж А and Г has 
signature (0, + , [ml5 ..., mr], {(-)})}.

Proof. By Proposition 3.8, it is sufficient to show that for any reduced 
group Г in ЖА there exists Г 'еЖ А with desired signature such that 
p(T') < p(T)- Clearly, such group has no non-empty period cycles.

Let Г has signature (0, + , [mlt ..., mr], {( — )*}) and let 0  be the 
corresponding homomorphism. Let /? be the only element of order 2 in A. 
Consider the group Г  with signature (0, + , [и15 ..., «r+s-i]> .{( — )}), where

_ I !>•••? 7"» •
||<9(ei_r)|, i = r + 1 , ..., r + s - 1 ,

and the homomorphism 0  : Г -> A defined by

0'(x'd
0{Xi), i = l , . . . , r ,
0 (et_r), i = r + 1 , ..., r + s - 1 ,

0'(e') = 0(es) and 0'(c') = p.
Since A has only one element of order 2, we have 0{cx) — ... = 0 (cs) 

and hence Г 'е Ж А. Now since 1 — l/nt < l  for / = r+ 1 , ..., r + s — 1, 
р(Г)  ^  p(T). Hereby the lemma is proved.

6. Minimum genus. We have reduced the problem of finding the mini­
mum genus of surfaces of genus p ^  3 for which a given abelian group A is a 
group of automorphism to the problem of calculating mA. In the light of the 
previous considerations it is natural to split the problem into following cases. (i)

(i) A satisfies hypothesis of Lemma 3.1 and has non-cyclic maximal 2- 
subgroup.

(ii) A satisfies hypothesis of Lemma 3.1 and has cyclic maximal 2- 
subgroup.

(iii) A is of odd order.
(iv) A does not satisfy hypothesis of Lemma 3.1.
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Proposition 6.1. Assume that an abelian group A satisfies hypothesis of 
. Lemma 3.1 and has поп-cyclic maximal 2 subgroup. Let A = Z\  0  A', where s 
is as big as possible and A  — Zmj 0 . . .  © Zmfc is the canonical decomposition.
Suppose that mlt ..., mt are odd and mt+1, ..., mk are even. Then

mA

* к — s
s - 1 +  Z  C1 — V^i)

i= 1
к - 1

k - l + ( s - k - l + l ) / 4
(* + /-s)/2

« (k + s — l)/2— 1 + £  ( i - i M )
/= 1

if s ^  к — l,

if s — (k — l) = 2/, 

if s — (k — l) > 2/,

if 0 < s — (k — l) < 2/

. and s — (k — l) is euen,
(k +  l ~  s —  l ) / 2

( k + s - 1 - D /2 -1 +  X ( l - l /m ,)+ ( l - l /2m ,l+,_J+1|,2)
i = 1

i/ 0 < s — (k — l) <21 and s — (k — l) is odd.

Proof. By Corollary 5.5, we have to minimize p(X:K)  over all totally 
reduced generating couples (X : K ). Although for given abelian group A, 
totally reduced generating couple (X : К ) is not uniquely determined by the 
number of elements in K, the sequence (nt , ..., nr: u), where nt = |&|, и = \K\ 
and p(X:K)  are. We will refer to any such sequence as to the sequence 
corresponding to u.

Let s < k~l.  We will show that if (X : К) is any totally reduced 
generating couple and (nl , . . . , n r: u) is the sequence corresponding to 
и = |X| in which nh ..., щ are odd and н*+1, ..., nt are even and и ^  r — t, 
then for any v ^ u  and for any totally reduced generating couple (X ':K ') 
with \K'\ = v, we have p(X:K)  < p{X':K'). It can be done by induction on 
u. The assertion clearly holds for и = 0. Suppose that the assertion holds for 
some и <s. We will prove it for u+l .  Let {X:K) be any totally reduced 
generating couple with |K| = m + 1 and let (n1, . . . , n r: u + l ) be the corre­
sponding sequence where щ, ..., щ are odd and nt+1, ..., nr are even and 
u + l ^  r — t.

Now let v < u + l and let (X' :K ') be totally reduced generating couple 
with |X'| = v.

If v =* u+ 1 then clearly p (X1 : K') = p(X:K).
If v = u, let us consider two ^cases:

(i) t ^  1. Then the sequence corresponding to и is the following one 
(nl5 ..., n ,-!, 2rit, nt + 1, ..., nr: u). Thus
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fi(X:K) = ( ( u + l ) - l ) +  £  ’(l - l /n ,)
i= 1

= u - 1 + £  (1 -  l/n,) +  (l -  l/2n,)+ Г£  (1 -  1/n,)
i= 1 i = t+l

+1 -(1  -  1/2л*) + (1 -  1M)-(1 -  1 Я - J  
= fi(X' :K')+l/nr- u—l/2nt.

Now since u + 1 ^  r —t, r —n ^  f + 1. Thus иг_ц is even. Since nt is odd and 
in addition n(|nr_u, nr-Jn t ^ 2 .  Consequently, l/nr_„— l/2w, < 0. Hence

(ii) t = 0. Then the sequence corresponding to и is the following one 
(2, «J, nr\ u). Thus

/1(Л-:К) = ((и + 1)-1)+ £  ’(l - l /n ,)
i= 1

= « - 1 + (1 - | ) + £ ” ( i - iM )
i= 1

+ i - ( i - i ) - ( i - i / n r_H)

= M * ': X ') - 1 + i +  l/nr_„ ^  n iX’-.K').

Finally if v < и then let (X" : K") be totally reduced generating couple with 
\K”\ = u. Then by the previous case ц(Х:К)  ^  ц (Х " \К ”) and by induction 
hypothesis /л{Х":К") ^  fi{X':K').

Thus mA is attained for {X : K) with \K\ = s and it is easy to see that it is 
equal to the value declared in the proposition.

Let s — (k — l)>2l.  Note first that if (X:K) is any totally reduced 
generating couple in which \K\ = и < s and (nl5 ..., nr: и) is the corre­
sponding sequence with nlf ..., n, odd and гц+1, ..., nr even and u — (r — t) 
> 21, then for any v ^  t the sequence corresponding to u — v is 

nt- v, + 2п,-„+и ..., 2щ, rit + nr: u-v).  Thus ц{Х':К') = r - 1 + 
+ (u — v — r + 1)/4 ^  r — 1 + (w — r+ l)/4 — fi(X: К) for any totally reduced gen­
erating couple (X ' : K ') with \K'\ =u — v.

On the other hand, let (X : К ) be any totally reduced generating couple 
with и = \K\ and let (n1, ..., nr: и) be the corresponding sequence in which 
nlt ..., nr are even. Then for any v ^  и the sequence corresponding to u — v is

(2, 2, щ , ..., nr: u-v).  We will show that for any totally reduced
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generating couple (X' :K ') with \K'\ =u — v we have ц(Х:К)  ^  ц{Х' :K'). By 
induction, it is sufficient to prove it for v — 1 .

If и < r then и — 1 ^  r + 1 and thus

H(X:K) = u -  l + £ ( l - l / n , )
i = 1

= ( ( u - l ) - l )  + ( l - i )  + r £ ‘ (1-1/n,)
i =  1

+ l - ( l - i ) - ( l - l / m r_u+i)

= Vi (X ' :K ' ) - l+ i+ l /mr- H+1^p(X ':K ') .

The cases м = r + l ,  r + 2 and u > r  + 2 are similar.
So in the case s — (k — l)>2l, mA is attained for (X: K) with |X| = 

s —(k — l) and, finding the sequence corresponding to s — {k — l), one can show 
that it is equal to the value declared in the proposition.

For s — {k — l) = 21 the proof is essentially the same as in the previous
case.

Now let 0 < s - ( k - l )  < 21 and let s — {k — l) be even. We will show first 
that if (X : К ) is totally reduced generating couple with и = |K| and 
(n1, . . . , n r: и) is the corresponding sequence in which are odd,
rif+t, ..., nr are even and 0 < u - ( r - t )  <21, then for any v ^  (u — (r —1))/2 
and totally reduced generating couple (X ' :K ') with \K'\=u — v, 
li{X'\K') ^  fi{X:K). Note first that (u — v) — (r — {t — v)) = u — (r — t) — 2 v ^  
2t — 2v = 2(t — v) and v < t. Thus it is sufficient to prove the assertion for 
v = 1 .

The sequence corresponding to и — 1 is (nl5 ..., nt_ l5 2n,, nt+1, ..., nr\ 
и — 1). Let (X' :K ') be any totally reduced generating couple with |/C'| = и — 1. 
If и ^  r then и — 1 < r and

H(X:K) = u - l +  X“(l —1M)
i= 1

= ((м — 1) - 1).+ xf( l  -  1M) + (1 -  !/*,-„+,) + ! - ( ! -  VK-U+1)
i= 1

= M(X':K')+l/k,-u+1 >ii(X:K),

where kr^u+1 = 2 щ if r — u + l = t  and nr_u + 1 if r — u+ 1 <t.
If и > r + 1 then и— 1 >r = r and thus /х(Х':К') — r — 1 +((u — 1) —r +1)/4 

< r —l+(w —r+ l)/4  = ц(Х:К).
Finally, if u = r+ l  then u — \ = r  and ц(Х:К)  = r — 1 +(m — r + 1)/4 

> r — 1 =ц(Х':К').
On the other hand, if (X : К) is totally reduced generating couple with и



214 Grzegorz Gromadzki

= \K\ and (n1, . . . , n r: u) is the corresponding sequence in which и < r, 
n1, . . . , n r- u are odd and nr_„ + 1, nr are even, then for any v ^  и the 
sequence corresponding to u — v is (nl , ..., nr- u- v, 2nr_tt+r + 1, 2nr_u, 
nr_u+1, nr: u -v )  or (2 , 2, 2nl5 2nr_„, nr_M+1, 2nr: u - v ) ac­
cording as v < r — m or v > r — u. Then as in the previous case one can show 
that p(X: К) ^  p(X':K') and thus mA is attained for (X : K ) with |iC| = 
s — (s — (k — l))/2 and is equal to the value declared in the proposition.

Finally, let 0 < s — (k - l )  < 21 and let s — (k — l) be odd. Then as in the 
previous case we show that if (X : К ) is totally reduced generating couple 
with the corresponding sequence (nl , ..., nr: и) in which nl , ..., nt are odd, 
n, + 1, ..., nr are even and u = {r — t )+ 1 , then for any totally reduced gener­
ating couple (X ' : K ') such that \K'\ > и or \K’\ <u — 1, ji(X:K) ^  ц(Х':К'). 
On the other hand, the sequence corresponding to и — 1 is the following one 
(nt , ..., 2nt, л, + 1, ..., nr: m — 1). Let (X ':K ') be totally reduced gener­
ating couple with \K'\ =u — 1. Then

V(X:K) = u - l +  Y. (1-1M )
i= 1

= ( ( u - i ) - i ) +  j ;  (i — i/wf)+ (i — i/2nr_„+1)
i= 1

- ( l - l / 2nr_H+1) + l 

= M (X’: К ') + l/2nr _ „+! ^  ц (X' : K').

Thus mA is attained for (X : K ) with \K\ = s — (s — (k — /)—1)/2 = (s + k — 
— l—1)/2 and it is easy to see that it is equal to the value declared in 
the proposition.

Proposition 6.2. Assume that an abelian group A satisfies hypothesis of 
Lemma 3.1 and has cyclic maximal 2-subgroup. Let A = Z mi © ... © Z mji be

Г
the canonical decomposition. Then mA = — 1+ £  (1 —l/mf).

i= l
Proof. By Lemma 5.6, we have to minimize p{T) over all groups in *rA 

which have signatures of type (0, + , [nl5 ..., n j ,  {( — )}). Every NEC group 
in ЖА with such signature determines generating couple (Х(Г):К(Г)) 
= (xl , . . . , x s: 0)  such that р(Г) = р(Х(Г): К (Г)). Conversely, given any 
generating couple (X :K) = (£l5 ..., £s: 0)  determines an NEC group 
T{X:K)  in ЖА with signature (0, + , [nu  ..., ns], !(-)}), where щ = |£| 
such that р(Г(X : К)) = p(X : K) (the corresponding non-orientable surface- 
kernel homomorphism is given by &(xi) = Çi, ©(e) = — (£1 + . . . + 4 ) and 
0(c) is the only element of order 2 in A).

Thus in order to find mA for the group in question it is sufficient to
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minimize p(X:K)  over all generating couples (X : K ) with empty K. Hereby 
the assertion follows from Theorem 4.1.

P roposition 6.3. Let A be an abelian group of odd order and 
let A = Z mi 0 . . .  © Z mr be the canonical decomposition. Then mA

= - 1 + Z  (i -  v™»)-
i= 1

Proof. By Proposition 3.9, we have to minimize р(Г) over all groups in 
ЖА which have signatures of type (1, — , [nit ..., ns], !— J). For any NEC 
group Г in .W'A with such signature (Х(Г):К(Г)) = (дс15 ..., xs: 0)  is gener­
ating couple for A such that р(Г) = р(Х(Г):К(Г)). Conversely, for any 
generating couple (X : K ) = (£j, ..., £s: 0)  there is at least one NEC group 
T(X:K)  in Жл such that p(X:K)  = р(Г(Х: К)). This is the group with 
signature (1 , —, [h15 ..., ns], ! -  J), where n{ is the order of & (the corre­
sponding non-orientable surface-kernel homomorphism 0  is given by 
0  (x,) = & and 0(d) is an element satisfying 20(d) = — ( ^ +  ... + ^r)).

Thus as in the previous proposition we obtain the assertion.

Proposition 6.4. Assume that an abelian group does not satisfy hypothesis 
of Lemma 3.1. Then mA = (m— l)/2m if A = Z 2 ® Z 2m and mA = j  if A 
= Z 2 0  Z 2 0  Z 2 or A — Z 2 0  Z 2.

Proof. Let A = Z 2 0 Z 2, Then it is easy to observe that for any NEC 
group Г in ЖА, p(T) is an integral multiplicity of J. On the other hand, an 
NEC group Г with signature (0, + , [2], {(2, 2, 2)}) belongs to ЖА — the 
corresponding homomorphism 0  is defined in the following way. Let £15 £2 
be generators of A. Then @(x) = 0(e) = @(c0) = 0(c3) = 0 (c x) = £2 and
0(c2) = + Moreover, p(T) = J. Thus mA = \ .

In the same way one can show that for the group A = Z 2 0 Z 2 @Z2, 
mA is also equal to

Now let A = Z2 © Z 2m, where m > 1. Consider an NEC group Г with 
signature (0, + , [2, 2m], {(-)})• Let £l5 £2 be canonical generators of A and 
let 0: Г->А be the homomorphism defined by 0 (x1) = <̂1, 0 ( x 2) = Ç2, 
0(e) = -(<*! + É2) and 0(c) = ^ .

Clearly, 0  is non-orientable surface-kernel homomorphism and thus 
Г g ЖА. р(Г) = (m — l)/2m. We will show that this is mA.

Let Г еЖ А and let 0  be the corresponding homomorphism.

(i) If Г has more than 2 period cycles, then p(T) ^  1.
(ii) If Г has 2 non-empty period cycles, then p(T) ^  1.

(iii) If Г has 2 period cycles one of which is non-empty, then p(T)^- \ .
(iv) If Г has 2 empty period cycles, then there is at least one period or

the genus is greater than 0 (otherwise p(T) = 0). In both cases p ( T ) ^ ^ .
(v) Assume that Г has 1 non-empty period cycle. Then either the genus
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is greater than 0 or Г has some periods (otherwise since e — 1, A has only 
elements of order 2 what is a contradiction since m > 1).

If Г has genus greater than 0 then Thus suppose that the
genus is 0.

If Г has more than one period then ц(Г) ^  j .  Assume then that has 1 
period only. Clearly this period must be m or 2m.

If the period is m then the period cycle must “provide” 2 elements of 
order 2. Consequently s ^  3 and thus ц(Г) ^  — 2+1 + j+ ( l  — 1/m) = 
(3m — 4)/4m ^  (m — l)/2m.

If the period is 2m then ц (Г )^  — 2 +1 + i  + (l — l/2m) = (m — l)/2m.

(vi) Assume that Г has 1 empty period cycle. Then:
If Г has 1 period, then the genus is greater than 0 (otherwise ц(Г) < 0). 

Thus let the genus be greater than 0 and let к be the period. Then ц(Г) ^  
(к — 1 )/k ^  (m — l)/2m.

If Г has 2 periods and the genus is greater than 0, then ц{Г) ^  1. So let 
the genus be 0 and let к, l be the periods. A is generated by x l5 x2- Thus к 
= 2 and / = 2m. Consequently, д(Г) = (m—l)/2m.

If Г has more than 2 periods, then /и{Г) ^
(vii) Assume that Г has no period cycles. Then the genus is greater than 

0 and the sign is — (otherwise Г is a Fuchsian group).
If the genus is greater than 2, then ju(T) ^  1.
If the genus is 2, then Г has some period (otherwise ц(Г) = 0) and thus

If the genus is 1, then Г has at least 2 periods (otherwise ц{Г) < 0). If Г 
has more than 2 periods, then /г(Г) ^  Assume thus that Г has 2 periods 
к, l. Since A is generated by d2, x t , x 2 and d2 = — (jci+ jc2) so  к = 2 and 
/ = 2m. Consequently, ц{Г) = (m— l)/2m.

Hereby we showed that mA — (m — l)/2m.
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